Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Sci Food Agric ; 99(3): 1098-1107, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30047133

ABSTRACT

BACKGROUND: Zinc (Zn) fertilization has been reported to improve the quality and storability of many fruits, but the mechanism had not been systematically studied. In this study, the effect of preharvest 0.2% zinc sulfate (ZnSO4 ) spray on the storability of longan fruits was investigated. RESULTS: The preharvest ZnSO4 spray did not significantly influence the quality but increased the Zn content in longan pericarp by 12.5-fold. More importantly, the treatment significantly reduced the rotting rate, pericarp browning, and aril breakdown of longan fruits stored at room temperature and low temperature. Physiological and biochemical results indicated that the treatment resulted in higher water retention capacity and inhibited the degradation of cellulose, pectin, flavonoid, and phenolics of longan pericarp at the late stages of storage. Consistent with these results, the activity of cellulase, polygalacturonase, polyphenol oxidase, and lipoxygenase was significantly inhibited in the ZnSO4 -treated longan pericarp at the late stages of storage. CONCLUSION: Higher Zn content in the ZnSO4 -treated longan pericarp might help to enhance the resistance against microbial infection, inhibit the hydrolysis of cell wall components, and thus effectively protected the cell wall components, maintained the cellular compartmentation, and prevented the phenolics and flavonoid from degradation by browning-related enzymes. © 2018 Society of Chemical Industry.


Subject(s)
Fruit/metabolism , Sapindaceae/metabolism , Zinc Sulfate/pharmacology , Antioxidants/analysis , Cell Wall/drug effects , Cold Temperature , Crop Production/methods , Food Storage , Fruit/drug effects , Fruit/enzymology , Zinc/analysis
2.
Foods ; 12(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37238852

ABSTRACT

Gibberellic acids had been proven to improve the fruit quality and storability by delaying deterioration and maintaining the antioxidant system. In this study, the effect of GA3 spraying at different concentrations (10, 20, and 50 mg L-1) on the quality of on-tree preserved 'Shixia' longan was examined. Only 50 mg L-1 GA3 significantly delayed the decline of soluble solids (22.0% higher than the control) and resulted in higher total phenolics content (TPC), total flavonoid content (TFC), and phenylalanine ammonia-lyase activity in pulp at the later stages. The widely targeted metabolome analysis showed that the treatment reprogrammed secondary metabolites and up-regulated many tannins, phenolic acids, and lignans during the on-tree preservation. More importantly, the preharvest 50 mg L-1 GA3 spraying (at 85 and 95 days after flowering) led to significantly delayed pericarp browning and aril breakdown, as well as lower pericarp relative conductivity and mass loss at the later stages of room-temperature storage. The treatment also resulted in higher antioxidants in pulp (vitamin C, phenolics, and reduced glutathione) and pericarp (vitamin C, flavonoids, and phenolics). Therefore, preharvest 50 mg L-1 GA3 spraying is an effective method for maintaining the quality and up-regulating antioxidants of longan fruit during both on-tree preservation and room-temperature storage.

3.
Plants (Basel) ; 11(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36235369

ABSTRACT

Although the effects of phytohormones (mainly salicylic acid) on the storability of longan fruit have been reported, the relationship between postharvest hormone variation and signal transduction and storability remains unexplored. The basis of physiology, biochemistry, hormone content and signalling for the storability difference at room-temperature between 'Shixia' and 'Luosanmu' longan fruit were examined. 'Luosanmu' longan exhibited faster pericarp browning, aril breakdown and rotting during storage. 'Luosanmu' pericarp exhibited higher malondialdehyde but faster decreased total phenolics, flavonoid, glutathione, vitamin C, catalase activity and gene expression. Higher H2O2 and malondialdehyde but lower glutathione, glutathione-reductase and peroxidase activities, while higher activities and gene expressions of polygalacturonase, ß-galactosidase and cellulose, lower covalent-soluble pectin, cellulose and hemicellulose but higher water-soluble pectin were observed in 'Luosanmu' aril. Lower abscisic acid and methyl jasmonate but higher expressions of LOX2, JAZ and NPR1 in pericarp, while higher abscisic acid, methyl jasmonate and salicylic acid together with higher expressions of ABF, JAZ, NPR1 and PR-1 in 'Luosanmu' aril were observed. In conclusion, the imbalance between the accumulation and scavenging of active oxygen in 'Luosanmu' longan might induce faster lipid peroxidation and senescence-related hormone signalling and further the polymerization of phenolics in pericarp and polysaccharide degradation in aril.

4.
Food Sci Nutr ; 9(10): 5785-5799, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34646546

ABSTRACT

Longan was a characteristic fruit for both medicine and food in China, which was rich in primary and secondary metabolites. Comprehensive high-throughput identification and comparison of metabolites in longan pulp among different varieties were still lacked. "Shixia" (SX) and "Chuliang" (CL) were the biggest major cultivars of longan in China. In this study, the content of total soluble solid, total flavonoid, and total phenolics indicated the difference of sweetness and bioactive compound content between the SX and CL pulp. Through a widely targeted metabolome, a total of 514 metabolites were identified and categorized into 23 groups mainly including flavonoids, amino acids & derivatives, lipids, phenolic acids, nucleotides & derivatives, alkaloids, organic acids and sugars & derivatives. A total of 89 metabolites with significantly differential accumulation (variable importance in projection (VIP) value ≧1, p-value <.05) over 1.2 fold were found between SX and CL, which were mainly enriched into pathways including flavone and flavonol biosynthesis, glycolysis/gluconeogenesis, and arginine and proline metabolism. Higher leveled hexose and hexose-phosphate (i.e., ß-D-glucose, D(+)-glucose, glucose-1-phosphate and glucose-6-phosphate), dominant organic acids (i.e., citric acid, succinic acid, D-malic acid, and citramalate), and essential amino acids (L-threonine, L-valine, L-isoleucine, L-leucine, L-phenylalanine and L-lysine) in SX pulp might be contributed to the taste and flavor difference between SX and CL. Moreover, the greatly differential accumulated secondary metabolites especially flavonoids and phenolic acids might result in different medicinal and nutritional characteristic between SX and CL. In conclusion, this study provided a systemic metabolic basis for understanding the nutritional differences between SX and CL and would help deepen the molecular biology and pharmacology research on characteristic metabolites in longan pulp.

5.
Food Chem ; 320: 126641, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32213424

ABSTRACT

The aim of this study was to use acidic electrolyzed water (AEW) to treat longan fruit and evaluate the effects of AEW treatment on storability, quality attributes and nutritive properties of longans during storage. The data indicated that, as compared to the control samples, AEW treatment could effectively reduce the respiration rate and pericarp cell membrane permeability, retard the occurrences of pericarp browning, pulp breakdown and fruit disease, keep a higher rate of commercially acceptable fruit. Additionally, AEW treatment could suppress the decrease of chromaticity values of L*, a* and b* of the fruit surface, keep higher amounts of pericarp carotenoid, chlorophyll, flavonoid and anthocyanin, maintain higher amounts of pulp total soluble solid (TSS), total soluble sugars, sucrose and vitamin C. These results demonstrated that AEW treatment at pH of 2.5, ACC of 80 mg/L could maintain higher quality attributes and nutritive properties, and display better storability of harvested longans.


Subject(s)
Sapindaceae/chemistry , Acids/chemistry , Anthocyanins/chemistry , Electrolytes , Fruit/chemistry , Water/chemistry
6.
Food Sci Nutr ; 8(6): 2827-2838, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32566200

ABSTRACT

Precooling and sulfur dioxide fumigation were proved as effective methods for the preservation of longan (Dimocarpus longan Lour.) fruits. However, inadequate precooling and sulfur dioxide fumigation resulted in unexpected losses and short shelf life. A L9(34) orthogonal test was conducted to screen out ideal dosage of sodium metabisulfite (factor A), precooling method (factor B), and precooling duration (factor C) to improve the storability of longan fruit stored for 48 hr at room temperature (RT) (25℃). The overall qualities of all of the treated longan fruits after a 48-hr storage (OQST) and during the 5-day shelf at 25℃ (OQSF) were better than those of the control fruits. The treated fruits showed brighter fresh color (higher L*, b*, C*, and h° values but lower a* value), higher flavonoid, and chlorophyll contents. Moreover, the SO2 residue was concentrated in pericarp but little in aril for any of the 12 treatments. The multivariate variance analysis showed that factor A was dominant to determine both of the OQST and OQSF, while factor B affected the OQST, and factor C affected the OQSF. In total, "0.22% sodium metabisulfite + 4 hr precooling + uncovered precooling" was considered to be an ideal treatment. These results would contribute to improving longan postharvest preservation technology.

7.
Food Chem ; 240: 863-869, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28946353

ABSTRACT

Effects of propyl gallate on metabolisms of respiration and energy of harvested 'Fuyan' longans and its relationship to pericarp browning were investigated. Compared to control longans, propyl gallate could reduce ascorbic acid oxidase (AAO) activity, lower cytochrome C oxidase (CCO) activity during early-storage and mid-storage, increase NADK activity, elevate contents of NADP and NADPH, decrease contents of NAD and NADH, in addition, lower the decreases of ATP content and energy charge (E.C.), increase activities of mitochondrial H+-ATPase, Ca2+-ATPase and Mg2+-ATPase during early-storage and mid-storage. Above results suggested that propyl gallate-retarded browning development in pericarp of harvested longans was resulted from decreases in activities of respiratory terminal oxidases like CCO and AAO, increase in proportion of pentose phosphate pathway (PPP) to Embden-Meyerhof pathway (EMP) and tricarboxylic acid (TCA) cycle, and maintenance of mitochondrial integrity via retaining higher levels of ATP content and energy charge, as well as higher activities of mitochondrial ATPase.


Subject(s)
Sapindaceae , Fruit , Glycolysis , Oxidoreductases , Propyl Gallate
8.
Front Microbiol ; 9: 1454, 2018.
Article in English | MEDLINE | ID: mdl-30018608

ABSTRACT

Longan fruit is a popular subtropical fruit with a relatively short shelf life at room temperature mainly due to pericarp browning and fungal infection. This study aimed to investigate the infection of Phomopsis longanae Chi in longan fruit and its effects on the storability and shelf life of longan fruit. The relationship between the energy metabolism of harvested longan fruit and disease development and pericarp browning was elucidated. Results show that P. longanae-inoculation accelerated the deterioration of longan fruit and caused pericarp browning. It also led to the energy deficit in pericarp of longan fruit, which was reflected as lower contents of ATP and ADP, higher AMP content, and lower energy charge as compared to the control samples. Additionally, P. longanae-infection reduced the activities of H+-ATPase, Ca2+-ATPase, and Mg2+-ATPase in plasma, vacuolar, and mitochondrial membranes during the storage period. The results demonstrate that P. longanae-infection led to disease development and pericarp browning in harvested longan fruit, which were due to the infection-induced energy deficit and low ATPase activity that caused disorders of ion transport and distribution, and damaged the structure and function of vacuole, mitochondria, and eventually the whole cells of fruit tissues.

9.
Front Microbiol ; 9: 1051, 2018.
Article in English | MEDLINE | ID: mdl-29875756

ABSTRACT

The main goal of this study was to investigate the influences of Phomopsis longanae Chi infection on activities of cell wall-degrading enzymes (CWDEs), and contents of cell wall components in pericarp of harvested "Fuyan" longan (Dimocarpus longan Lour. cv. Fuyan) fruit and its relation to disease development. The results showed that, compared with the control samples, P. longanae-inoculated longans showed higher fruit disease index, lower content of pericarp cell wall materials (CWMs), as well as lower contents of pericarp cell wall components (chelate-soluble pectin (CSP), sodium carbonate-soluble pectin, hemicelluloses, and cellulose), but higher content of pericarp water-soluble pectin (WSP). In addition, the inoculation treatment with P. longanae significantly promoted the activities of CWDEs including pectinesterase, polygalacturonase, ß-galactosidase, and cellulase. The results suggested that the P. longanae stimulated-disease development of harvested longans was due to increase in activities of pericarp CWDEs, which might accelerate the disassembly of pericarp cell wall components. In turn, resulting in the degradation of pericarp cell wall, reduction of pericarp mechanical strength, and subsequently leading to the breakdown of longan pericarp tissues. Eventually resulting in development of disease development and fruit decay in harvested longans during storage at 28°C.

10.
Food Chem ; 247: 16-22, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29277223

ABSTRACT

Effects of Lasiodiplodia theobromae on reactive oxygen species (ROS) production-scavenging system during L. theobromae-induced pericarp browning and disease development of harvested "Fuyan" longans were investigated. Compared with control longans, L. theobromae-inoculated longans exhibited higher pericarp browning index and fruit disease index, higher pericarp O2- generation rate and MDA content. Moreover, L. theobromae infection also resulted in lower contents of pericarp AsA and GSH, lower levels of pericarp DPPH radical scavenging ability and reducing power. Additionally, L. theobromae infection decreased the activities of pericarp SOD, CAT and APX from day 2 to day 5. These findings suggested that L. theobromae-induced pericarp browning and disease development of harvested longans might be due to reduction of ROS scavenging ability and increase in ROS production, which might stimulate membrane lipid peroxidation, disrupt cellular membrane structure, and cause the loss of cellular compartmentalization and disease resistance, in turn, resulting in pericarp browning and disease development.


Subject(s)
Ascomycota/pathogenicity , Reactive Oxygen Species/metabolism , Sapindaceae/metabolism , Sapindaceae/microbiology , Ascomycota/metabolism , Catalase/metabolism , Disease Resistance , Fruit/metabolism , Fruit/microbiology , Glutathione/metabolism , Host-Pathogen Interactions , Plant Diseases/microbiology , Plant Proteins/metabolism , Superoxide Dismutase/metabolism
11.
Food Chem ; 244: 93-101, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29120810

ABSTRACT

Effects of Lasiodiplodia theobromae inoculation on disease development, pericarp browning and membrane lipids metabolism of harvested "Fuyan" longan fruit were studied. Compared with control fruit, L. theobromae-inoculated longans showed higher fruit disease index, pericarp browning index and cell membrane permeability, as well as higher activities of phospholipase D, lipase and lipoxygenase. Additionally, there were lower contents of membrane phospholipids but higher content of phosphatidic acid, and lower level of unsaturated fatty acids but higher level of saturated ones with lower ratio of unsaturated fatty acid to saturated fatty acid and lower index of unsaturated fatty acids in pericarp of L. theobromae-inoculated longans. These results suggested that L. theobromae-induced disease development and pericarp browning of harvested longans might be attributed to the damaged cellular membrane structural integrity, induced by the activated membrane lipids-degrading enzymes increasing the degradation of membrane phospholipids and unsaturated fatty acids in pericarp of harvested longan fruit.


Subject(s)
Fruit/metabolism , Fruit/microbiology , Membrane Lipids/metabolism , Plant Diseases/microbiology , Sapindaceae/microbiology , Spiroplasma/physiology , Lipoxygenase/metabolism , Phospholipase D/metabolism , Phospholipids/metabolism
12.
Food Chem ; 225: 31-36, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28193430

ABSTRACT

Energy metabolism of "Fuyan" longan fruit treated with hydrogen peroxide (H2O2), the most stable of the reactive oxygen, and its relationship to pericarp browning were investigated in this work. The results displayed that H2O2 significantly decreased contents of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also inhibited activities of H+-ATPase, Ca2+-ATPase and Mg2+-ATPase in membranes of plasma, vacuole and mitochondria during the early-storage and mid-storage (except for mitochondrial membrane Mg2+-ATPase). These results gave convincing evidence that the treatment of H2O2 accelerating pericarp browning in harvested longans was due to a decrease of ATPase activity and available ATP content. This might break the ion homeostasis and the integrity of mitochondria, which might reduce energy charge and destroy the function and compartmentalization of cell membrane. These together aggravated browning incidence in pericarp of harvested longan fruit.


Subject(s)
Energy Metabolism/drug effects , Fruit/metabolism , Hydrogen Peroxide/pharmacology , Sapindaceae/metabolism , Adenosine Diphosphate/analysis , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , Fruit/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Sapindaceae/drug effects
13.
Food Chem ; 231: 238-246, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28450002

ABSTRACT

Lasiodiplodia theobromae (Pat.) Griff. & Maubl. is a major pathogen causing decay of harvested longan fruit. The roles of energy status regulated by 2,4-dinitrophenol (DNP) and adenosine triphosphate (ATP) in disease development regarding respiratory metabolism of L. theobromae-inoculated "Fuyan" longan fruit were studied. Compared with L. theobromae-inoculated longans, DNP treatment could promote the index of fruit disease, accelerate the decrease in energy charge, increase respiration rate and the activities of respiratory terminal oxidases like CCO, AAO and PPO, elevate contents of NAD and NADH, but decrease NAD kinase activity, as well as contents of NADP and NADPH; however, exogenous ATP supply acted contrarily. Above results suggested the different energy status caused by DNP and ATP treatments accelerated or delayed the disease development of L. theobromae-inoculated longans via regulating Embden-Meyerhof pathway (EMP) and tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP) and activities of respiratory terminal oxidases.


Subject(s)
Ascomycota , Fruit , Adenosine Triphosphate , Energy Metabolism , Glycolysis , Sapindaceae
14.
Food Chem ; 217: 133-138, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27664618

ABSTRACT

Effects of propyl gallate on membrane lipids metabolism and its relation to storability of harvested longan fruits were studied. The results showed that the propyl gallate-treated longans maintained lower activities of pericarp phospholipase D (PLD), lipase and lipoxygenase (LOX) than those in control fruits. Such treatments could maintain higher levels of pericarp unsaturated fatty acids (USFAs), higher pericarp indices of unsaturated fatty acids (IUFA), and higher pericarp ratio of unsaturated fatty acids to saturated fatty acids (U/S) than those in control fruits. Furthermore, propyl gallate also delayed color changes of pericarp in the harvested longans. Therefore, the postharvest treatments of longan fruits with propyl gallate for increasing storability of longan fruits might be explained by a decrease in activities of PLD, lipase and LOX, and an the increased unsaturation of fatty acids, which could delay membrane lipids metabolism and maintain cell membrane characteristics.


Subject(s)
Food Storage/methods , Fruit/metabolism , Lipid Metabolism/drug effects , Membrane Lipids/metabolism , Propyl Gallate/pharmacology , Sapindaceae , Lipid Metabolism/physiology , Lipoxygenase/metabolism , Membrane Lipids/antagonists & inhibitors , Phospholipase D/antagonists & inhibitors , Phospholipase D/metabolism
15.
Food Chem ; 228: 497-505, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28317755

ABSTRACT

As compared with P. longanae-inoculated longans, DNP treatment for P. longanae-inoculated longans exhibited higher fruit disease index and pericarp browning index, lower ATP amount and energy charge level, lower activities of SOD, CAT and APX, lower amounts of AsA and GSH, lower levels of DPPH radical scavenging activity and reducing power, higher O2- generating rate and MDA amount. However, supply of ATP for P. longanae-inoculated longans showed the contrary effects. These results gave convincing evidence that DNP treatment for accelerating pericarp browning and disease development of harvested longans caused by P. longanae was due to decreases of energy production and ROS scavenging capacity, and increases of O2- accumulation and membrane lipid peroxidation. Whereas, supply of ATP for retarding pericarp browning and disease development of harvested longans caused by P. longanae was due to increases of energy production and ROS scavenging capacity, and reductions of O2- accumulation and membrane lipid peroxidation.


Subject(s)
Adenosine Triphosphate/chemistry , Fruit/chemistry , Reactive Oxygen Species
16.
J Agric Food Chem ; 64(22): 4627-32, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27213701

ABSTRACT

Energy status and respiration metabolism of "Fuyan" longan fruit treated by hydrogen peroxide (H2O2) and their relationship to pericarp browning were studied. The results displayed that H2O2 significantly increased the respiration rate, increased activities of respiratory terminal oxidases like cytochrome C oxidase (CCO) and ascorbic acid oxidase (AAO), decreased NAD kinase activity, maintained lower contents of NADP and NADPH as well as higher amounts of NAD and NADH, and accelerated the decrease of energy charge. These results gave convincing evidence that the treatment of H2O2 for accelerating longan pericarp browning was due to an increase of energy deficiency, an increase of respiratory metabolic pathways of Embden-Meyerhof pathway (EMP) and tricarboxylic acid (TCA) cycle, a decrease of pentose phosphate pathway (PPP) of respiratory pathway, and an increase of activities of respiratory terminal oxidases like CCO and AAO.


Subject(s)
Fruit/chemistry , Hydrogen Peroxide/pharmacology , Sapindaceae/chemistry , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Color , Energy Metabolism , Fruit/drug effects , Fruit/metabolism , NADP/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Sapindaceae/drug effects , Sapindaceae/metabolism
17.
Front Plant Sci ; 7: 780, 2016.
Article in English | MEDLINE | ID: mdl-27375640

ABSTRACT

Reverse transcription quantitative PCR (RT-qPCR) as the accurate and sensitive method is use for gene expression analysis, but the veracity and reliability result depends on whether select appropriate reference gene or not. To date, several reliable reference gene validations have been reported in fruits trees, but none have been done on preharvest and postharvest longan fruits. In this study, 12 candidate reference genes, namely, CYP, RPL, GAPDH, TUA, TUB, Fe-SOD, Mn-SOD, Cu/Zn-SOD, 18SrRNA, Actin, Histone H3, and EF-1a, were selected. Expression stability of these genes in 150 longan samples was evaluated and analyzed using geNorm and NormFinder algorithms. Preharvest samples consisted of seven experimental sets, including different developmental stages, organs, hormone stimuli (NAA, 2,4-D, and ethephon) and abiotic stresses (bagging and girdling with defoliation). Postharvest samples consisted of different temperature treatments (4 and 22°C) and varieties. Our findings indicate that appropriate reference gene(s) should be picked for each experimental condition. Our data further showed that the commonly used reference gene Actin does not exhibit stable expression across experimental conditions in longan. Expression levels of the DlACO gene, which is a key gene involved in regulating fruit abscission under girdling with defoliation treatment, was evaluated to validate our findings. In conclusion, our data provide a useful framework for choice of suitable reference genes across different experimental conditions for RT-qPCR analysis of preharvest and postharvest longan fruits.

18.
J Ethnopharmacol ; 179: 156-61, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26721218

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Flower, seed, and fruit of longan (Dimocarpus longan Lour.) have been used in the Traditional Chinese Medicine (TCM) serving as a common herb in relief of swelling which can be applied in cases of inflammatory diseases. However, the scientific evidence related to their effects on inflammation especially the possible cellular and molecular mechanisms of longan need to be clarified. AIM OF THE STUDY: To evaluate the anti-inflammatory effect of the various parts of longan including flower, seed, and pulp. The mechanisms and molecular targets involved in their effects were also investigated. MATERIALS AND METHODS: Different longan extracts were analyzed for their bioactive compounds and evaluated for anti-inflammation. Corilagin, ellagic acid, and gallic acid were detected using HPLC-DAD. In vitro anti-inflammatory effect of longan extracts and their polysaccharides were examined by analyzing nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Expression of the proteins that involved in NO production was detected by Western blot. RESULTS: Flower extract contained the highest amounts of total phenolics, total flavonoids, proanthocyanidins, corilagin and ellagic acid when compared to seed and pulp extracts. The extracts of different longan parts inhibited LPS-induced NO production with different potency. The highest potency for the inhibition of NO production was shown with flower extract follow by seed and pulp (IC50=128.2, 1127.4, and 1260.2µgmL(-1), respectively). The mechanisms of this anti-NO production were associated with their NO scavenging effect and their decreasing the expression and catalytic activity of an inducible nitric oxide synthase (iNOS). Moreover, these longan extracts suppressed LPS-induced degradation of IκBα and activation of NF-κB, activator protein-1 (AP-1), Akt, and mitogen activated protein kinases (MAPKs). CONCLUSION: These results suggest that the longan extracts possess anti-inflammatory property. Therefore, longan could provide potential dietary supplement for the treatment of inflammatory-related diseases.


Subject(s)
Lipopolysaccharides/antagonists & inhibitors , Macrophages/metabolism , NF-kappa B/metabolism , Nitric Oxide/biosynthesis , Sapindaceae/chemistry , Signal Transduction/drug effects , Transcription Factor AP-1/metabolism , Animals , Flowers/chemistry , Fruit/chemistry , Lipopolysaccharides/toxicity , Macrophages/drug effects , Mice , NF-kappa B/drug effects , Nitric Oxide Synthase Type II/metabolism , Plant Extracts/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , RAW 264.7 Cells , Seeds/chemistry , Transcription Factor AP-1/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL