Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Phys ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012833

RESUMEN

BACKGROUND: Computed tomography (CT) relies on the attenuation of x-rays, and is, hence, of limited use for weakly attenuating organs of the body, such as the lung. X-ray dark-field (DF) imaging is a recently developed technology that utilizes x-ray optical gratings to enable small-angle scattering as an alternative contrast mechanism. The DF signal provides structural information about the micromorphology of an object, complementary to the conventional attenuation signal. A first human-scale x-ray DF CT has been developed by our group. Despite specialized processing algorithms, reconstructed images remain affected by streaking artifacts, which often hinder image interpretation. In recent years, convolutional neural networks have gained popularity in the field of CT reconstruction, amongst others for streak artefact removal. PURPOSE: Reducing streak artifacts is essential for the optimization of image quality in DF CT, and artefact free images are a prerequisite for potential future clinical application. The purpose of this paper is to demonstrate the feasibility of CNN post-processing for artefact reduction in x-ray DF CT and how multi-rotation scans can serve as a pathway for training data. METHODS: We employed a supervised deep-learning approach using a three-dimensional dual-frame UNet in order to remove streak artifacts. Required training data were obtained from the experimental x-ray DF CT prototype at our institute. Two different operating modes were used to generate input and corresponding ground truth data sets. Clinically relevant scans at dose-compatible radiation levels were used as input data, and extended scans with substantially fewer artifacts were used as ground truth data. The latter is neither dose-, nor time-compatible and, therefore, unfeasible for clinical imaging of patients. RESULTS: The trained CNN was able to greatly reduce streak artifacts in DF CT images. The network was tested against images with entirely different, previously unseen image characteristics. In all cases, CNN processing substantially increased the image quality, which was quantitatively confirmed by increased image quality metrics. Fine details are preserved during processing, despite the output images appearing smoother than the ground truth images. CONCLUSIONS: Our results showcase the potential of a neural network to reduce streak artifacts in x-ray DF CT. The image quality is successfully enhanced in dose-compatible x-ray DF CT, which plays an essential role for the adoption of x-ray DF CT into modern clinical radiology.

2.
Eur Radiol Exp ; 8(1): 54, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698099

RESUMEN

BACKGROUND: We aimed to improve the image quality (IQ) of sparse-view computed tomography (CT) images using a U-Net for lung metastasis detection and determine the best tradeoff between number of views, IQ, and diagnostic confidence. METHODS: CT images from 41 subjects aged 62.8 ± 10.6 years (mean ± standard deviation, 23 men), 34 with lung metastasis, 7 healthy, were retrospectively selected (2016-2018) and forward projected onto 2,048-view sinograms. Six corresponding sparse-view CT data subsets at varying levels of undersampling were reconstructed from sinograms using filtered backprojection with 16, 32, 64, 128, 256, and 512 views. A dual-frame U-Net was trained and evaluated for each subsampling level on 8,658 images from 22 diseased subjects. A representative image per scan was selected from 19 subjects (12 diseased, 7 healthy) for a single-blinded multireader study. These slices, for all levels of subsampling, with and without U-Net postprocessing, were presented to three readers. IQ and diagnostic confidence were ranked using predefined scales. Subjective nodule segmentation was evaluated using sensitivity and Dice similarity coefficient (DSC); clustered Wilcoxon signed-rank test was used. RESULTS: The 64-projection sparse-view images resulted in 0.89 sensitivity and 0.81 DSC, while their counterparts, postprocessed with the U-Net, had improved metrics (0.94 sensitivity and 0.85 DSC) (p = 0.400). Fewer views led to insufficient IQ for diagnosis. For increased views, no substantial discrepancies were noted between sparse-view and postprocessed images. CONCLUSIONS: Projection views can be reduced from 2,048 to 64 while maintaining IQ and the confidence of the radiologists on a satisfactory level. RELEVANCE STATEMENT: Our reader study demonstrates the benefit of U-Net postprocessing for regular CT screenings of patients with lung metastasis to increase the IQ and diagnostic confidence while reducing the dose. KEY POINTS: • Sparse-projection-view streak artifacts reduce the quality and usability of sparse-view CT images. • U-Net-based postprocessing removes sparse-view artifacts while maintaining diagnostically accurate IQ. • Postprocessed sparse-view CTs drastically increase radiologists' confidence in diagnosing lung metastasis.


Asunto(s)
Neoplasias Pulmonares , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Femenino , Estudios Retrospectivos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Anciano
3.
Radiology ; 311(2): e231921, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805732

RESUMEN

Background Many clinically relevant fractures are occult on conventional radiographs and therefore challenging to diagnose reliably. X-ray dark-field radiography is a developing method that uses x-ray scattering as an additional signal source. Purpose To investigate whether x-ray dark-field radiography enhances the depiction of radiographically occult fractures in an experimental model compared with attenuation-based radiography alone and whether the directional dependence of dark-field signal impacts observer ratings. Materials and Methods Four porcine loin ribs had nondisplaced fractures experimentally introduced. Microstructural changes were visually verified using high-spatial-resolution three-dimensional micro-CT. X-ray dark-field radiographs were obtained before and after fracture, with the before-fracture scans serving as control images. The presence of a fracture was scored by three observers using a six-point scale (6, surely; 5, very likely; 4, likely; 3, unlikely; 2, very unlikely; and 1, certainly not). Differences between scores based on attenuation radiographs alone (n = 96) and based on combined attenuation and dark-field radiographs (n = 96) were evaluated by using the DeLong method to compare areas under the receiver operating characteristic curve. The impact of the dark-field signal directional sensitivity on observer ratings was evaluated using the Wilcoxon test. The dark-field data were split into four groups (24 images per group) according to their sensitivity orientation and tested against each other. Musculoskeletal dark-field radiography was further demonstrated on human finger and foot specimens. Results The addition of dark-field radiographs was found to increase the area under the receiver operating characteristic curve to 1 compared with an area under the receiver operating characteristic curve of 0.87 (95% CI: 0.80, 0.94) using attenuation-based radiographs alone (P < .001). There were similar observer ratings for the four different dark-field sensitivity orientations (P = .16-.65 between the groups). Conclusion These results suggested that the inclusion of dark-field radiography has the potential to help enhance the detection of nondisplaced fractures compared with attenuation-based radiography alone. © RSNA, 2024 See also the editorial by Rubin in this issue.


Asunto(s)
Estudios de Factibilidad , Animales , Porcinos , Microtomografía por Rayos X/métodos , Fracturas de las Costillas/diagnóstico por imagen , Fracturas Cerradas/diagnóstico por imagen , Intensificación de Imagen Radiográfica/métodos
4.
Radiol Artif Intell ; 6(4): e230275, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38717293

RESUMEN

Purpose To explore the potential benefits of deep learning-based artifact reduction in sparse-view cranial CT scans and its impact on automated hemorrhage detection. Materials and Methods In this retrospective study, a U-Net was trained for artifact reduction on simulated sparse-view cranial CT scans in 3000 patients, obtained from a public dataset and reconstructed with varying sparse-view levels. Additionally, EfficientNet-B2 was trained on full-view CT data from 17 545 patients for automated hemorrhage detection. Detection performance was evaluated using the area under the receiver operating characteristic curve (AUC), with differences assessed using the DeLong test, along with confusion matrices. A total variation (TV) postprocessing approach, commonly applied to sparse-view CT, served as the basis for comparison. A Bonferroni-corrected significance level of .001/6 = .00017 was used to accommodate for multiple hypotheses testing. Results Images with U-Net postprocessing were better than unprocessed and TV-processed images with respect to image quality and automated hemorrhage detection. With U-Net postprocessing, the number of views could be reduced from 4096 (AUC: 0.97 [95% CI: 0.97, 0.98]) to 512 (0.97 [95% CI: 0.97, 0.98], P < .00017) and to 256 views (0.97 [95% CI: 0.96, 0.97], P < .00017) with a minimal decrease in hemorrhage detection performance. This was accompanied by mean structural similarity index measure increases of 0.0210 (95% CI: 0.0210, 0.0211) and 0.0560 (95% CI: 0.0559, 0.0560) relative to unprocessed images. Conclusion U-Net-based artifact reduction substantially enhanced automated hemorrhage detection in sparse-view cranial CT scans. Keywords: CT, Head/Neck, Hemorrhage, Diagnosis, Supervised Learning Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Artefactos , Aprendizaje Profundo , Tomografía Computarizada por Rayos X , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Masculino , Femenino , Hemorragias Intracraneales/diagnóstico por imagen , Hemorragias Intracraneales/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA