Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Genet ; 106(2): 127-139, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38468396

RESUMEN

Leber congenital amaurosis (LCA) and early-onset retinal degeneration (EORD) are inherited retinal diseases (IRD) characterized by early-onset vision impairment. Herein, we studied 15 Saudi families by whole exome sequencing (WES) and run-of-homozygosity (ROH) detection via AutoMap in 12/15 consanguineous families. This revealed (likely) pathogenic variants in 11/15 families (73%). A potential founder variant was found in RPGRIP1. Homozygous pathogenic variants were identified in known IRD genes (ATF6, CRB1, CABP4, RDH12, RIMS2, RPGRIP1, SPATA7). We established genotype-driven clinical reclassifications for ATF6, CABP4, and RIMS2. Specifically, we observed isolated IRD in the individual with the novel RIMS2 variant, and we found a retina-enriched RIMS2 isoform conserved but not annotated in mouse. The latter illustrates potential different phenotypic consequences of pathogenic variants depending on the particular tissue/cell-type specific isoforms they affect. Lastly, a compound heterozygous genotype in GUCY2D in one non-consanguineous family was demonstrated, and homozygous variants in novel candidate genes ATG2B and RUFY3 were found in the two remaining consanguineous families. Reporting these genes will allow to validate them in other IRD cohorts. Finally, the missing heritability of the two unsolved IRD cases may be attributed to variants in non-coding regions or structural variants that remained undetected, warranting future WGS studies.


Asunto(s)
Consanguinidad , Secuenciación del Exoma , Linaje , Fenotipo , Humanos , Femenino , Masculino , Retina/patología , Homocigoto , Enfermedades de la Retina/genética , Isoformas de Proteínas/genética , Exoma/genética , Mutación , Niño , Predisposición Genética a la Enfermedad , Amaurosis Congénita de Leber/genética , Estudios de Cohortes , Genotipo , Estudios de Asociación Genética/métodos
2.
Am J Hum Genet ; 104(6): 1182-1201, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31130284

RESUMEN

We report the results of clinical exome sequencing (CES) on >2,200 previously unpublished Saudi families as a first-tier test. The predominance of autosomal-recessive causes allowed us to make several key observations. We highlight 155 genes that we propose to be recessive, disease-related candidates. We report additional mutational events in 64 previously reported candidates (40 recessive), and these events support their candidacy. We report recessive forms of genes that were previously associated only with dominant disorders and that have phenotypes ranging from consistent with to conspicuously distinct from the known dominant phenotypes. We also report homozygous loss-of-function events that can inform the genetics of complex diseases. We were also able to deduce the likely causal variant in most couples who presented after the loss of one or more children, but we lack samples from those children. Although a similar pattern of mostly recessive causes was observed in the prenatal setting, the higher proportion of loss-of-function events in these cases was notable. The allelic series presented by the wealth of recessive variants greatly expanded the phenotypic expression of the respective genes. We also make important observations about dominant disorders; these observations include the pattern of de novo variants, the identification of 74 candidate dominant, disease-related genes, and the potential confirmation of 21 previously reported candidates. Finally, we describe the influence of a predominantly autosomal-recessive landscape on the clinical utility of rapid sequencing (Flash Exome). Our cohort's genotypic and phenotypic data represent a unique resource that can contribute to improved variant interpretation through data sharing.


Asunto(s)
Consanguinidad , Secuenciación del Exoma/métodos , Genes Recesivos , Enfermedades Genéticas Ligadas al Cromosoma X/epidemiología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Predisposición Genética a la Enfermedad , Mutación , Niño , Estudios de Cohortes , Femenino , Homocigoto , Humanos , Masculino , Fenotipo , Embarazo , Arabia Saudita/epidemiología
3.
Am J Med Genet A ; 185(12): 3859-3865, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34327814

RESUMEN

Intellectual disability (ID) is one of the most common disabilities in humans. In an effort to contribute to the expanding genetic landscape of ID, we describe a novel autosomal recessive ID candidate gene. Combined autozygome/exome analysis was performed in two unrelated consanguineous families with ID. Each of the two families had a novel homozygous likely deleterious variant in PLXNA2 and displayed the core phenotype of ID. PLXNA2 belongs to a family of transmembrane proteins that function as semaphorin receptors. Sema5A-PlexinA2 is known to regulate brain development in mouse, and Plxna2-/- mice display defective associative learning, sociability, and sensorimotor gating. We note the existence of variability in the phenotype among the three patients, including the existence of variable degree of ID, ranging from borderline intellectual functioning to moderate-severe ID, and the presence of cardiac anomalies in only one of the patients. We propose incomplete penetrance as a possible explanation of the observed difference in phenotypes. Future cases will be needed to support the proposed link between PLXNA2 and ID in humans.


Asunto(s)
Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Animales , Niño , Preescolar , Consanguinidad , Exoma/genética , Femenino , Estudios de Asociación Genética , Homocigoto , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Linaje
4.
Genet Med ; 21(3): 545-552, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30214071

RESUMEN

PURPOSE: Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS: Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS: We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION: Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.


Asunto(s)
Microcefalia/genética , Microcefalia/fisiopatología , Adulto , Niño , Preescolar , Enanismo/genética , Femenino , Genómica/métodos , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación/genética , Linaje , Fenotipo , Secuenciación del Exoma/métodos
5.
Trends Genet ; 31(2): 108-15, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25497971

RESUMEN

Although numerous approaches have been pursued to understand the function of human genes, Mendelian genetics has by far provided the most compelling and medically actionable dataset. Biallelic loss-of-function (LOF) mutations are observed in the majority of autosomal recessive Mendelian disorders, representing natural human knockouts and offering a unique opportunity to study the physiological and developmental context of these genes. The restriction of such context to 'disease' states is artificial, however, and the recent ability to survey entire human genomes for biallelic LOF mutations has revealed a surprising landscape of knockout events in 'healthy' individuals, sparking interest in their role in phenotypic diversity beyond disease causation. As I discuss in this review, the potentially wide implications of human knockout research warrant increased investment and multidisciplinary collaborations to overcome existing challenges and reap its benefits.


Asunto(s)
Técnicas de Inactivación de Genes , Investigación , Evolución Molecular , Genes , Estudios de Asociación Genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo
6.
Am J Hum Genet ; 97(4): 608-15, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26365341

RESUMEN

Skeletal dysplasias are highly variable Mendelian phenotypes. Molecular diagnosis of skeletal dysplasias is complicated by their extreme clinical and genetic heterogeneity. We describe a clinically recognizable autosomal-recessive disorder in four affected siblings from a consanguineous Saudi family, comprising progressive spondyloepimetaphyseal dysplasia, short stature, facial dysmorphism, short fourth metatarsals, and intellectual disability. Combined autozygome/exome analysis identified a homozygous frameshift mutation in RSPRY1 with resulting nonsense-mediated decay. Using a gene-centric "matchmaking" system, we were able to identify a Peruvian simplex case subject whose phenotype is strikingly similar to the original Saudi family and whose exome sequencing had revealed a likely pathogenic homozygous missense variant in the same gene. RSPRY1 encodes a hypothetical RING and SPRY domain-containing protein of unknown physiological function. However, we detect strong RSPRY1 protein localization in murine embryonic osteoblasts and periosteal cells during primary endochondral ossification, consistent with a role in bone development. This study highlights the role of gene-centric matchmaking tools to establish causal links to genes, especially for rare or previously undescribed clinical entities.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Genes Recesivos/genética , Anomalías Musculoesqueléticas/genética , Mutación/genética , Osificación Heterotópica/genética , Osteocondrodisplasias/genética , Adolescente , Animales , Enfermedades del Desarrollo Óseo/patología , Niño , Consanguinidad , Desoxirribonucleasas de Localización Especificada Tipo II , Enanismo/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Exoma , Femenino , Homocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Anomalías Musculoesqueléticas/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Osteocondrodisplasias/patología , Linaje , Periostio/metabolismo , Periostio/patología , Fenotipo , Análisis de Secuencia de ADN
7.
Clin Genet ; 91(4): 629-633, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27905109

RESUMEN

Short-chain enoyl-CoA hydratase (SCEH) is a mitochondrial enzyme involved in the oxidation of fatty acids and the catabolic pathway of valine and, to a lesser extent, isoleucine. Deficiency of this enzyme was recently shown to cause an early childhood Leigh syndrome phenotype. The few reported patients were compound heterozygotes for two missense or missense with truncating variants in ECHS1 that encodes SCEH. We describe two siblings with severe refractory lactic acidosis and death within the first 2 days of life. Following negative clinical whole-exome and whole-genome sequencing, we resorted to autozygome/exome analysis on research basis and identified a homozygous splice site mutation (c.88+5G>A) in the two cases. Analysis of cDNA confirmed complete replacement of the normal transcript with an aberrant transcript (r.88_89ins 88+1_88+11) predicting premature truncation of the protein [p.(Ala31Glufs*23)]. Furthermore, quantitative reverse transcriptase polymerase chain reaction (RTPCR) showed marked reduction in ECHS1, most likely nonsense-mediated decay (NMD)-mediated. This is the first report of homozygosity for a truncating mutation in ECHS1, which may explain the severe phenotype. Our report highlights the need to consider SCEH deficiency in patients with lethal neonatal lactic acidosis, and the potentially limited sensitivity of untargeted genomic sequencing towards non-canonical splicing mutations, which may explain at least some of the 'negative' cases on clinical exome/genome sequencing.


Asunto(s)
Acidosis Láctica/genética , Enoil-CoA Hidratasa/genética , Acidosis Láctica/mortalidad , Acidosis Láctica/fisiopatología , Enoil-CoA Hidratasa/deficiencia , Exoma/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Recién Nacido , Enfermedad de Leigh/genética , Enfermedad de Leigh/fisiopatología , Masculino , Mutación , Linaje , Fenotipo , Sitios de Empalme de ARN/genética , Hermanos
8.
J Med Genet ; 51(12): 814-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25320347

RESUMEN

BACKGROUND: Primordial dwarfism (PD) is a heterogeneous clinical entity characterised by severe prenatal and postnatal growth deficiency. Despite the recent wave of disease gene discovery, the causal mutations in many PD patients remain unknown. OBJECTIVE: To describe a PD family that maps to a novel locus. METHODS: Clinical, imaging and laboratory phenotyping of a new family with PD followed by autozygosity mapping, linkage analysis and candidate gene sequencing. RESULTS: We describe a multiplex consanguineous Saudi family in which two full siblings and one half-sibling presented with classical features of Seckel syndrome in addition to optic nerve hypoplasia. We were able to map the phenotype to a single novel locus on 4q25-q28.2, in which we identified a five base-pair deletion in PLK4, which encodes a master regulator of centriole duplication. CONCLUSIONS: Our discovery further confirms the role of genes involved in centriole biology in the pathogenesis of PD.


Asunto(s)
Centriolos/genética , Enanismo/genética , Microcefalia/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Sitios de Carácter Cuantitativo , Preescolar , Mapeo Cromosómico , Consanguinidad , Análisis Mutacional de ADN , Enanismo/diagnóstico , Facies , Femenino , Orden Génico , Humanos , Lactante , Masculino , Microcefalia/diagnóstico , Linaje , Fenotipo
9.
J Med Genet ; 50(7): 425-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23620220

RESUMEN

BACKGROUND: Intellectual disability (ID) is one of the most common forms of disability worldwide, displaying a wide range of aetiologies and affecting nearly 2% of the global population. OBJECTIVE: To describe a novel autosomal recessive form of ID with strabismus and its underlying aetiology. MATERIALS AND METHODS: Autozygosity mapping, linkage analysis and exome sequencing were performed in a large multiplex consanguineous family that segregates ID and strabismus. Exome sequencing was independently performed in three other consanguineous families segregating the same disease. Direct sequencing of the resulting candidate gene was performed in four additional families with the same phenotype. RESULTS: A single missense mutation was identified in ADAT3 in all studied families on an ancient ancestral haplotype. This gene encodes one of two eukaryotic proteins that are necessary for the deamination of adenosine at position 34 to inosine in t-RNA. Our results show the first human mutation in the t-RNA editing machinery and expand the landscape of pathways involved in the pathogenesis of ID.


Asunto(s)
Adenosina Desaminasa/genética , Discapacidad Intelectual/genética , ARN de Transferencia/genética , Estrabismo/genética , Secuencia de Aminoácidos , Secuencia de Bases , Estudios de Cohortes , Consanguinidad , Exoma/genética , Femenino , Genes Recesivos , Ligamiento Genético , Haplotipos , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , ARN de Transferencia/metabolismo
10.
Genome Med ; 15(1): 114, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098057

RESUMEN

BACKGROUND: Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS: In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS: Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS: Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.


Asunto(s)
Exoma , Patrón de Herencia , Recién Nacido , Humanos , Genes Recesivos , Mutación , Secuenciación del Exoma , Linaje , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA