Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Chem Phys ; 130(16): 164714, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19405623

RESUMEN

Xenon difluoride is observed to react with Si-Si sigma-dimer and sigma-lattice bonds of Si(100)2 x 1 at 150 K by single and two atom abstraction at F coverages above 1 ML. As in the limit of zero F coverage, a measurable fraction of the scattered, gas phase product of single atom abstraction, XeF, is sufficiently internally excited to dissociate into F and Xe atoms before detection. Using the XeF internal energy and orientation distributions determined in the limit of zero coverage, the laws of conservation of momentum, energy, and mass are applied to the measured F velocity and angular distributions at higher coverage to simulate the Xe atom velocity and angular distributions and their intensities at higher coverage. The simulation predicts the observed Xe atom velocity and angular distributions at high coverage reasonably well, largely because the exothermicity channeled to XeF remains approximately constant as the coverage increases. This constancy is an opportune consequence of the trade-off between the attractiveness of the potential energy surface as the coverage is increased and the dynamics of the XeF product along the potential surface. The energy, momentum, and mass conservation analysis is also used to distinguish between Xe atoms that arise from XeF gas phase dissociation and Xe atoms that are produced by two atom abstraction. This distinction enables the calculation of percentages of the single and two atom abstraction pathways, as well as the percentages of the two pathways available to the Xe atom produced by two atom abstraction, inelastic scattering, and desorption. Finally, the simulation reveals that between 9% and 12% of F atoms produced by gas phase dissociation of XeF are scattered back toward the surface. These F atoms likely react readily with Si to form the higher fluorides that ultimately lead to etching. Gas phase dissociation of the scattered product of a surface reaction is a novel mechanism to explain the unique reactivity of XeF(2) to etch Si in the absence of a plasma.

2.
J Chem Phys ; 129(21): 214701, 2008 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-19063569

RESUMEN

Xenon difluoride reacts with Si(100)2x1 by single atom abstraction whereby a dangling bond abstracts a F atom from XeF(2), scattering the complementary XeF product molecule into the gas phase, as observed in a molecular beam surface scattering experiment. Partitioning of the available reaction energy produces sufficient rovibrational excitation in XeF for dissociation of most of the XeF to occur. The resulting F and Xe atoms are shown to arise from the dissociation of gas phase XeF by demonstrating that the angle-resolved velocity distributions of F, Xe, and XeF conserve momentum, energy, and mass. Dissociation occurs within 2 A of the surface and within a vibrational period of the excited XeF molecule. Approximately an equal amount of the incident XeF(2) is observed to react by two atom abstraction, resulting in adsorption of a second F atom and scattering of a gas phase Xe atom. Two atom abstraction occurs for those XeF product molecules whose bond axes at the transition state are oriented within +/-60 degrees of the normal and with the F end pointed toward the surface.

3.
Phys Rev Lett ; 92(18): 188302, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-15169537

RESUMEN

Xenon difluoride interacts with Si(100)2 x 1 by atom abstraction, whereby a dangling bond abstracts a F atom from XeF2, scattering the complementary XeF. Partitioning of the reaction exothermicity produces sufficient XeF rovibrational excitation for dissociation to occur. The resulting F and Xe atoms are shown to arise from dissociation of XeF in the gas phase by demonstrating that the angle-resolved velocity distributions of F, Xe, and XeF conserve momentum, energy, and mass. This experiment documents the first observation of dissociation of a surface reaction product in the gas phase.

5.
Biochem Med Metab Biol ; 51(1): 74-9, 1994 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8192920

RESUMEN

Studies from our laboratory demonstrated that the free radical scavenger, nitro blue tetrazolium, and iron chelators, such as dypyrydil, are potent inhibitors of arachidonic acid oxidation and platelet function. In the present study, we have evaluated the effects of known antioxidants, such as butylated hydroxyanisol (BHA), butylated hydroxytoluene (BHT), and diphenylamine, on arachidonic acid metabolism and platelet function. Diphenylamine, a common dye intermediate used in hair color formulations, was the most potent inhibitor of arachidonic acid metabolism by platelet cyclooxygenases. Diphenyl and BHA were also potent inhibitors of arachidonic acid oxidation. Other diphenyl analogues and BHT were relatively poor inhibitors of arachidonic-mediated platelet activation. Results of this study, as well as those of our earlier studies, suggest that antioxidants and iron chelators prevent arachidonic acid metabolism and alter platelet function by interfering with the heme/arachidonic acid interaction and blocking cyclooxygenase metabolites essential for the formation of thromboxane A2, a potent platelet agonist.


Asunto(s)
Antioxidantes/farmacología , Ácido Araquidónico/metabolismo , Plaquetas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Ácido Araquidónico/antagonistas & inhibidores , Hidroxianisol Butilado/farmacología , Hidroxitolueno Butilado/farmacología , Difenilamina/farmacología , Epinefrina/farmacología , Humanos , Oxidación-Reducción , Agregación Plaquetaria/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA