Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Language
Publication year range
1.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-21266673

ABSTRACT

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations at specific amino acids that might impede vaccine efficacy. BriLife(R) (rVSV-{Delta}G-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in Phase II clinical trials. It is based on a replication competent vesicular stomatitis virus (VSV) platform. rVSV-{Delta}G-spike contains several spontaneously-acquired spike mutations that correspond to SARS-CoV-2 variants mutations. We show that human sera from BriLife(R) vaccinees preserve comparable neutralization titers towards alpha, gamma and delta variants, and show less than 3-fold reduction in neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife(R) vaccinees overall maintain neutralizing antibody response against all tested variants. We suggest that BriLife(R) acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

2.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-438035

ABSTRACT

A wide range of SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) were reported to date, most of which target the spike glycoprotein and in particular its receptor binding domain (RBD) and N-terminal domain (NTD) of the S1 subunit. The therapeutic implementation of these antibodies has been recently challenged by emerging SARS-CoV-2 variants that harbor extensively mutated spike versions. Consequently, the re-assessment of mAbs, previously reported to neutralize the original early-version of the virus, is of high priority. Four previously selected mAbs targeting non-overlapping epitopes, were evaluated for their binding potency to RBD versions harboring individual mutations at spike positions 417, 439, 453, 477, 484 and 501. Mutations at these positions represent the prevailing worldwide distributed modifications of the RBD, previously reported to mediate escape from antibody neutralization. Additionally, the in vitro neutralization potencies of the four RBD-specific mAbs, as well as two NTD-specific mAbs, were evaluated against two frequent SARS-CoV-2 variants of concern (VOCs): (i) the B.1.1.7 variant, emerged in the UK and (ii) the B.1.351 variant, emerged in South Africa. Variant B.1.351 was previously suggested to escape many therapeutic mAbs, including those authorized for clinical use. The possible impact of RBD mutations on recognition by mAbs is addressed by comparative structural modelling. Finally, we demonstrate the therapeutic potential of three selected mAbs by treatment of K18-hACE2 transgenic mice two days post infection with each of the virus strains. Our results clearly indicate that despite the accumulation of spike mutations, some neutralizing mAbs preserve their potency against SARS-CoV-2. In particular, the highly potent MD65 and BL6 mAbs are shown to retain their ability to bind the prevalent novel viral mutations and to effectively protect against B.1.1.7 and B.1.351 variants of high clinical concern.

3.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-160655

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 that emerged in December 2019 in China resulted in over 7.8 million infections and over 430,000 deaths worldwide, imposing an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we generated a replication competent recombinant VSV-{Delta}G-spike vaccine, in which the glycoprotein of VSV was replaced by the spike protein of the SARS-CoV-2. In vitro characterization of the recombinant VSV-{Delta}G-spike indicated expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in vivo model for COVID-19 was implemented. We show that vaccination of hamsters with recombinant VSV-{Delta}G-spike results in rapid and potent induction of neutralizing antibodies against SARS-CoV-2. Importantly, single-dose vaccination was able to protect hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss of the immunized hamsters compared to unvaccinated hamsters. Furthermore, whereas lungs of infected hamsters displayed extensive tissue damage and high viral titers, immunized hamsters lungs showed only minor lung pathology, and no viral load. Taken together, we suggest recombinant VSV-{Delta}G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL