Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Med Sci ; 16(4): 567-575, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31171908

RESUMO

Bone tissue engineering requires a combination of cells, efficient biochemical and physicochemical factors, and biocompatible scaffolds. In this study, we evaluated the potential use of injectable Matrigel as a scaffold for the delivery of rat dental follicle stem/precursor cells (rDFSCs) transduced by bone morphogenetic protein (BMP) 9 to enhance osteogenic differentiation in vitro and promote ectopic bone formation in vivo. Recombinant adenovirus was used to overexpress BMP9 in rDFSCs. Alkaline phosphatase activity was measured using a histochemical staining assay and a chemiluminescence assay kit. Quantitative real-time polymerase chain reaction was used to determine mRNA expression levels of bone-related genes including distal-less homeobox 5 (DLX5), osteopontin (OPN), osterix (Osx), and runt-related transcription factor 2 (Runx2). Matrix mineralization was examined by Alizarin Red S staining. rDFSCs proliferation was analyzed using the Cell Counting Kit-8 assay. Subcutaneous implantation of rDFSCs-containing Matrigel scaffolds was used, and micro-computed tomography analysis, histological evaluation, and trichrome staining of implants extracted at 6 weeks were performed. We found that BMP9 enhanced alkaline phosphatase activity and mineralization in rDFSCs. The expression of bone-related genes (DLX5, OPN, Osx, and Runx2) was also increased as a result of BMP9 stimulation. Micro-computed tomography analysis and histological evaluation revealed that the bone masses retrieved from BMP9-overexpressing rDFSCs were significantly more pronounced in those with than in those without Matrigel. Our results suggest that BMP9 effectively promote osteogenic differentiation of rDFSCs, and Matrigel facilitate BMP9-induced osteogenesis of rDFSCs in vivo.


Assuntos
Fator 2 de Diferenciação de Crescimento/genética , Osteogênese/efeitos dos fármacos , Transplante de Células-Tronco , Alicerces Teciduais , Animais , Diferenciação Celular/efeitos dos fármacos , Colágeno/farmacologia , Saco Dentário/citologia , Combinação de Medicamentos , Fator 2 de Diferenciação de Crescimento/farmacologia , Humanos , Laminina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/genética , Proteoglicanas/farmacologia , Ratos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual , Microtomografia por Raio-X
2.
Mater Today Bio ; 25: 100990, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38371466

RESUMO

Background: Human-treated dentin matrix (hTDM) has recently been studied as a natural extracellular matrix-based biomaterial for dentin pulp regeneration. However, porcine-treated dentin matrix (pTDM) is a potential alternative scaffold due to limited availability. However, there is a dearth of information regarding the protein composition and underlying molecular mechanisms of pTDM.Methods: hTDM and pTDM were fabricated using human and porcine teeth, respectively, and their morphological characteristics were examined using scanning electron microscopy. Stem cells derived from human exfoliated deciduous teeth (SHEDs) were isolated and characterized using flow cytometry and multilineage differentiation assays. SHEDs were cultured in three-dimensional environments with hTDM, pTDM, or biphasic hydroxyapatite/tricalcium phosphate. The expression of odontogenesis markers in SHEDs were assessed using real-time polymerase chain reaction and immunochemical staining. Subsequently, SHEDs/TDM and SHEDs/HA/TCP complexes were transplanted subcutaneously into nude mice. The protein composition of pTDM was analyzed using proteomics and compared to previously published data on hTDM.Results: pTDM and hTDM elicited comparable upregulation of odontogenesis-related genes and proteins in SHEDs. Furthermore, both demonstrated the capacity to stimulate root-related tissue regeneration in vivo. Proteomic analysis revealed the presence of 278 protein groups in pTDM, with collagens being the most abundant. Additionally, pTDM and hTDM shared 58 identical proteins, which may contribute to their similar abilities to induce odontogenesis. Conclusions: Both hTDM and pTDM exhibit comparable capabilities in inducing odontogenesis, potentially owing to their distinctive bioactive molecular networks.

3.
J Biomed Mater Res B Appl Biomater ; 110(4): 755-767, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34637601

RESUMO

Human-treated dentin matrix (hTDM) is a biomaterial scaffold, which can induce implant cells to differentiate into odontoblasts and then form neo-dentin. However, hTDM with long storage or prepared by high-speed handpiece would not to form neo-dentin. In this research, we developed two fresh hTDM with different grinding speeds, which were low-speed hTDM (LTDM) with maximum speed of 500 rpm and high-speed hTDM (HTDM) with a speed of 3,80,000 rpm. Here, we aim to understand whether there were induced regeneration capacity differences between LTDM and HTDM. Scanning electron microscope showed that DFCs grew well on both materials, but the morphology of DFCs and the extracellular matrix was different. Especially, the secreted extracellular matrixes on the inner surface of LTDM were regular morphology and ordered arrangement around the dentin tubules. The transcription-quantitative polymerase chain reaction (qRT-PCR), western blot and immunofluorescence assay showed that the dentin markers DSPP and DMP-1 were about 2× greater in DFCs induced by LTDM than by HTDM, and osteogenic marker BSP was about 2× greater in DFCs induced by HTDM than by LTDM. Histological examinations of the harvested grafts observed the formation of neo-tissue were different, and there were neo-dentin formed on the inner surface of LTDM and neo-cementum formed on the outer surface of HTDM. In summary, it found that the induction abilities of LTDM and HTDM are different, and the dentin matrix is directional. This study lays a necessary foundation for searching the key factors of dentin regeneration in future.


Assuntos
Dentina , Matriz Extracelular , Diferenciação Celular , Células Cultivadas , Humanos , Odontoblastos , Regeneração
4.
Front Bioeng Biotechnol ; 10: 1036061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324890

RESUMO

Apical periodontitis is a common clinical disease caused by bacteria; bacterial metabolites can cause an imbalance in bone homeostasis, bone mass reduction, and tooth loss. Bone resorption in apical periodontitis causes a concentration of stress in the tooth and periodontal tissues during occlusion, which aggravates the disease. Emerging evidence indicates that bone morphogenetic protein 9 (BMP9), also known as growth differentiation factor 2(Gdf2), may play an important role in tooth and dentoalveolar development. Herein, we investigated the role of BMP9 in the development of apical periodontitis and its effects on the biomechanics of dentoalveolar bone. Apical periodontitis models were established in five BMP9 knockout (KO) mice and five C57BL/6 WT (wild-type) mice. At baseline and 14, 28, and 42 days after modeling, in vivo micro-computed tomography analysis and three-dimensional (3D) reconstruction were performed to evaluate the apical lesion in each mouse, and confirm that the animal models were successfully established. Finite element analysis (FEA) was performed to study the stress and strain at the alveolar fossa of each mouse under the same vertical and lateral stress. FEA revealed that the stress and strain at the alveolar fossa of each mouse gradually concentrated on the tooth cervix. The stress and strain at the tooth cervix gradually increased with time but were decreased at day 42. Under the same lingual loading, the maximum differences of the stress and strain at the tooth root in KO mice were greater than those in WT mice. Thus, these findings demonstrate that BMP9 could affect the biomechanical response of the alveolar fossa at the tooth root in mice with apical periodontitis. Moreover, the effects of BMP9 on the biomechanical response of the alveolar bone may be site-dependent. Overall, this work contributes to an improved understanding of the pathogenesis of apical periodontitis and may inform the development of new treatment strategies for apical periodontitis.

5.
In Vitro Cell Dev Biol Anim ; 57(6): 620-630, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34212339

RESUMO

Human dental follicle cells (HDFCs) are an ideal cell source of stem cells for dental tissue repair and regeneration and they have great potential for regenerative medicine applications. However, the conventional monolayer culture usually reduces cell proliferation and differentiation potential due to the continuous passage during in vitro expansion. In this study, primary HDFC spheroids were generated on 1% agarose, and the HDFCs spontaneously formed cell spheroids in the agarose-coated dishes. Compared with monolayer culture, the spheroid-derived HDFCs exhibited increased proliferative ability for later passage HDFCs as analysed by Cell Counting Kit-8 (CCK-8). The transcription-quantitative polymerase chain reaction (qRT-PCR), western blot and immunofluorescence assay showed that the expression of stemness marker genes Sox2, Oct4 and Nanog was increased significantly in the HDFC spheroids. Furthermore, we found that the odontogenic differentiation capability of HDFCs was significantly improved by spheroid culture in the agarose-coated dishes. On the other hand, the osteogenic differentiation capability was weakened compared with monolayer culture. Our results suggest that spheroid formation of HDFCs in agarose-coated dishes partially restores the proliferative ability of HDFCs at later passages, enhances their stemness and improves odontogenic differentiation capability in vitro. Therefore, spheroid formation of HDFCs has great therapeutic potential for stem cell clinical therapy.


