Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34949716

RESUMEN

DNA-coated colloids can self-assemble into an incredible diversity of crystal structures, but their applications have been limited by poor understanding and control over the crystallization dynamics. To address this challenge, we use microfluidics to quantify the kinetics of DNA-programmed self-assembly along the entire crystallization pathway, from thermally activated nucleation through reaction-limited and diffusion-limited phases of crystal growth. Our detailed measurements of the temperature and concentration dependence of the kinetics at all stages of crystallization provide a stringent test of classical theories of nucleation and growth. After accounting for the finite rolling and sliding rates of micrometer-sized DNA-coated colloids, we show that modified versions of these classical theories predict the absolute nucleation and growth rates with quantitative accuracy. We conclude by applying our model to design and demonstrate protocols for assembling large single crystals with pronounced structural coloration, an essential step in creating next-generation optical metamaterials from colloids.

2.
Proc Natl Acad Sci U S A ; 119(43): e2207902119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252043

RESUMEN

Self-assembly is one of the most promising strategies for making functional materials at the nanoscale, yet new design principles for making self-limiting architectures, rather than spatially unlimited periodic lattice structures, are needed. To address this challenge, we explore the tradeoffs between addressable assembly and self-closing assembly of a specific class of self-limiting structures: cylindrical tubules. We make triangular subunits using DNA origami that have specific, valence-limited interactions and designed binding angles, and we study their assembly into tubules that have a self-limited width that is much larger than the size of an individual subunit. In the simplest case, the tubules are assembled from a single component by geometrically programming the dihedral angles between neighboring subunits. We show that the tubules can reach many micrometers in length and that their average width can be prescribed through the dihedral angles. We find that there is a distribution in the width and the chirality of the tubules, which we rationalize by developing a model that considers the finite bending rigidity of the assembled structure as well as the mechanism of self-closure. Finally, we demonstrate that the distributions of tubules can be further sculpted by increasing the number of subunit species, thereby increasing the assembly complexity, and demonstrate that using two subunit species successfully reduces the number of available end states by half. These results help to shed light on the roles of assembly complexity and geometry in self-limited assembly and could be extended to other self-limiting architectures, such as shells, toroids, or triply periodic frameworks.


Asunto(s)
ADN , Nanoestructuras , Coloides/química , ADN/química , Nanoestructuras/química , Nanotecnología/métodos , Conformación de Ácido Nucleico
3.
Phys Rev Lett ; 132(20): 208401, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829088

RESUMEN

In many biopolymer solutions, attractive interactions that stabilize finite-sized clusters at low concentrations also promote phase separation at high concentrations. Here we study a model biopolymer system that exhibits the opposite behavior, whereby self-assembly of DNA oligonucleotides into finite-sized, stoichiometric clusters tends to inhibit phase separation. We first use microfluidics-based experiments to map a novel phase transition in which the oligonucleotides condense as the temperature increases at high concentrations of divalent cations. We then show that a theoretical model of competition between self-assembly and phase separation quantitatively predicts changes in experimental phase diagrams arising from DNA sequence perturbations. Our results point to a general mechanism by which self-assembly shapes phase boundaries in complex biopolymer solutions.


Asunto(s)
ADN , Modelos Químicos , Transición de Fase , ADN/química , Calor , Oligonucleótidos/química , Separación de Fases
4.
Soft Matter ; 19(45): 8779-8789, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37942543

RESUMEN

DNA-coated colloids can crystallize into a multitude of lattices, ranging from face-centered cubic to diamond, opening avenues to producing structures with useful photonic properties. The potential design space of DNA-coated colloids is large, but its exploration is hampered by a reliance on chemically modified DNA that is slow and expensive to commercially synthesize. Here we introduce a method to controllably tailor the sequences of DNA-coated particles by covalently appending new sequence domains onto the DNA grafted to colloidal particles. The tailored particles crystallize as readily and at the same temperature as those produced via direct chemical synthesis, making them suitable for self-assembly. Moreover, we show that particles coated with a single sequence can be converted into a variety of building blocks with differing specificities by appending different DNA sequences to them. This method will make it practical to identify optimal and complex particle sequence designs and paves the way to programming the assembly kinetics of DNA-coated colloids.


Asunto(s)
Coloides , ADN , ADN/química , Coloides/química , Temperatura , Cinética
5.
Proc Natl Acad Sci U S A ; 117(45): 27927-27933, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33122442

RESUMEN

Crystallization is fundamental to materials science and is central to a variety of applications, ranging from the fabrication of silicon wafers for microelectronics to the determination of protein structures. The basic picture is that a crystal nucleates from a homogeneous fluid by a spontaneous fluctuation that kicks the system over a single free-energy barrier. However, it is becoming apparent that nucleation is often more complicated than this simple picture and, instead, can proceed via multiple transformations of metastable structures along the pathway to the thermodynamic minimum. In this article, we observe, characterize, and model crystallization pathways using DNA-coated colloids. We use optical microscopy to investigate the crystallization of a binary colloidal mixture with single-particle resolution. We observe classical one-step pathways and nonclassical two-step pathways that proceed via a solid-solid transformation of a crystal intermediate. We also use enhanced sampling to compute the free-energy landscapes corresponding to our experiments and show that both one- and two-step pathways are driven by thermodynamics alone. Specifically, the two-step solid-solid transition is governed by a competition between two different crystal phases with free energies that depend on the crystal size. These results extend our understanding of available pathways to crystallization, by showing that size-dependent thermodynamic forces can produce pathways with multiple crystal phases that interconvert without free-energy barriers and could provide approaches to controlling the self-assembly of materials made from colloids.


Asunto(s)
Coloides/química , Cristalización/métodos , ADN/química , Simulación por Computador , Proteínas/química , Termodinámica
6.
Soft Matter ; 18(35): 6716-6728, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36039801

RESUMEN

In contrast to most self-assembling synthetic materials, which undergo unbounded growth, many biological self-assembly processes are self-limited. That is, the assembled structures have one or more finite dimensions that are much larger than the size scale of the individual monomers. In many such cases, the finite dimension is selected by a preferred curvature of the monomers, which leads to self-closure of the assembly. In this article, we study an example class of self-closing assemblies: cylindrical tubules that assemble from triangular monomers. By combining kinetic Monte Carlo simulations, free energy calculations, and simple theoretical models, we show that a range of programmable size scales can be targeted by controlling the intricate balance between the preferred curvature of the monomers and their interaction strengths. However, their assembly is kinetically controlled-the tubule morphology is essentially fixed shortly after closure, resulting in a distribution of tubule widths that is significantly broader than the equilibrium distribution. We develop a simple kinetic model based on this observation and the underlying free-energy landscape of assembling tubules that quantitatively describes the distributions. Our results are consistent with recent experimental observations of tubule assembly from triangular DNA origami monomers. The modeling framework elucidates design principles for assembling self-limited structures from synthetic components, such as artificial microtubules that have a desired width and chirality.


Asunto(s)
ADN , Modelos Teóricos , ADN/química , Cinética , Microtúbulos , Método de Montecarlo
7.
Langmuir ; 36(25): 7100-7108, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32013444

RESUMEN

Coating colloidal particles with DNA is a promising strategy to make functional nanoscale materials because the particles can be programmed to spontaneously self-assemble into complex, ordered structures. In this Article, we explore the phase behavior and types of structures that can be formed when interactions between DNA-coated colloids are specified by linker DNA strands dispersed in solution. We show that linker-mediated interactions direct the self-assembly of colloids into equilibrium crystal structures. Furthermore, we demonstrate how different linker sequences and concentrations produce different crystal lattices, whose symmetry and compositional order are encoded exclusively by the linker-mediated interactions. These results illustrate how linkers can be used to separate the assembly instructions, encoded in the linkers, from the colloids themselves. We also examine the phase behavior of asymmetric linkers, which bind more strongly to one colloidal species than the other. We find that asymmetry strongly influences the concentration dependence of the colloidal interactions, which we explain using a mean-field model. We also find evidence that asymmetric linkers might help to reduce kinetic bottlenecks to colloidal crystallization. Together, our findings expand the design rules of linker-mediated self-assembly and make connections between the various schemes for programming assembly of DNA-coated colloids reported in the literature.


Asunto(s)
Coloides , ADN , Cristalización , ADN/genética , Cinética
8.
J Chem Phys ; 153(12): 124901, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003726

RESUMEN

Programmable self-assembly is one of the most promising strategies for making ensembles of nanostructures from synthetic components. Yet, predicting the phase behavior that emerges from a complex mixture of many interacting species is difficult, and designing such a system to exhibit a prescribed behavior is even more challenging. In this article, I develop a mean-field model for predicting linker-mediated interactions between DNA-coated colloids, in which the interactions are encoded in DNA molecules dispersed in solution instead of in molecules grafted to particles' surfaces. As I show, encoding interactions in the sequences of free DNA oligomers leads to new behavior, such as a re-entrant melting transition and a temperature-independent binding free energy per kBT. This unique phase behavior results from a per-bridge binding free energy that is a nonlinear function of the temperature and a nonmonotonic function of the linker concentration, owing to subtle entropic contributions. To facilitate the design of experiments, I also develop two scaling limits of the full model that can be used to select the DNA sequences and linker concentrations needed to program a specific behavior or favor the formation of a prescribed target structure. These results could ultimately enable the programming and tuning of hundreds of mutual interactions by designing cocktails of linker sequences, thus pushing the field toward the original goal of programmable self-assembly: these user-prescribed structures can be assembled from complex mixtures of building blocks through the rational design of their interactions.

9.
Soft Matter ; 14(6): 969-984, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29323396

RESUMEN

Grafting DNA oligonucleotides to colloidal particles leads to specific, reversible interactions between those particles. However, the interaction strength varies steeply and monotonically with temperature, hindering the use of DNA-mediated interactions in self-assembly. We show how the dependence on temperature can be modified in a controlled way by incorporating DNA strand-displacement reactions. The method allows us to make multicomponent systems that can self-assemble over a wide range of temperatures, invert the dependence on temperature to design colloidal systems that melt upon cooling, controllably transition between structures with different compositions, or design systems with multiple melting transitions. This wide range of behaviors can be realized simply by adding a small number of DNA strands to the solution, making the approach modular and straightforward to implement. We conclude with practical considerations for designing systems of DNA-mediated colloidal interactions.


Asunto(s)
ADN/química , Secuencia de Bases , Coloides , ADN/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Transición de Fase , Termodinámica
10.
Phys Rev Lett ; 119(10): 108004, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949187

RESUMEN

The effects of contact-line pinning are well known in macroscopic systems but are only just beginning to be explored at the microscale in colloidal suspensions. We use digital holography to capture the fast three-dimensional dynamics of micrometer-sized ellipsoids breaching an oil-water interface. We find that the particle angle varies approximately linearly with the height, in contrast to results from simulations based on the minimization of the interfacial energy. Using a simple model of the motion of the contact line, we show that the observed coupling between translational and rotational degrees of freedom is likely due to contact-line pinning. We conclude that the dynamics of colloidal particles adsorbing to a liquid interface are not determined by the minimization of interfacial energy and viscous dissipation alone; contact-line pinning dictates both the time scale and pathway to equilibrium.

11.
Proc Natl Acad Sci U S A ; 108(38): 15687-92, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21896714

RESUMEN

DNA bridging can be used to induce specific attractions between small particles, providing a highly versatile approach to creating unique particle-based materials having a variety of periodic structures. Surprisingly, given the fact that the thermodynamics of DNA strands in solution are completely understood, existing models for DNA-induced particle interactions are typically in error by more than an order of magnitude in strength and a factor of two in their temperature dependence. This discrepancy has stymied efforts to design the complex temperature, sequence and time-dependent interactions needed for the most interesting applications, such as materials having highly complex or multicomponent microstructures or the ability to reconfigure or self-replicate. Here we report high-spatial resolution measurements of DNA-induced interactions between pairs of polystyrene microspheres at binding strengths comparable to those used in self-assembly experiments, up to 6 k(B)T. We also describe a conceptually straightforward and numerically tractable model that quantitatively captures the separation dependence and temperature-dependent strength of these DNA-induced interactions, without empirical corrections. This model was equally successful when describing the more complex and practically relevant case of grafted DNA brushes with self-interactions that compete with interparticle bridge formation. Together, our findings motivate a nanomaterial design approach where unique functional structures can be found computationally and then reliably realized in experiment.


Asunto(s)
Algoritmos , Coloides/química , ADN/química , Modelos Químicos , Simulación por Computador , Microesferas , Nanoestructuras/química , Conformación de Ácido Nucleico , Poliestirenos/química , Temperatura , Termodinámica , Factores de Tiempo
12.
ACS Nano ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981100

RESUMEN

Recent advances enable the creation of nanoscale building blocks with complex geometries and interaction specificities for self-assembly. This nearly boundless design space necessitates design principles for defining the mutual interactions between multiple particle species to target a user-specified complex structure or pattern. In this article, we develop a symmetry-based method to generate the interaction matrices that specify the assembly of two-dimensional tilings, which we illustrate using equilateral triangles. By exploiting the allowed 2D symmetries, we develop an algorithmic approach by which any periodic 2D tiling can be generated from an arbitrarily large number of subunit species, notably addressing an unmet challenge of engineering 2D crystals with periodicities that can be arbitrarily larger than the subunit size. To demonstrate the utility of our design approach, we encode specific interactions between triangular subunits synthesized by DNA origami and show that we can guide their self-assembly into tilings with a wide variety of symmetries, using up to 12 unique species of triangles. By conjugating specific triangles with gold nanoparticles, we fabricate gold-nanoparticle supracrystals whose lattice parameter spans up to 300 nm. Finally, to generate economical design rules, we compare the design economy of various tilings. In particular, we show that (1) higher symmetries allow assembly of larger unit cells with fewer subunits and (2) linear supracrystals can be designed more economically using linear primitive unit cells. This work provides a simple algorithmic approach to designing periodic assemblies, aiding in the multiscale assembly of supracrystals of nanostructured "meta-atoms" with engineered plasmonic functions.

13.
Sci Adv ; 10(27): eado5979, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959303

RESUMEN

Programmable self-assembly has seen an explosion in the diversity of synthetic crystalline materials, but developing strategies that target "self-limiting" assemblies has remained a challenge. Among these, self-closing structures, in which the local curvature defines the finite global size, are prone to polymorphism due to thermal bending fluctuations, a problem that worsens with increasing target size. Here, we show that assembly complexity can be used to eliminate this source of polymorphism in the assembly of tubules. Using many distinct components, we prune the local density of off-target geometries, increasing the selectivity of the tubule width and helicity to nearly 100%. We further show that by reducing the design constraints to target either the pitch or the width alone, fewer components are needed to reach complete selectivity. Combining experiments with theory, we reveal an economical limit, which determines the minimum number of components required to create arbitrary assembly sizes with full selectivity.

14.
Phys Rev E ; 108(6-1): 064501, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38243474

RESUMEN

We present a theoretical model for predicting the phase behavior of polymer solutions in which phase separation competes with oligomerization. Specifically, we consider scenarios in which the assembly of polymer chains into stoichiometric complexes prevents the chains from phase-separating via attractive polymer-polymer interactions. Combining statistical associating fluid theory with a two-state description of self-assembly, we find that this model exhibits rich phase behavior, including reentrance, and we show how system-specific phase diagrams can be derived graphically. Importantly, we discuss why these phase diagrams can resemble-and yet are qualitatively distinct from-phase diagrams of polymer solutions with lower critical solution temperatures.

15.
Nat Commun ; 14(1): 4237, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454159

RESUMEN

Photonic crystals-a class of materials whose optical properties derive from their structure in addition to their composition-can be created by self-assembling particles whose sizes are comparable to the wavelengths of visible light. Proof-of-principle studies have shown that DNA can be used to guide the self-assembly of micrometer-sized colloidal particles into fully programmable crystal structures with photonic properties in the visible spectrum. However, the extremely temperature-sensitive kinetics of micrometer-sized DNA-functionalized particles has frustrated attempts to grow large, monodisperse crystals that are required for photonic metamaterial applications. Here we describe a robust two-step protocol for self-assembling single-domain crystals that contain millions of optical-scale DNA-functionalized particles: Monodisperse crystals are initially assembled in monodisperse droplets made by microfluidics, after which they are grown to macroscopic dimensions via seeded diffusion-limited growth. We demonstrate the generality of our approach by assembling different macroscopic single-domain photonic crystals with metamaterial properties, like structural coloration, that depend on the underlying crystal structure. By circumventing the fundamental kinetic traps intrinsic to crystallization of optical-scale DNA-coated colloids, we eliminate a key barrier to engineering photonic devices from DNA-programmed materials.


Asunto(s)
Óptica y Fotónica , Fotones , Coloides/química , Cristalización , ADN
16.
ACS Nano ; 16(6): 9195-9202, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35686741

RESUMEN

Colloidal particles can be programmed to interact in complex ways by functionalizing them with DNA oligonucleotides. Adding DNA strand-displacement reactions to the system allows these interparticle interactions to respond to specific changes in temperature. We present the requirements for thermally driven directed motion of colloidal particles, and we explore how these conditions can be realized experimentally using strand-displacement reactions. To evaluate the concept, we build and test a colloidal "dancer": a single particle that can be driven to move through a programmed sequence of steps along a one-dimensional track composed of other particles. The results of these tests reveal the capabilities and limitations of using DNA-mediated interactions for applications in dynamic systems. Specifically, we discuss how to design the substrate to limit complexity while permitting full control of the motile component, how to ratchet the interactions to move over many substrate positions with a limited regime of control parameters, and how to use technological developments to reduce the probability of detachment without sacrificing speed.


Asunto(s)
Coloides , ADN , ADN/genética , Movimiento (Física) , Temperatura
17.
J Phys Condens Matter ; 34(13)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34983038

RESUMEN

The ability to design and synthesize ever more complicated colloidal particles opens the possibility of self-assembling a zoo of complex structures, including those with one or more self-limited length scales. An undesirable feature of systems with self-limited length scales is that thermal fluctuations can lead to the assembly of nearby, off-target states. We investigate strategies for limiting off-target assembly by using multiple types of subunits. Using simulations and energetics calculations, we explore this concept by considering the assembly of tubules built from triangular subunits that bind edge to edge. While in principle, a single type of triangle can assemble into tubules with a monodisperse width distribution, in practice, the finite bending rigidity of the binding sites leads to the formation of off-target structures. To increase the assembly specificity, we introduce tiling rules for assembling tubules from multiple species of triangles. We show that the selectivity of the target structure can be dramatically improved by using multiple species of subunits, and provide a prescription for choosing the minimum number of subunit species required for near-perfect yield. Our approach of increasing the system's complexity to reduce the accessibility of neighboring structures should be generalizable to other systems beyond the self-assembly of tubules.


Asunto(s)
Sitios de Unión
18.
Nanoscale ; 13(29): 12602-12612, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34259699

RESUMEN

Targeted drug delivery relies on two physical processes: the selective binding of a therapeutic particle to receptors on a specific cell membrane, followed by transport of the particle across the membrane. In this article, we address some of the challenges in controlling the thermodynamics and dynamics of these two processes by combining a simple experimental system with a statistical mechanical model. Specifically, we characterize and model multivalent ligand-receptor binding between colloidal particles and fluid lipid bilayers, as well as the surface mobility of membrane-bound particles. We show that the mobility of the receptors within the fluid membrane is key to both the thermodynamics and dynamics of binding. First, we find that the particle-membrane binding free energy-or avidity-is a strongly nonlinear function of the ligand-receptor affinity. We attribute the nonlinearity to a combination of multivalency and recruitment of fluid receptors to the binding site. Our results also suggest that partial wrapping of the bound particles by the membrane enhances avidity further. Second, we demonstrate that the lateral mobility of membrane-bound particles is also strongly influenced by the recruitment of receptors. Specifically, we find that the lateral diffusion coefficient of a membrane-bound particle is dominated by the hydrodynamic drag against the aggregate of receptors within the membrane. These results provide one of the first direct validations of the working theoretical framework for multivalent interactions. They also highlight that the fluidity and elasticity of the membrane are as important as the ligand-receptor affinity in determining the binding and transport of small particles attached to membranes.


Asunto(s)
Ligandos , Sitios de Unión , Membrana Celular/metabolismo , Unión Proteica , Termodinámica
19.
Langmuir ; 26(18): 14479-87, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20731340

RESUMEN

Cross-flow membrane emulsification (XME) is a method for producing highly uniform droplets by forcing a fluid through a small orifice into a transverse flow of a second, immiscible fluid. We investigate the feasibility of using XME to produce monodisperse solid microspheres made of a hydrolyzable polymer and a hydrophobic drug, a model system for depot drug delivery applications. This entails the emulsification of a drug and polymer-loaded volatile solvent into water followed by evaporation of the solvent. We use a unique side-view visualization technique to observe the details of emulsion droplet production, providing direct information regarding droplet size, dripping frequency, wetting of the membrane surface by the two phases, neck thinning during droplet break off, and droplet deformation before and after break off. To probe the effects that dissolved polymers, surfactants, and dynamic interfacial tension may have on droplet production, we compare our results to a polymer and surfactant-free fluid system with closely matched physical properties. Comparing the two systems, we find little difference in the variation of particle size as a function of continuous phase flow rate. In contrast, at low dripping frequencies, dynamic interfacial tension causes the particle size to vary significantly with drip frequency, which is not seen in simple fluids. No effects due to shear thinning or fluid elasticity are detected. Overall, we find no significant impediments to the application of XME to forming highly uniform drug-loaded microspheres.


Asunto(s)
Portadores de Fármacos/química , Emulsionantes/química , Membranas Artificiales , Microesferas , Polímeros/química , Poliglactina 910/química , Propiedades de Superficie
20.
Phys Rev E ; 100(4-1): 042605, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31771009

RESUMEN

Particles bound to fluid-fluid interfaces are widely used to study self-assembly and to make materials such as Pickering emulsions. In both contexts, the lateral interactions between such particles have been studied extensively. However, much less is known about the normal interactions between a particle and the interface prior to contact. We use digital holographic microscopy to measure the dynamics of individual micrometer-size colloidal particles as they approach an interface between an aqueous phase and oil. Our measurements show that the interaction between the particle and interface changes nonmonotonically as a function of salt concentration, from repulsive at 1 mM to attractive at tens of mM to negligible at 100 mM and attractive again above 200 mM. In the attractive regimes, the particles can bind to the interface at nanometer-scale separation without breaching it. Classical Derjaguin-Landau-Verwey-Overbeek theory does not explain these observations. However, a theory that accounts for nonlinear screening and correlations between the ions does predict the nonmonotonic dependence on salt concentration and produces trajectories that agree with experimental data. We further show that the normal interactions determine the lateral interactions between particles that are bound to the interface. Because the interactions we observe occur at salt concentrations used to make Pickering emulsions and other particle-laden interfaces, our results suggest that particle arrangements at the interface are likely out of equilibrium on experimental timescales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA