Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Science ; 268(5208): 307-10, 1995 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-7716527

RESUMEN

Thermodynamic mutant cycles provide a formalism for studying energetic coupling between amino acids on the interaction surface in a protein-protein complex. This approach was applied to the Shaker potassium channel and to a high-affinity peptide inhibitor (scorpion toxin) that binds to its pore entryway. The assignment of pairwise interactions defined the spatial arrangement of channel amino acids with respect to the known inhibitor structure. A strong constraint was placed on the Shaker channel pore-forming region by requiring its amino-terminal border to be 12 to 15 angstroms from the central axis. This method is directly applicable to sodium, calcium, and other ion channels where inhibitor or modulatory proteins bind with high affinity.


Asunto(s)
Canales de Potasio/química , Venenos de Escorpión/metabolismo , Toxinas Biológicas/metabolismo , Secuencia de Aminoácidos , Animales , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Oocitos , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker , Termodinámica , Xenopus laevis
3.
Science ; 245(4924): 1382-5, 1989 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-2476850

RESUMEN

The inhibition by charybdotoxin of A-type potassium channels expressed in Xenopus oocytes was studied for several splicing variants of the Drosophila Shaker gene and for several site-directed mutants of this channel. Charybdotoxin blocking affinity is lowered by a factor of 3.5 upon replacing glutamate-422 with glutamine, and by a factor of about 12 upon substituting lysine in this position. Replacement of glutamate-422 by aspartate had no effect on toxin affinity. Thus, the glutamate residue at position 422 of this potassium channel is near or in the externally facing mouth of the potassium conduction pathway, and the positively charged toxin is electrostatically focused toward its blocking site by the negative potential set up by glutamate-422.


Asunto(s)
Canales de Potasio/metabolismo , Venenos de Escorpión/metabolismo , Animales , Sitios de Unión , Caribdotoxina , Análisis Mutacional de ADN , Drosophila melanogaster , Iones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Canales de Potasio/ultraestructura , Relación Estructura-Actividad , Transfección , Xenopus laevis
4.
Science ; 265(5180): 1852-6, 1994 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-7522344

RESUMEN

The functional consequences of single proton transfers occurring in the pore of a cyclic nucleotide-gated channel were observed with patch recording techniques. These results led to three conclusions about the chemical nature of ion binding sites in the conduction pathway: The channel contains two identical titratable sites, even though there are more than two (probably four) identical subunits; the sites are formed by glutamate residues that have a pKa (where K(a) is the acid constant) of 7.6; and protonation of one site does not perturb the pKa of the other. These properties point to an unusual arrangement of carboxyl side-chain residues in the pore of a cation channel.


Asunto(s)
Canales Iónicos/metabolismo , Protones , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio/metabolismo , Bagres , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/genética , Cinética , Datos de Secuencia Molecular , Mutación , Sodio/metabolismo , Xenopus
5.
Science ; 285(5424): 100-2, 1999 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-10390357

RESUMEN

The electrostatic influence of the central cavity and pore alpha helices in the potassium ion channel from Streptomyces lividans (KcsA K+ channel) was analyzed by solving the finite difference Poisson equation. The cavity and helices overcome the destabilizing influence of the membrane and stabilize a cation at the membrane center. The electrostatic effect of the pore helices is large compared to that described for water-soluble proteins because of the low dielectric membrane environment. The combined contributions of the ion self-energy and the helix electrostatic field give rise to selectivity for monovalent cations in the water-filled cavity. Thus, the K+ channel uses simple electrostatic principles to solve the fundamental problem of ion destabilization by the cell membrane lipid bilayer.


Asunto(s)
Proteínas Bacterianas , Cationes Monovalentes/metabolismo , Membrana Celular/química , Canales de Potasio/química , Canales de Potasio/metabolismo , Potasio/metabolismo , Streptomyces/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Transporte Iónico , Membrana Dobles de Lípidos , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Electricidad Estática , Termodinámica , Agua
6.
Science ; 250(4978): 276-9, 1990 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-2218530

RESUMEN

Voltage-dependent ion channels are responsible for electrical signaling in neurons and other cells. The main classes of voltage-dependent channels (sodium-, calcium-, and potassium-selective channels) have closely related molecular structures. For one member of this superfamily, the transiently voltage-activated Shaker H4 potassium channel, specific amino acid residues have now been identified that affect channel blockade by the small ion tetraethylammonium, as well as the conduction of ions through the pore. Furthermore, variation at one of these amino acid positions among naturally occurring potassium channels may account for most of their differences in sensitivity to tetraethylammonium.