Assuntos
Técnicas de Cultura de Células , Saco Dentário/crescimento & desenvolvimento , Odontogênese/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Saco Dentário/citologia , Saco Dentário/metabolismo , Humanos , Odontogênese/genética , Sefarose/farmacologia , Esferoides Celulares/citologia , Células-Tronco/efeitos dos fármacos
6.
Biomaterials ; 230: 119666, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31831222

RESUMO

Various obstacles impede the chemotherapy efficiency of glioma in clinic, such as blood brain barrier (BBB) and blood brain tumor barrier (BBTB). Ligand-mediated polymeric micelles have shown great potential for improving the efficiency of glioma treatment. Herein, we developed a disulfide bond-conjugated prodrug polymer consisted of camptothecin (CPT) and polyethylene glycol (PEG) with further modification of iRGD peptide. The polymer of CPT-S-S-PEG-COOH could self-assemble into nanosized polymeric micelles with diameter around 100 nm, and loaded with photosensitizer IR780 for combination therapy. The micelles displayed good stability with controlled drug release under physiological environment. Importantly, the iRGD modified polymeric micelles demonstrated favorable ability to cross the BBB and target glioma cells via αv ß integrin and neuropilin-1-mediated ligand transportation in vitro and in vivo. The whole synthesis process is simple and the drug loading content of CPT in the CPT-S-S-PEG-iRGD@IR780 micelles was higher than 10%. Moreover, CPT-S-S-PEG-iRGD@IR780 micelles combined chemotherapy with photodynamic therapy (PDT) displayed more excellent tumor-killing capability than the other groups. Thus, both in vitro and in vivo studies suggested that the targeting prodrug system could not only effectively cross various barriers to reach at glioma site, but also significantly enhance the antitumor effect with laser irradiation. Our findings consequently suggested that CPT-S-S-PEG-iRGD@IR780 micelles with laser irradiation are a promising drug delivery system for glioma therapy.


Assuntos
Glioma , Pró-Fármacos , Barreira Hematoencefálica , Camptotecina , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Humanos , Micelas , Polietilenoglicóis
7.
Adv Healthc Mater ; 8(11): e1900002, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30985090

RESUMO

The two major causes for implant failure are postoperative infection and poor osteogenesis. Initial period of osteointegration is regulated by immunocytes and osteogenic-related cells resulting in inflammatory response and tissue healing. The healing phase can be influenced by various environmental factors and biological cascade effect. To synthetically orchestrate bone-promoting factors on biomaterial surface, built is a dual delivery system coated on a titanium surface (abbreviated as AH-Sr-AgNPs). The results show that this programmed delivery system can release Ag+ and Sr2+ in a temporal-spatial manner to clear pathogens and activate preosteoblast differentiation partially through manipulating the polarization of macrophages. Both in vitro and in vivo assays show that AH-Sr-AgNPs-modified surface renders a microenvironment adverse for bacterial survival and favorable for macrophage polarization (M2), which further promotes the differentiation of preosteoblasts. Infected New Zealand rabbit femoral metaphysis defect model is used to confirm the osteogenic property of AH-Sr-AgNPs implants through micro-CT, histological, and histomorphometric analyses. These findings demonstrate that the programmed surface with dual delivery of Sr2+ and Ag+ has the potential of achieving an enhanced osteogenic outcome through favorable immunoregulation.


Assuntos
Osso e Ossos , Materiais Revestidos Biocompatíveis , Infecções/tratamento farmacológico , Nanopartículas Metálicas/química , Prata , Estrôncio , Titânio , Animais , Osso e Ossos/metabolismo , Osso e Ossos/microbiologia , Osso e Ossos/patologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Implantes de Medicamento/química , Implantes de Medicamento/farmacologia , Feminino , Infecções/metabolismo , Infecções/patologia , Camundongos , Osseointegração/efeitos dos fármacos , Osteogênese , Células RAW 264.7 , Coelhos , Prata/química , Prata/farmacologia , Estrôncio/química , Estrôncio/farmacologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
8.
PeerJ ; 5: e4057, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158986

RESUMO

Prophages have been considered genetic units that have an intimate association with novel phenotypic properties of bacterial hosts, such as pathogenicity and genomic variation. Little is known about the genetic information of prophages in the genome of Streptococcus mutans, a major pathogen of human dental caries. In this study, we identified 35 prophage-like elements in S. mutans genomes and performed a comparative genomic analysis. Comparative genomic and phylogenetic analyses of prophage sequences revealed that the prophages could be classified into three main large clusters: Cluster A, Cluster B, and Cluster C. The S. mutans prophages in each cluster were compared. The genomic sequences of phismuN66-1, phismuNLML9-1, and phismu24-1 all shared similarities with the previously reported S. mutans phages M102, M102AD, and ϕAPCM01. The genomes were organized into seven major gene clusters according to the putative functions of the predicted open reading frames: packaging and structural modules, integrase, host lysis modules, DNA replication/recombination modules, transcriptional regulatory modules, other protein modules, and hypothetical protein modules. Moreover, an integrase gene was only identified in phismuNLML9-1 prophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA