Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Chemistry ; 30(42): e202401395, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38802980

ABSTRACT

Phase transitions in molecular solids involve synergistic changes in chemical and electronic structures, leading to diversification in physical and chemical properties. Despite the pivotal role of hydrogen bonds (H-bonds) in many phase-transition materials, it is rare and challenging to chemically regulate the dynamics and to elucidate the structure-property relationship. Here, four high-spin CoII compounds were isolated and systematically investigated by modifying the ligand terminal groups (X=S, Se) and substituents (Y=Cl, Br). S-Cl and Se-Br undergo a reversible structural phase transition near room temperature, triggering the rotation of 15-crown-5 guests and the swing between syn- and anti-conformation of NCX- ligands, accompanied by switchable magnetism. Conversely, S-Br and Se-Cl retain stability in ordered and disordered phases, respectively. H-bonds geometric analysis and ab initio calculations reveal that the electronegativity of X and Y affects the strength of NY-ap-H⋅⋅⋅X interactions. Entropy-driven structural phase transitions occur when the H-bond strength is appropriate; otherwise, the phase stays unchanged if it is too strong or weak. This work highlights a phase transition driven by H-bond strength complementarity - pairing strong acceptor with weak donor and vice versa, which offers a straightforward and effective approach for designing phase-transition molecular solids from a chemical perspective.

2.
Angew Chem Int Ed Engl ; 63(31): e202404271, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38700507

ABSTRACT

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4) ⋅ 4H2O (H2quinha=quinaldichydroxamic acid, HClsal=5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4) ⋅ 3H2O (HClsaldt=4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S=0 to high-spin S=1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

3.
Angew Chem Int Ed Engl ; 62(46): e202312685, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37779343

ABSTRACT

Spin crossover (SCO) materials with new architectures will expand and enrich the research in the SCO field. Here, we report two metal-organic frameworks (MOFs) containing tetradentate organic ligands and hexatopic linkers [Ag8 X8 (CN)6 ]6- (X=Br and I), which represents the first SCO MOF with clusters as building blocks. The silver halide cluster can be further removed after reacting with lithium tetracyanoquinodimethan (LiTCNQ). Such post-synthetic modification (PSM) is realized via single-crystal to single-crystal (SCSC) transformation from urk to nbo topology. Accordingly, the spin state and fluorescence properties are greatly modified by cluster deconstruction. Therefore, these achievements will provide new ideas for the design of new SCO systems and the development of PSM methods.

4.
Inorg Chem ; 61(24): 9047-9054, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35678748

ABSTRACT

Linkage isomers involving changes in the bonding mode of ambidentate ligands have potential applications in data storage, molecular machines, and motors. However, the observation of the cyanide-linkage-isomerism-induced spin change (CLIISC) effect characterized by single-crystal X-ray diffraction remains a considerable challenge. Meanwhile, the high-spin and low-spin states can be reversibly switched in spin-crossover (SCO) compounds, which provide the potential for applications to data storage, switches, and sensors. Here, a new perovskite-type SCO framework (PPN)[Fe{Ag(CN)2}3] (PPN+ = bis(trisphenylphosphine)iminium cation) is synthesized, which displays the unprecedented aging and temperature dependences of hysteretic multistep SCO behaviors near room temperature. Moreover, the thermal-induced cyanide linkage isomerization from FeII-N≡C-AgI to FeII-C≡N-AgI is revealed by single-crystal X-ray diffraction, Raman, and Mössbauer spectra, which is associated with a transition from the mixed spin state to the low-spin state and a dramatic volume shrinkage. Considering the wide use of cyanogen in magnetic systems, the association of CLIISC and SCO opens a new dimension to modulate the spin state and realize a colossal negative thermal expansion.

5.
Angew Chem Int Ed Engl ; 60(52): 27282-27287, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34668633

ABSTRACT

Here we reported the deuteration of the metal-binding equatorial water molecules in a reported HoIII single-molecule magnet (SMM) with pentagonal-bipyramidal geometry, from [Ho(CyPh2 PO)2 (H2 O)5 ]3+ to [Ho(CyPh2 PO)2 (D2 O)5 ]3+ . The hyperfine structures originating from the nuclear spin of 165 HoIII can be clearly observed. Moreover, the resulting magnetization dynamics revealed the switch of the relative relaxation rates for the two isotope-isomorphic complexes-respectively faster/slower at low/high temperature. The noticeable isotope effect arises from not only the paramagnetic metal center but also the diamagnetic ligands, which can be explained by the ab initio calculated tunnel splitting and the involvement of the super-hyperfine interaction related to the difference in the nuclear spin number of protium (1 H, I=1 /2 ) and deuterium (2 H, I=1).

6.
Angew Chem Int Ed Engl ; 60(52): 27144-27150, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34676638

ABSTRACT

Stimuli-responsive materials that can be reversibly switched by light are of immense interest. Among them, photo-responsive spin crossover (SCO) complexes have great promises to combine the photoactive inputs with multifaceted outputs into switchable materials and devices. However, the reversible control the spin-state change by photochromic guests is still challenging. Herein, we report an unprecedented guest-driven light-induced spin change (GD-LISC) in a Hofmann-type metal-organic framework (MOF), [Fe(bpn){Ag(CN)2 }2 ]⋅azobenzene. (1, bpn=1,4-bis(4-pyridyl)naphthalene). The reversible trans-cis photoisomerization of azobenzene guest upon UV/Vis irradiation in the solid-state results in the remarkable magnetic changes in a wide temperature range of 10-180 K. This finding not only establishes a new switching mechanism for SCO complexes, but also paves the way toward the development of new generation of photo-responsive magnetic materials.

7.
Angew Chem Int Ed Engl ; 60(10): 5299-5306, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33216437

ABSTRACT

Combining Ising-type magnetic anisotropy with collinear magnetic interactions in single-molecule magnets (SMMs) is a significant synthetic challenge. Herein we report a Dy[15-MCCu -5] (1-Dy) SMM, where a DyIII ion is held in a central pseudo-D5h pocket of a rigid and planar Cu5 metallacrown (MC). Linking two Dy[15-MCCu -5] units with a single hydroxide bridge yields the double-decker {Dy[15-MCCu -5]}2 (2-Dy) SMM where the anisotropy axes of the two DyIII ions are nearly collinear, resulting in magnetic relaxation times for 2-Dy that are approximately 200 000 times slower at 2 K than for 1-Dy in zero external field. Whereas 1-Dy and the YIII -diluted Dy@2-Y analogue do not show remanence in magnetic hysteresis experiments, the hysteresis data for 2-Dy remain open up to 6 K without a sudden drop at zero field. In conjunction with theoretical calculations, these results demonstrate that the axial ferromagnetic Dy-Dy coupling suppresses fast quantum tunneling of magnetization (QTM). The relaxation profiles of both complexes curiously exhibit three distinct exponential regimes, and hold the largest effective energy barriers for any reported d-f SMMs up to 625 cm-1 .

8.
Inorg Chem ; 59(1): 687-694, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31820951

ABSTRACT

The combination of magnetic interaction with high magnetic anisotropy provides a promising way for modulating/fine-tuning molecular magnetic behaviors. Here, we show the building block approach for the synthesis of a family of dilanthanide single-molecule magnets (SMMs) bridged with a cyanometallate starting from a monolanthanide SMM. Contingent on the central para-/diamagnetic [M(CN)6]3- (M = Fe, Co) integrated between two highly anisotropic pentagonal-bipyramid Dy(III) subunits, the remanence of magnetization is OFF/ON below 15 K and they respectively display a record reversal barrier of 659 K among d-f SMMs and 975 K among cyano-bridged SMMs.

9.
Inorg Chem ; 58(16): 10694-10703, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31390195

ABSTRACT

The reactions of chiral ligand (R)/(S)-1,1'-binaphthyl-2,2'-diyl phosphate (R-HL/S-HL) and ErCl3·6H2O afford two pairs of di- and tetranuclear enantiomers [Er2(R/S-L)4(EtOH)6]Cl2·6.5EtOH (R-1, S-1) and [Er4(PO4)(R/S-L)8(EtOH)3(H2O)]2Cl(OH)·15EtOH·11H2O (R-2, S-2). The nuclearity of these complexes is controllable and depends on the reaction temperature with a template effect. Their chirality was evidenced by circular dichroism (CD) spectra. R-1 exhibits two magnetic relaxation pathways under a zero field, with an apparent barrier of 40 K. Ab initio calculations revealed a ferromagnetic dipolar interaction between these two Er(III) ions, the equatorial nature of the ligand field, and the probable origin of the two relaxations.

10.
Inorg Chem ; 58(2): 1301-1308, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30592214

ABSTRACT

A family of dinuclear dysprosium cores bridged by different ligands within a polyoxometalates (POMs) framework, (TBA)8.5H1.5[(PW11O39)2Dy2X2(H2O)2]·6H2O (X = OH (1), F (2), OAc (3); TBA = tetra- n-butylammonium), was successfully synthesized and structurally characterized. Magnetic studies indicate that the bridging ligands can significantly affect the magnetic behaviors, with 1 and 3 showing antiferromagnetic coupling and 2 bridged by fluoride ions showing ferromagnetic interaction. 1 and 2 behaved as single-molecule magnets (SMMs) with the thermally activated energy barrier of 98(5) and 74(6) cm-1 under zero dc filed, respectively, whereas no SMM behavior was observed for 3 bridged by two µ-η1:η2-acetato ligands. Notably, the low-temperature fluorescence spectra of 1-3 provide valuable information on the energy levels, which are consistent with the anisotropic barriers determined by magnetic measurements. These results offer an insight into the magneto-optical correlation. Furthermore, the effective energy barrier of 1 reaches a breakthrough among all POM-based SMMs.

11.
Chem Soc Rev ; 47(7): 2431-2453, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29492482

ABSTRACT

Toward promising candidates of quantum information processing, the rapid development of lanthanide-based single-molecule magnets (Ln-SMMs) highlights design strategies in consideration of the local symmetry of lanthanide ions. In this review, crystal-field theory is employed to demonstrate the electronic structures according to the semiquantitative electrostatic model. Then, specific symmetry elements are analysed for the elimination of transverse crystal fields and quantum tunnelling of magnetization (QTM). In this way, high-performance Ln-SMMs can be designed to enable extremely slow relaxation of magnetization, namely magnetic blocking; however, their practical magnetic characterization becomes increasingly challenging. Therefore, we will attempt to interpret the experimental behaviours and clarify some issues in detail. Finally, representative Ln-SMMs with specific local symmetries are summarized in combination with the discussion on the symmetry strategies, and some of the underlying questions are put forward.

12.
Angew Chem Int Ed Engl ; 58(30): 10163-10167, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31034690

ABSTRACT

Abstraction of iodide from [(η5 -C5 i Pr5 )2 UI] (1) produced the cationic uranium(III) metallocene [(η5 -C5 i Pr5 )2 U]+ (2) as a salt of [B(C6 F5 )4 ]- . The structure of 2 consists of unsymmetrically bonded cyclopentadienyl ligands and a bending angle of 167.82° at uranium. Analysis of the bonding in 2 showed that the uranium 5f orbitals are strongly split and mixed with the ligand orbitals, thus leading to non-negligible covalent contributions to the bonding. Investigation of the dynamic magnetic properties of 2 revealed that the 5f covalency leads to partially quenched anisotropy and fast magnetic relaxation in zero applied magnetic field. Application of a magnetic field leads to dominant relaxation by a Raman process.

13.
Inorg Chem ; 57(18): 11782-11787, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30160953

ABSTRACT

Slow relaxation of magnetization is observed in a neodymium(III) single-ion magnet based on phosphine oxide, which successfully extends our pentagonal bipyramidal family to light lanthanides. Comprehensive magnetic characterizations reveal that the magnetic dynamics follow the power law that corresponds to a Raman process, despite an energy splitting of 207 cm-1 evidenced by the ab initio calculation. Compared with a similar complex, the magnetic dynamics and magneto-structural correlations are clarified, providing deeper insight into the pursuit of promising light lanthanide single-molecule magnets.

14.
Inorg Chem ; 57(12): 6773-6777, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29863855

ABSTRACT

Two structurally intriguing dysprosium(III)-substituted polyoxometalates, [Dy6(ampH)4(H2O)23(ampH2)(PW11O39)2] (1) and [Dy9(CO3)3(ampH)2(H2O)12(PW10O37)6]35- (2), are assembled by the same precursor under different pH conditions. The structure of 1 contains an octahedral {Dy6(ampH)4} core, and a unique windmill-type {Dy9(CO3)3(ampH)2} for 2. Single-molecule magnet behavior is observed for 2 with a thermally activated energy barrier of 56 K and no appreciable quantum tunneling of magnetization under zero field.

15.
Inorg Chem ; 57(7): 4070-4076, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29553723

ABSTRACT

A chiral Co(II)-based coordination polymer, [Co3(pimda)2(H2O)5] (1, H3pimda = 2-propyl-1H-imidazole-4,5-dicarboxylic acid) with 3D hyperkagomé topology is reported. Upon heating/cooling, the water molecules which are coordinated to a pair of crystallographically symmetric Co(II) ions are removed/recovered discretely in two steps, giving [Co3(pimda)2(H2O)4] (2) and [Co3(pimda)2(H2O)3] (3), which is evidenced by the reversible single-crystal-to-single-crystal (SCSC) structural transformations. As the coordination geometry of the two Co(II) ions changes from octahedron to trigonal bipyramid, obvious color change from pink for 1 to dark violet for 2 and 3 is observed. Further magnetic measurements demonstrate the presence of a solvatomagnetic effect from paramagnets for 1 and 2 to weak ferromagnet for 3. Moreover, as revealed by the variable-temperature crystallographic measurements, the first and second dehydration temperatures could be controlled from 298 K (25 °C) and 383 K (110 °C) sealed in a capillary (high humidity) to 255 K (-18 °C) and 307 K (34 °C) in dry N2 (low humidity), indicating the strong humidity sensitivity of the structural dynamics.

16.
J Am Chem Soc ; 139(46): 16474-16477, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29068206

ABSTRACT

Magneto-structural correlation studies of mononuclear intermediate S = 3/2 Fe(III) complexes, (PMe3)2FeCl3 (1) and (PMe2Ph)2FeCl3 (2), demonstrate the influence of local symmetry on magnetic anisotropy. Symmetric compound 1 is characterized by a zero-field splitting (ZFS) parameter of D = -50(2) cm-1, leading to the observation of slow magnetic relaxation with an energy barrier of 81 cm-1 along with magnetic hysteresis up to 4 K, whereas symmetrically perturbed compound 2 displays a much reduced ZFS parameter of D = -17(1) cm-1 and energy barrier of Ueff = 46 cm-1.

17.
Chemistry ; 23(42): 10034-10037, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28594451

ABSTRACT

An unprecedented two-step spin-crossover behavior with the sequence of γHS =1↔γHS =3/4↔γHS =1/4 was observed in two-dimensional Hofmann type coordination polymer [Fe(isoq)2 {Ag(CN)2 }2 ] (isoq=isoquinoline), which resulted from three crystallographically inequivalent FeII sites with distinct transition temperatures.

18.
Chemistry ; 23(24): 5708-5715, 2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28135029

ABSTRACT

The pentagonal bipyramidal single-ion magnets (SIMs) are among the most attractive prototypes of high-performance single-molecule magnets (SMMs). Here, a fluorescence-active phosphine oxide ligand CyPh2 PO (=cyclohexyl(diphenyl)phosphine oxide) was introduced into [Dy(CyPh2 PO)2 (H2 O)5 ]Br3 ⋅2 (CyPh2 PO)⋅EtOH⋅3 H2 O, and combined dynamic magnetic measurement, optical characterization, ab initio calculation, and magneto-optical correlation of this high-performance pseudo-D5h DyIII SIM with large Ueff (508(2) K) and high magnetic hysteresis temperature (19 K) were performed. This work provides a deeper insight into the rational design of promising molecular magnets.

19.
Inorg Chem ; 56(15): 8730-8734, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28692252

ABSTRACT

A bifunctional dysprosium(III) dimer, [Dy2(HTPEIPOMe)2(OAc)4(NO3)2] (1), comprising an AIE-active (AIE = aggregation-induced emission) ligand of 2-methoxy-6-[[[4-(1,2,2-triphenylvinyl)phenyl]imino]methyl]phenol (HTPEIPOMe), was successfully synthesized. It not only behaves as a single-molecule magnet (SMM) with an energy barrier of 168(15) K at zero field but also exhibits piezochromism during the pressing-fuming cycle with switchable color, photoluminescence, and magnetic response.

20.
Inorg Chem ; 56(15): 8829-8836, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28714676

ABSTRACT

The dimeric molecule [Dy2(acac)6(MeOH)2(bpe)]·bpe·2MeOH (1, acac = acetylacetonate, bpe = 1,2-bis(4-pyridyl)ethylene) undergoes a solid-state ligand substitution reaction upon heating, leading to the one-dimensional chain [Dy(acac)3(bpe)]n (2). This structural transformation takes advantage of the potential coordination of the guest bpe molecules present in 1. In both complexes the Dy(III) ions adopt similar octacoordinated D4d geometries. However, the different arrangement of the negatively charged and neutral ligands alters the direction of magnetic anisotropy axis and the energy states, thus resulting in largely distinct magnetization dynamics, as revealed by the CASSCF/RASSI calculations.

SELECTION OF CITATIONS
SEARCH DETAIL