Asunto(s)
Canales de Potasio/fisiología , Compuestos de Tetraetilamonio/farmacología , Secuencia de Aminoácidos , Animales , Conductividad Eléctrica , Cinética , Potenciales de la Membrana/efectos de los fármacos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Sondas de Oligonucleótidos , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Tetraetilamonio
7.
Science ; 258(5085): 1152-5, 1992 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-1279807

RESUMEN

The overall sequence similarity between the voltage-activated K+ channels and cyclic nucleotide-gated ion channels from retinal and olfactory neurons suggests that they arose from a common ancestor. On the basis of sequence comparisons, mutations were introduced into the pore of a voltage-activated K+ channel. These mutations confer the essential features of ion conduction in the cyclic nucleotide-gated ion channels; the mutant K+ channels display little selectivity among monovalent cations and are blocked by divalent cations. The property of K+ selectivity is related to the presence of two amino acids that are absent from the pore-forming region of the cyclic nucleotide-gated channels. These data demonstrate that very small differences in the primary structure of an ion channel can account for extreme functional diversity, and they suggest a possible connection between the pore-forming regions of K+, Ca2+, and cyclic nucleotide-gated ion channels.


Asunto(s)
Canales Iónicos/fisiología , Canales de Potasio/genética , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Animales , Calcio/farmacología , Bovinos , AMP Cíclico/farmacología , GMP Cíclico/farmacología , Drosophila , Conductividad Eléctrica , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Magnesio/farmacología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oocitos/fisiología , Plantas , Canales de Potasio/química , Retina/ultraestructura , Transfección , Xenopus laevis
8.
Science ; 262(5134): 757-9, 1993 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-7694359

RESUMEN

Shaker potassium channels from Drosophila are composed of four identical subunits. The contribution of a single subunit to the inactivation gating transition was investigated. Channels carrying a specific mutation in a single subunit can be labeled in a heterogeneous population and studied quantitatively with scorpion toxin sensitivity as a selection tag. Linkage within a single subunit of a mutation that removes the inactivation gate to a second mutation that affects scorpion toxin sensitivity demonstrates that only a single gate is necessary to produce inactivation. The inactivation rate constant for channels with a single gate was one-fourth that of channels with four gates. In contrast, the rate of recovery from inactivation was independent of the number of gates. It appears that each of the four open inactivation gates in a Shaker potassium channel is independent, but only one of the four gates closes in a mutually exclusive manner.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio/fisiología , Animales , Caribdotoxina , Drosophila , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Venenos de Escorpión/farmacología , Xenopus
9.
Science ; 289(5476): 123-7, 2000 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-10884227

RESUMEN

The structure of the cytoplasmic assembly of voltage-dependent K+ channels was solved by x-ray crystallography at 2.1 angstrom resolution. The assembly includes the cytoplasmic (T1) domain of the integral membrane alpha subunit together with the oxidoreductase beta subunit in a fourfold symmetric T1(4)beta4 complex. An electrophysiological assay showed that this complex is oriented with four T1 domains facing the transmembrane pore and four beta subunits facing the cytoplasm. The transmembrane pore communicates with the cytoplasm through lateral, negatively charged openings above the T1(4)beta4 complex. The inactivation peptides of voltage-dependent K(+) channels reach their site of action by entering these openings.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Canales de Potasio/química , Canales de Potasio/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Citoplasma/química , Canal de Potasio Kv.1.1 , Canal de Potasio Kv1.4 , Sustancias Macromoleculares , Modelos Moleculares , Mutación , Oocitos , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Técnicas de Placa-Clamp , Péptidos/metabolismo , Canales de Potasio/genética , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Xenopus
10.
Science ; 251(4996): 939-42, 1991 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-2000494

RESUMEN

The active site of voltage-activated potassium channels is a transmembrane aqueous pore that permits ions to permeate the cell membrane in a rapid yet highly selective manner. A useful probe for the pore of potassium-selective channels is the organic ion tetraethylammonium (TEA), which binds with millimolar affinity to the intracellular opening of the pore and blocks potassium current. In the potassium channel encoded by the Drosophila Shaker gene, an amino acid residue that specifically affects the affinity for intracellular TEA has now been identified by site-directed mutagenesis. This residue is in the middle of a conserved stretch of 18 amino acids that separates two locations that are both near the external opening of the pore. These findings suggest that this conserved region is intimately involved in the formation of the ion conduction pore of voltage-activated potassium channels. Further, a stretch of only eight amino acid residues must traverse 80 percent of the transmembrane electric potential difference.


Asunto(s)
Mutagénesis Sitio-Dirigida , Canales de Potasio/fisiología , Compuestos de Tetraetilamonio/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Drosophila/genética , Genes , Potenciales de la Membrana , Modelos Estructurales , Datos de Secuencia Molecular , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Conformación Proteica , Tetraetilamonio
11.
Science ; 280(5360): 106-9, 1998 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-9525854

RESUMEN

Toxins from scorpion venom interact with potassium channels. Resin-attached, mutant K+ channels from Streptomyces lividans were used to screen venom from Leiurus quinquestriatus hebraeus, and the toxins that interacted with the channel were rapidly identified by mass spectrometry. One of the toxins, agitoxin2, was further studied by mutagenesis and radioligand binding. The results show that a prokaryotic K+ channel has the same pore structure as eukaryotic K+ channels. This structural conservation, through application of techniques presented here, offers a new approach for K+ channel pharmacology.


Asunto(s)
Proteínas Bacterianas , Canales de Potasio/química , Canales de Potasio/metabolismo , Conformación Proteica , Venenos de Escorpión/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Caribdotoxina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Bloqueadores de los Canales de Potasio , Canales de Potasio/genética , Ensayo de Unión Radioligante , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Canales de Potasio de la Superfamilia Shaker , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Streptomyces/química
12.
Science ; 280(5360): 69-77, 1998 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-9525859

RESUMEN

The potassium channel from Streptomyces lividans is an integral membrane protein with sequence similarity to all known K+ channels, particularly in the pore region. X-ray analysis with data to 3.2 angstroms reveals that four identical subunits create an inverted teepee, or cone, cradling the selectivity filter of the pore in its outer end. The narrow selectivity filter is only 12 angstroms long, whereas the remainder of the pore is wider and lined with hydrophobic amino acids. A large water-filled cavity and helix dipoles are positioned so as to overcome electrostatic destabilization of an ion in the pore at the center of the bilayer. Main chain carbonyl oxygen atoms from the K+ channel signature sequence line the selectivity filter, which is held open by structural constraints to coordinate K+ ions but not smaller Na+ ions. The selectivity filter contains two K+ ions about 7.5 angstroms apart. This configuration promotes ion conduction by exploiting electrostatic repulsive forces to overcome attractive forces between K+ ions and the selectivity filter. The architecture of the pore establishes the physical principles underlying selective K+ conduction.


Asunto(s)
Proteínas Bacterianas , Canales de Potasio/química , Canales de Potasio/metabolismo , Potasio/metabolismo , Conformación Proteica , Secuencia de Aminoácidos , Sitios de Unión , Cesio/metabolismo , Cristalización , Cristalografía por Rayos X , Análisis de Fourier , Enlace de Hidrógeno , Membrana Dobles de Lípidos , Modelos Moleculares , Datos de Secuencia Molecular , Bloqueadores de los Canales de Potasio , Estructura Secundaria de Proteína , Rubidio/metabolismo , Venenos de Escorpión/metabolismo , Venenos de Escorpión/farmacología , Sodio/metabolismo , Electricidad Estática , Streptomyces/química , Tetraetilamonio/metabolismo , Tetraetilamonio/farmacología , Agua
13.
Neuron ; 11(3): 459-66, 1993 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-7691102

RESUMEN

Divalent cation blockade of cGMP-gated channels in photoreceptor cells ensures the low open channel noise required for a highly sensitive visual transduction process. This study identifies a divalent cation-binding site in the pore of a retinal cGMP-gated channel expressed in Xenopus oocytes. Substitution of a specific glutamate residue by a neutral amino acid renders the channel insensitive to external Mg2+ and Ca2+ and affects the conduction of Na+. The mutated channels remain sensitive to internal divalent cations. These results place the glutamate residue in the ion conduction pathway close to the extracellular surface.


Asunto(s)
Cationes Bivalentes/metabolismo , Canales Iónicos/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Cationes Bivalentes/farmacología , GMP Cíclico/farmacología , Electrofisiología , Canales Iónicos/efectos de los fármacos , Canales Iónicos/genética , Datos de Secuencia Molecular , Mutación , Oocitos/metabolismo , Xenopus
14.
Neuron ; 8(3): 483-91, 1992 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1550673

RESUMEN

K+ channels are quite variable in their sensitivity to the pore-blocking agent tetraethylammonium ion (TEA) when it is applied to the extracellular side of the membrane. A Shaker K+ channel can be made highly sensitive by introducing a tyrosine (or phenylalanine) at residue 449 in each of the four subunits. A shift in the voltage dependence of blockade indicates that TEA senses a smaller fraction of the transmembrane electric field in the highly sensitive channels. There is a linear relationship between the free energy for TEA blockade and the number of subunits (zero, two, or four) containing tyrosine at 449, as if these four residues interact simultaneously with a TEA molecule to produce a high affinity binding site. The temperature dependence of blockade suggests that the interaction is not purely hydrophobic. These findings are consistent with a TEA-binding site formed by a bracelet of pore-lining aromatic residues. The center of the bracelet could bind a TEA molecule through a cation-pi orbital interaction.


Asunto(s)
Canales de Potasio/metabolismo , Compuestos de Tetraetilamonio/metabolismo , Animales , Sitios de Unión , Análisis Mutacional de ADN , Drosophila melanogaster , Conductividad Eléctrica , Técnicas In Vitro , Activación del Canal Iónico , Potenciales de la Membrana , Fenilalanina/química , Canales de Potasio/química , Proteínas Recombinantes , Termodinámica , Tirosina/química
15.
Neuron ; 15(4): 941-9, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7576642

RESUMEN

The Kv2.1 voltage-activated K+ channel, a Shab-related K+ channel isolated from rat brain, is insensitive to previously identified peptide inhibitors. We have isolated two peptides from the venom of a Chilean tarantula, G. spatulata, that inhibit the Kv2.1 K+ channel. The two peptides, hanatoxin1 (HaTx1) and hanatoxin2 (HaTx2) are unrelated in primary sequence to other K+ channel inhibitors. The activity of HaTx was verified by synthesizing it in a bacterial expression system. The concentration dependence for both the degree of inhibition at equilibrium (Kd = 42 nM) and the kinetics of inhibition (kon = 3.7 x 10(4) M-1s-1; koff = 1.3 x 10(-3) s-1), are consistent with a bimolecular reaction between HaTx and the Kv2.1 K+ channel. Shaker-related, Shaw-related, and eag K+ channels were relatively insensitive to HaTx, whereas a Shal-related K+ channel was sensitive. Regions outside the scorpion toxin binding site (S5-S6 linker) determine sensitivity to HaTx. HaTx introduces a new class of K+ channel inhibitors that will be useful probes for studying K+ channel structure and function.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Escherichia coli , Proteínas de Transporte de Monosacáridos , Péptidos/farmacología , Bloqueadores de los Canales de Potasio , Venenos de Araña/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Química Encefálica , Proteínas Portadoras/genética , Electrofisiología , Escherichia coli/genética , Proteínas de Unión a Maltosa , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Canales de Potasio/química , Canales de Potasio/fisiología , Ratas , Proteínas Recombinantes de Fusión/farmacología
16.
Neuron ; 16(6): 1169-77, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8663993

RESUMEN

Voltage-activated ion channels respond to changes in membrane voltage by coupling the movement of charges to channel opening. A K+ channel-specific radioligand was designed and used to determine the origin of these gating charges in the Shaker K+ channel. Opening of a Shaker K+ channel is associated with a displacement of 13.6 electron charge units. Gating charge contributions were determined for six of the seven positive charges in the S4 segment, an unusual amino acid sequence in voltage-activated cation channels consisting of repeating basic residues at every third position. Charge-neutralizing mutations of the first four positive charges led to large decreases (approximately 4 electron charge units each) in the gating charge; however, the gating charge of Shaker delta 10, a Shaker K+ channel with 10 altered nonbasic residues in its S4 segment, was found to be identical to the wild-type channel. These findings show that movement of the NH2-terminal half but not the CO2H-terminal end of the S4 segment underlies gating charge, and that this portion of the S4 segment appears to move across the entire transmembrane voltage difference in association with channel activation.


Asunto(s)
Potenciales de la Membrana/fisiología , Canales de Potasio/fisiología , Animales , Técnicas de Placa-Clamp , Canales de Potasio/efectos de los fármacos , Ensayo de Unión Radioligante , Venenos de Escorpión/farmacología , Xenopus
17.
Neuron ; 16(2): 399-406, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8789954

RESUMEN

In voltage-dependent K+ channels, each of the four identical subunits contributes one pore loop to the central ion selectivity unit at the interface between the subunits. The pore loop is also the target for scorpion venom peptide inhibitors. These inhibitors bind at the pore entryway between the four subunits and can assume any one of four orientations. The orientations become distinguishable only if the binding site symmetry is disrupted. We have used mutagenesis and site-directed chemical modification to alter pore loop amino acids in either one or four subunits. The effects of these alterations on inhibitor affinity define the eccentricity of amino acids in the pore entryway and imply a different secondary structure for the amino and carboxyl ends of the pore loop.


Asunto(s)
Huella de ADN , Drosophila/genética , Mutación , Canales de Potasio/genética , Venenos de Escorpión/farmacología , Toxinas Biológicas/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cisteína/biosíntesis , Datos de Secuencia Molecular , Mutagénesis , Oocitos/metabolismo , Venenos de Escorpión/metabolismo , Toxinas Biológicas/metabolismo , Xenopus
18.
Neuron ; 18(4): 665-73, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9136774

RESUMEN

We studied the mechanism by which Hanatoxin (HaTx) inhibits the drk1 voltage-gated K+ channel. HaTx inhibits the K+ channel by shifting channel opening to more depolarized voltages. Channels opened by strong depolarization in the presence of HaTx deactivate much faster upon repolarization, indicating that toxin bound channels can open. Thus, HaTx inhibits the drk1 K+ channel, not by physically occluding the ion conduction pore, but by modifying channel gating. Occupancy of the channel by HaTx was studied using various strength depolarizations. The concentration dependence for equilibrium occupancy as well as the kinetics of onset and recovery from inhibition indicate that multiple HaTx molecules can simultaneously bind to a single K+ channel. These results are consistent with a simple model in which HaTx binds to the surface of the drk1 K+ channel at four equivalent sites and alters the energetics of channel gating.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Péptidos/farmacología , Bloqueadores de los Canales de Potasio , Canales de Potasio/fisiología , Animales , Sitios de Unión , Femenino , Cinética , Oocitos/metabolismo , Péptidos/metabolismo , Canales de Potasio/metabolismo , Xenopus laevis
19.
Neuron ; 18(4): 675-82, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9136775

RESUMEN

Hanatoxin (HaTx) binds to multiple sites on the surface of the drk1 voltage-gated K+ channel and modifies channel gating. We set out to identify channel residues that contribute to form these HaTx binding sites. Chimeras constructed using the drk1 and shaker K+ channels suggest that the S3-S4 linker may contain influential residues. Alanine scanning mutagenesis of the region extending from the C terminal end of S3 through S4 identified a number of residues that likely contribute to form the HaTx binding sites. The pore blocker Agitoxin2 and the gating modifier HaTx can simultaneously bind to individual K+ channels. These results suggest that residues near the outer edges of S3 and S4 form the HaTx binding sites and are eccentrically located at least 15 A from the central pore axis on the surface of voltage-gated K+ channels.


Asunto(s)
Mapeo Cromosómico , Activación del Canal Iónico/efectos de los fármacos , Péptidos/metabolismo , Péptidos/farmacología , Canales de Potasio/metabolismo , Receptores de Superficie Celular/genética , Secuencia de Aminoácidos , Animales , Unión Competitiva , Quimera , Drosophila/genética , Electrofisiología , Femenino , Datos de Secuencia Molecular , Mutación , Bloqueadores de los Canales de Potasio , Canales de Potasio/genética , Venenos de Escorpión/metabolismo , Toxinas Biológicas/metabolismo
20.
Neuron ; 13(4): 961-6, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7946339

RESUMEN

Voltage-dependent potassium channels belong to a family of structurally related cation channels that underlie the electrical activity of excitable cells. Many potassium channels are blocked with high affinity by scorpion toxins, whereas others are completely insensitive. We transferred toxin sensitivity from the highly sensitive Kv1.3 (KV3) to the insensitive Kv2.1 (DRK1) potassium channel by transferring the stretch of amino acids between transmembrane domains 5/6. We provide evidence that this S5-S6 linker, which has been shown to comprise the pore-forming region, is probably the only part of the ion channel that directly interacts with bound toxin. Using site-directed mutagenesis, we identified specific residues in the S5-S6 linker that are responsible for the acquisition of toxin sensitivity by Kv2.1.


Asunto(s)
Canales de Potasio/metabolismo , Canales de Sodio/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Proteínas Recombinantes de Fusión , Proteínas Recombinantes , Homología de Secuencia , Canales de Sodio/genética , Relación Estructura-Actividad , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA