Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38069104

ABSTRACT

CagY is the largest and most complex protein from Helicobacter pylori's (Hp) type IV secretion system (T4SS), playing a critical role in the modulation of gastric inflammation and risk for gastric cancer. CagY spans from the inner to the outer membrane, forming a channel through which Hp molecules are injected into human gastric cells. Yet, a tridimensional structure has been reported for only short segments of the protein. This intricate protein was modeled using different approaches, including homology modeling, ab initio, and deep learning techniques. The challengingly long middle repeat region (MRR) was modeled using deep learning and optimized using equilibrium molecular dynamics. The previously modeled segments were assembled into a 1595 aa chain and a 14-chain CagY multimer structure was assembled by structural alignment. The final structure correlated with published structures and allowed to show how the multimer may form the T4SS channel through which CagA and other molecules are translocated to gastric cells. The model confirmed that MRR, the most polymorphic and complex region of CagY, presents numerous cysteine residues forming disulfide bonds that stabilize the protein and suggest this domain may function as a contractile region playing an essential role in the modulating activity of CagY on tissue inflammation.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Humans , Bacterial Proteins/metabolism , Helicobacter pylori/metabolism , Antigens, Bacterial/metabolism , Inflammation
2.
J Mol Evol ; 90(1): 124-138, 2022 02.
Article in English | MEDLINE | ID: mdl-35084521

ABSTRACT

Diverse studies have shown that the content of genes present in sequenced genomes does not seem to correlate with the complexity of the organisms. However, various studies have shown that organism complexity and the size of the proteome has, indeed, a significant correlation. This characteristic allows us to postulate that some molecular mechanisms have permitted a greater functional diversity to some proteins to increase their participation in developing organisms with higher complexity. Among those mechanisms, the domain promiscuity, defined as the ability of the domains to organize in combination with other distinct domains, is of great importance for the evolution of organisms. Previous works have analyzed the degree of domain promiscuity of the proteomes showing how it seems to have paralleled the evolution of eukaryotic organisms. The latter has motivated the present study, where we analyzed the domain promiscuity in a collection of 84 eukaryotic proteomes representative of all the taxonomy groups of the tree of life. Using a grammar definition approach, we determined the architecture of 1,223,227 proteins, conformed by 2,296,371 domains, which established 839,184 bigram types. The phylogenetic reconstructions based on differences in the content of information from measures of proteome promiscuity confirm that the evolution of the promiscuity of domains in eukaryotic organisms resembles the evolutionary history of the species. However, a close analysis of the PHD and RING domains, the most promiscuous domains found in fungi and functional components of chromatin remodeling enzymes and important expression regulators, suggests an evolution according to their function.


Subject(s)
Eukaryota , Proteome , Eukaryota/genetics , Evolution, Molecular , Fungi/genetics , Phylogeny , Proteome/genetics
3.
Arch Virol ; 167(12): 2795-2800, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36085531

ABSTRACT

Human papillomavirus 31 (HPV31) is the fourth most frequent high-risk HPV (HR-HPV) genotype identified in cervical cancer (CC) worldwide and in Mexico. It has been recently classified into three lineages (A, B, and C) and eight sublineages (A1, A2, B1, B2, and C1 - C4). Here, we report the complete genomic sequences of 14 HPV31 isolates from cervical samples, and these were compared with viral genome sequences from the GenBank database for phylogenetic and genetic distance analysis. The formation of two novel clades within the C lineage (proposed as C5 and C6) was observed, with a well-defined variant-specific mutational pattern. The smallest average pairwise distance was 0.71% for lineages A and B, 0.94% for lineages A and C, and 1.01% for lineages B and C, and between sublineages, these values were 0.21% for clade A, 0.29% for clade B, and 0.24% for clade C. The isolates were grouped into the sublineages A1, B2, C1-C3, and C6. This is the first report on the whole-genome diversity of HPV31 in Mexico.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human Papillomavirus Viruses , Phylogeny , Genetic Variation , Human papillomavirus 31/genetics , Genotype , Genome, Viral
4.
Mol Biol Rep ; 48(2): 1967-1975, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33523371

ABSTRACT

In 2014, the chikungunya virus (CHIKV) was detected for the first time in Mexico, the identified strain was the one corresponding to the Asian genotype which was phylogenetically grouped with the strains that circulated in the British Virgin Islands outbreak and was later classified with lineages of Caribbean strains. In three years, 13,569 cases of chikungunya were registered in Mexico. Although the transmission and spread of the virus are now considered a moderate risk, the danger that the virus reemerges is not ruled out due to the infestation of Aedes mosquitoes. In this study, we reviewed the chikungunya fever (CHIKF) cases reported between 2014 and 2016 to reanalyze the data. Seventeen cases were selected from different states where the circulation of the virus had been reported. Statistical data were analyzed and a retrospective analysis was carried out. Nucleic acid sequences were determined of these 17 samples. 2015 was the year with the highest number of cases (92.8%) and they were detected in 28 states of the country. There is a predominance of females, and the most affected age group was between 25 and 44 years. In 2016, CHIKV genotypes were not known, in this study the presence of the Asian genotype of Caribbean lineage was confirmed. The presence of the West African and ECSA genotypes was phylogenetically ruled out. The sequences obtained were deposited in GeneBank.


Subject(s)
Chikungunya Fever/epidemiology , Chikungunya virus/genetics , Adolescent , Adult , Chikungunya Fever/transmission , Chikungunya Fever/virology , Child , Child, Preschool , Databases, Genetic , Disease Outbreaks , Female , Genotype , Humans , Male , Mexico , Middle Aged , Phylogeny , Retrospective Studies , Sequence Analysis, DNA
5.
Int J Cancer ; 147(9): 2437-2445, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32363734

ABSTRACT

Helicobacter pylori (Hp) infects the stomach of about half of the human population and is strongly associated with the risk of gastric cancer (GC) and its premalignant precursors. The cag pathogenicity island (cagPAI) is a region of the Hp genome encoding for key molecular machinery involved in the infection process. Following a sequencing study, we selected 50 genetic polymorphisms located in seven cagPAI genes and tested their associations with the risk of advanced gastric premalignant lesions and GC in 1220 subjects from various Latin American populations showing the whole spectrum of phenotypes from gastritis to GC. We found that three polymorphisms of cagA are associated with the risk of advanced gastric premalignant lesions (incomplete intestinal metaplasia [ie, Type 2 and 3] or dysplasia), and that six polymorphisms located in cagA, cagL and cagI were associated with risk of GC. When corrected for multiple testing none of the associations were statistically significant. However, scores built by integrating the individual polymorphisms were significantly associated with the risk of advanced gastric premalignant lesions and GC. These results have the potential of establishing markers for risk stratification in the general population, in view of targeting Hp eradication to high-risk population groups.


Subject(s)
Gastric Mucosa/pathology , Helicobacter Infections/microbiology , Helicobacter pylori/genetics , Precancerous Conditions/microbiology , Stomach Neoplasms/epidemiology , Adult , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Biopsy , Colombia/epidemiology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Female , Gastric Mucosa/microbiology , Gastritis/microbiology , Gastritis/pathology , Genetic Markers , Genome, Bacterial/genetics , Genomic Islands , Helicobacter Infections/pathology , Helicobacter pylori/isolation & purification , Helicobacter pylori/pathogenicity , Humans , Male , Metaplasia/microbiology , Metaplasia/pathology , Mexico/epidemiology , Middle Aged , Polymorphism, Genetic , Precancerous Conditions/pathology , Risk Assessment/methods , Risk Factors , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Whole Genome Sequencing
6.
Molecules ; 25(17)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882836

ABSTRACT

Giardiasis is a diarrheal disease that is highly prevalent in developing countries. Several drugs are available for the treatment of this parasitosis; however, failures in drug therapy are common, and have adverse effects and increased resistance of the parasite to the drug, generating the need to find new alternative treatments. In this study, we synthesized a series of 2-mercaptobenzimidazoles that are derivatives of omeprazole, and the chemical structures were confirmed through mass, 1H NMR, and 13C NMR techniques. The in vitro efficacy compounds against Giardia, as well as its effect on the inhibition of triosephosphate isomerase (TPI) recombinant, were investigated, the inactivation assays were performed with 0.2 mg/mL of the enzyme incubating for 2 h at 37 °C in TE buffer, pH 7.4 with increasing concentrations of the compounds. Among the target compounds, H-BZM2, O2N-BZM7, and O2N-BZM9 had greater antigiardial activity (IC50: 36, 14, and 17 µM on trophozoites), and inhibited the TPI enzyme (K2: 2.3, 3.2, and 2.8 M-1 s-1) respectively, loading alterations on the secondary structure, global stability, and tertiary structure of the TPI protein. Finally, we demonstrated that it had low toxicity on Caco-2 and HT29 cells. This finding makes it an attractive potential starting point for new antigiardial drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Benzimidazoles/pharmacology , Giardia lamblia/drug effects , Omeprazole/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Caco-2 Cells , Cell Death/drug effects , Cell Survival/drug effects , Circular Dichroism , Drug Design , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Giardia lamblia/enzymology , HT29 Cells , Humans , Kinetics , Lansoprazole/pharmacology , Molecular Docking Simulation , Omeprazole/chemical synthesis , Omeprazole/chemistry , Spectrometry, Fluorescence , Triose-Phosphate Isomerase/antagonists & inhibitors , Triose-Phosphate Isomerase/chemistry , Trophozoites/drug effects
7.
Molecules ; 24(17)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470504

ABSTRACT

Brucellosis, also known as "undulant fever" is a zoonotic disease caused by Brucella, which is a facultative intracellular bacterium. Despite efforts to eradicate this disease, infection in uncontrolled domestic animals persists in several countries and therefore transmission to humans is common. Brucella evasion of the innate immune system depends on its ability to evade the mechanisms of intracellular death in phagocytic cells. The BvrR-BvrS two-component system allows the bacterium to detect adverse conditions in the environment. The BvrS protein has been associated with genes of virulence factors, metabolism, and membrane transport. In this study, we predicted the DNA sequence recognized by BvrR with Gibbs Recursive Sampling and identified the three-dimensional structure of BvrR using I-TASSER suite, and the interaction mechanism between BvrR and DNA with Protein-DNA docking and molecular dynamics (MD) simulation. Based on the Gibbs recursive Sampling analysis, we found the motif AAHTGC (H represents A, C, and T nucleotides) as a possible sequence recognized by BvrR. The docking and EMD simulation results showed that C-terminal effector domain of BvrR protein is likely to interact with AAHTGC sequence. In conclusion, we predicted the structure, recognition motif, and interaction of BvrR with DNA.


Subject(s)
Bacterial Proteins/chemistry , Brucella/chemistry , DNA/chemistry , Virulence Factors/chemistry , Amino Acid Motifs , Bacterial Proteins/metabolism , Binding Sites , Brucella/pathogenicity , DNA/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleotide Motifs , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Structural Homology, Protein , Thermodynamics , Virulence Factors/metabolism
8.
Arch Virol ; 163(6): 1643-1647, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29426993

ABSTRACT

Here, we report for the first time the circulation of dengue virus type 1 (DENV-1) belonging to the lineage IV of genotype V (African American genotype) based on phylogenetic analysis of nucleotide sequences from 10 DENV-1-positive samples obtained in Mexico between 2012 and 2014. Our data revealed that the lineages III and IV of DENV-1 genotype V were found circulating during the same period, probably explaining the rise in the number of cases of severe dengue during that period.


Subject(s)
Dengue Virus/genetics , Genotype , Phylogeny , RNA, Viral/genetics , Severe Dengue/epidemiology , Adolescent , Adult , Child , Dengue Virus/classification , Dengue Virus/isolation & purification , Evolution, Molecular , Female , Founder Effect , Genetic Variation , Humans , Male , Mexico/epidemiology , Middle Aged , Molecular Epidemiology , Phylogeography , Severe Dengue/diagnosis , Severe Dengue/pathology , Severe Dengue/virology
9.
Molecules ; 23(3)2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29518930

ABSTRACT

A series of 3-benzoyl imidazo[1,2-a]pyrimidines, obtained from N-heteroarylformamidines in good yields, was tested in silico and in vitro for binding and inhibition of seven Candida species (Candida albicans (ATCC 10231), Candida dubliniensis (CD36), Candida glabrata (CBS138), Candida guilliermondii (ATCC 6260), Candida kefyr, Candida krusei (ATCC 6358) and Candida tropicalis (MYA-3404)). To predict binding mode and energy, each compound was docked in the active site of the lanosterol 14α-demethylase enzyme (CYP51), essential for fungal growth of Candida species. Antimycotic activity was evaluated as the 50% minimum inhibitory concentration (MIC50) for the test compounds and two reference drugs, ketoconazole and fluconazole. All test compounds had a better binding energy (range: -6.11 to -9.43 kcal/mol) than that found for the reference drugs (range: 48.93 to -6.16 kcal/mol). In general, the test compounds showed greater inhibitory activity of yeast growth than the reference drugs. Compounds 4j and 4f were the most active, indicating an important role in biological activity for the benzene ring with electron-withdrawing substituents. These compounds show the best MIC50 against C. guilliermondii and C. glabrata, respectively. The current findings suggest that the 3-benzoyl imidazo[1,2-a]pyrimidine derivatives, herein synthesized by an accessible methodology, are potential antifungal drugs.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrimidines/chemistry , Pyrimidines/pharmacology , Antifungal Agents/chemical synthesis , Binding Sites , Candida/drug effects , Candida/enzymology , Catalytic Domain , Chemistry Techniques, Synthetic , Cytochrome P450 Family 51/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Conformation , Protein Binding , Pyrimidines/chemical synthesis
10.
Arch Virol ; 162(12): 3629-3637, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28819692

ABSTRACT

Rabies is an infectious viral disease that is practically always fatal following the onset of clinical signs. In Mexico, the last case of human rabies transmitted by dogs was reported in 2006 and canine rabies has declined significantly due to vaccination campaigns implemented in the country. Here we report on the molecular characterization of six rabies virus strains found in Yucatan and Chiapas, remarkably, four of them showed an atypical reaction pattern when antigenic characterization with a reduced panel of eight monoclonal antibodies was performed. Phylogenetic analyses on the RNA sequences unveiled that the three atypical strains from Yucatan are associated with skunks. Analysis using the virus entire genome showed that they belong to a different lineage distinct from the variants described for this animal species in Mexico. The Chiapas atypical strain was grouped in a lineage that was considered extinct, while the others are clustered within classic dog variants.


Subject(s)
Dog Diseases/epidemiology , Dog Diseases/virology , Genotype , Rabies virus/classification , Rabies virus/genetics , Rabies/veterinary , Animals , Cluster Analysis , Disease Transmission, Infectious , Disease Vectors , Dog Diseases/transmission , Dogs , Humans , Mephitidae/virology , Mexico/epidemiology , Molecular Epidemiology , Phylogeny , RNA, Viral/genetics , Rabies/epidemiology , Rabies/transmission , Rabies/virology , Rabies virus/isolation & purification , Sequence Analysis, DNA
11.
Arch Microbiol ; 198(2): 129-35, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26546315

ABSTRACT

The genus Psychrobacter contains environmental, psychrophilic and halotolerant gram-negative bacteria considered rare opportunistic pathogens in humans. Metagenomics was performed on the cerebrospinal fluid (CSF) of a pediatric patient with meningitis. Nucleic acids were extracted, randomly amplified, and sequenced with the 454 GS FLX Titanium next-generation sequencing (NGS) system. Sequencing reads were assembled, and potential virulence genes were predicted. Phylogenomic and phylogenetic studies were performed. Psychrobacter sp. 310 was identified, and several virulence genes characteristic of pathogenic bacteria were found. The phylogenomic study and 16S rRNA gene phylogenetic analysis showed that the closest relative of Psychrobacter sp. 310 was Psychrobacter sanguinis. To our knowledge, this is the first report of a meningitis case associated with Psychrobacter sp. identified by NGS metagenomics in CSF from a pediatric patient. The metagenomic strategy based on NGS was a powerful tool to identify a rare unknown pathogen in a clinical case.


Subject(s)
Cerebrospinal Fluid/microbiology , Meningitis/microbiology , Metagenomics , Moraxellaceae Infections/microbiology , Psychrobacter/genetics , Adolescent , Base Sequence , Fatal Outcome , Genome, Bacterial/genetics , Humans , Male , Meningitis/cerebrospinal fluid , Mexico , Molecular Sequence Data , Moraxellaceae Infections/cerebrospinal fluid , Phylogeny , Psychrobacter/classification , Psychrobacter/isolation & purification , RNA, Ribosomal, 16S/genetics , Virulence Factors/genetics
12.
Intervirology ; 59(5-6): 235-242, 2016.
Article in English | MEDLINE | ID: mdl-28329739

ABSTRACT

AIMS: The aim of this study was to design peptides derived from glycoproteins H (gH) and B (gB) of herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) with the potential to block herpetic infection and to evaluate their ability to inhibit HSV-1 and HSV-2 infection in vitro. METHODS: A library of continuous 15-25 residue stretches (CRSs) located at the surface of gH and gB from HSV-1 and HSV-2 was created. These CRSs were analyzed, and only those that were highly flexible and rich in charged residues were selected for the design of the antiviral peptides (AVPs). The toxicity of the AVPs was evaluated by MTT reduction assays. Virucidal activity of the AVPs was determined by a plaque reduction assay, and their antiviral effect was measured by cell viability assays. RESULTS AND CONCLUSION: Four AVPs (CB-1, CB-2, U-1, and U-2) derived from gB and gH were designed and synthetized, none of which showed high levels of toxicity in Vero cells. The U-1 and U-2 gB-derived AVPs showed high virucidal and antiviral activities against both HSV-1 and HSV-2. The gH-derived peptide CB-1 showed high virucidal and antiviral activities against HSV-2, while CB-2 showed similar results against HSV-1. The peptides CB-1 and CB-2 showed higher IC50 values than the U-1 and U-2 peptides.

13.
Mem Inst Oswaldo Cruz ; 111(3): 200-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26910355

ABSTRACT

Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline.


Subject(s)
Breast Neoplasms/virology , DNA, Viral/isolation & purification , Herpesvirus 4, Human/genetics , High-Throughput Nucleotide Sequencing/methods , RNA, Viral/isolation & purification , Stomach Neoplasms/virology , Computational Biology/methods , Computer Simulation/economics , Computers , Cost-Benefit Analysis/methods , Female , Humans , Male , Mexico , Nucleic Acids/isolation & purification , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods
14.
Theor Biol Med Model ; 11: 51, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25471943

ABSTRACT

BACKGROUND: Papillomavirus binding factor (PBF) or zinc finger protein 395 is a transcription factor associated to a poor prognosis in patients with osteosarcoma, an aggressive bone cancer that predominantly affects adolescents. To investigate the role of the PBF protein in the osteosarcoma genesis, in this paper we present the bioinformatics analysis of physicochemical properties of PBF and its probable interactions with several key cellular targets. RESULTS: The physicochemical characteristics determined to PBF, disorder-promoting amino acids, flexibility, hydrophobicity, prediction of secondary and tertiary structures and probability to be crystallized, supported that this protein can be considered as an intrinsically disordered protein (IDP), with a zinc finger-like domain. The in silico analysis to find out PBF interactions with cellular factors, confirmed the experimentally demonstrated interaction of PBF with two key cellular proteins involved in regulation of cellular apoptosis, 14-3-3ß and Scythe/BAT3 proteins. Furthermore, other interactions were found with proteins like HDAC1 and TPR which are known to be deregulated in several cancers. Experimental confirmation of specific interactions will contribute to understand the osteosarcoma process and might lead to the identification of new targets for diagnosis and treatments. CONCLUSIONS: According to the in silico PBF analyses, this protein can be considered as an IDP capable to bind several key cellular factors, and these interactions might play an important role in the osteosarcoma process.


Subject(s)
Bone Neoplasms/virology , Intrinsically Disordered Proteins/metabolism , Osteosarcoma/virology , Papillomaviridae/metabolism , Zinc Fingers , Amino Acid Sequence , Base Sequence , Bone Neoplasms/metabolism , Computer Simulation , Humans , Molecular Sequence Data , Osteosarcoma/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
15.
Eur J Cancer Prev ; 32(3): 301-304, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36719829

ABSTRACT

Infection by Helicobacter pylori (Hp) has been causally linked to risk of gastric cancer (GC). The coevolution of Hp and humans shaped the risk of GC as our species left Africa and migrated to the other continents. Latin America (LatAm) is a high GC incidence region where Hp evolved uniquely in the 500 years since European colonization. Differential virulence of the Hp cagA -pathogenicity island (cagPAI) by ancestral origin has been reported. We hypothesized that Hp phylogenetic origin might play a role in determining GC risk in LatAm. We used genotypes of 50 Hp genetic variants mapping to the Hp cagPAI, studied in 1220 subjects from Venezuela, Colombia, Mexico and Paraguay, who were infected with cagA-positive Hp, including 150 GC, 177 high-grade premalignant lesions (HGPMLs) and 893 low-grade premalignant lesions. We estimated the phylogenetic origin of Hp cagPAI in all study subjects by use of the STRUCTURE software and principal component analysis (PCA) and tested whether the estimated African ancestry percentage was associated with the risk of GC or HGPML. African ancestral component estimates by STRUCTURE and PCA were highly correlated. STRUCTURE-based African origin estimate was not significantly associated with the risk of HGPML, but it was inversely associated with GC risk: the OR associated with the continuous values of African component was 0.09 (95% CI, 0.01-0.85; P = 0.035). Similar trends were observed for GC with PCA-based estimates, but the association was not statistically significant. These results suggest that Hp ancestral origin may play a role in gastric carcinogenesis.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Humans , Stomach Neoplasms/epidemiology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Helicobacter pylori/genetics , Phylogeny , Genomic Islands/genetics , Latin America , Precancerous Conditions/epidemiology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Helicobacter Infections/complications , Helicobacter Infections/epidemiology , Helicobacter Infections/genetics
16.
Front Oncol ; 13: 1208403, 2023.
Article in English | MEDLINE | ID: mdl-37916165

ABSTRACT

Resistance to cisplatin is the main cause of treatment failure in lung adenocarcinoma. Drug-tolerant-persister (DTP) cells are responsible for intrinsic resistance, since they survive the initial cycles of treatment, representing a reservoir for the emergence of clones that display acquired resistance. Although the molecular mechanisms of DTP cells have been described, few studies have investigated the earliest molecular alterations of DTP cells in intrinsic resistance to cisplatin. In this work, we report a gene expression signature associated with the emergence of cisplatin-DTP cells in lung adenocarcinoma cell lines. After a single exposure to cisplatin, we sequenced the transcriptome of cisplatin-DTPs to identify differentially expressed genes. Bioinformatic analysis revealed that early cisplatin-DTP cells deregulate metabolic and proliferative pathways to survive the drug insult. Interaction network analysis identified three highly connected submodules in which SOCS1 had a significant participation in controlling the proliferation of cisplatin-DTP cells. Expression of the candidate genes and their corresponding protein was validated in lung adenocarcinoma cell lines. Importantly, the expression level of SOCS1 was different between CDDP-susceptible and CDDP-resistant lung adenocarcinoma cell lines. Moreover, knockdown of SOCS1 in the CDDP-resistant cell line partially promoted its susceptibility to CDDP. Finally, the clinical relevance of the candidate genes was analyzed in silico, according to the overall survival of cisplatin-treated patients from The Cancer Genome Atlas. Survival analysis showed that downregulation or upregulation of the selected genes was associated with overall survival. The results obtained indicate that these genes could be employed as predictive biomarkers or potential targets to improve the effectiveness of CDDP treatment in lung cancer patients.

17.
Photodiagnosis Photodyn Ther ; 40: 103174, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36602069

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) is used to treat tumors through selective cytotoxic effects. PDT induces damage-associated molecular patterns (DAMPs) expression, which can cause an immunogenic death cell (IDC). In this study we identified potential immunogenic epitopes generated by PDT on triple-negative breast cancer cell line (MDA-MB-231). METHODS: MDA-MB-231 cells were exposed to PDT using ALA (160 µg/mL)/630 nm at 8 J/cm2. Membrane proteins were extracted and separated by 2D PAGE. Proteins overexpressed were identified by LC-MS/MS and analyzed in silico through a peptide-HLA docking in order to identify the epitopes with more immunogenicity and antigenicity properties, as well as lower allergenicity and toxicity activity. The selected peptides were evaluated in response to macrophage activation and cytokine release by flow cytometry. RESULTS: Differential proteins were overexpressed in the cells treated with PDT. A group of 16 peptides were identified from them, established in a rigorous selection by measuring antigenicity, immunogenicity, allergenicity, and toxicity in silico. The final selection was based on molecular dynamics, where 2 peptides showed the highest stability regarding to the RMSD value. These peptides were obtained from the proteins calreticulin and HSP90. The cytokine analysis evidenced macrophage activation by the releasing of TNF. CONCLUSION: Two peptides were identified from calreticulin and HSP90; proteins induced by PDT in MDA-MB-231 cells. Both epitopes showed immunogenic potential as a peptide-based vaccine for triple-negative breast cancer.


Subject(s)
Breast Neoplasms , Photochemotherapy , Triple Negative Breast Neoplasms , Vaccines , Humans , Female , Photosensitizing Agents , Photochemotherapy/methods , Calreticulin/metabolism , Calreticulin/therapeutic use , Epitopes/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Chromatography, Liquid , Tandem Mass Spectrometry , Vaccines/therapeutic use , Cytokines/metabolism , Cell Line, Tumor
18.
Front Cell Infect Microbiol ; 12: 885191, 2022.
Article in English | MEDLINE | ID: mdl-35706909

ABSTRACT

Typical enteroaggregative Escherichia coli (tEAEC) is a diarrheagenic E. coli pathotype associated with pediatric and traveler's diarrhea. Even without diarrhea, EAEC infections in children also lead to increased gut inflammation and growth shortfalls. EAEC strain's defining phenotype is the aggregative adherence pattern on epithelial cells attributable to the aggregative adherence fimbriae (AAF). EAEC only causes diarrhea in humans; therefore, not much is known of the exact intestinal region of infection and damage or its interactions with intestinal enterocytes in vivo and in situ. This study aimed to develop a new tEAEC mouse model of infection, characterize the microbiota of infected mice, and evaluate in situ the expression of host adherence and surface molecules triggering EAEC infection and the role of the EAEC AAF-II in adherence. Six-week-old C57BL/6 mice, without previous antibiotic treatment, were orally challenged with EAEC 042 strain or EAEC 042 AAF-II mutant (ΔAAF/II) strain, or DAEC-MXR strain (diffusely adherent E. coli clinical isolate), and with saline solution (control group). Paraffin sections of the colon and ileum were stained with H&E and periodic acid-Schiff. ZO-1, ß-catenin, MUC1, and bacteria were analyzed by immunofluorescence. EAEC-infected mice, in comparison with DAEC-MXR-infected and control mice, significantly lost weight during the first 3 days. After 7 days post-infection, mucus production was increased in the colon and ileum, ZO-1 localization remained unaltered, and morphological alterations were more pronounced in the ileum since increased expression and apical localization of ß-catenin in ileal enterocytes were observed. EAEC-infected mice developed dysbiosis 21 days post-infection. At 4 days post-infection, EAEC strain 042 formed a biofilm on ileal villi and increased the expression and apical localization of ß-catenin in ileal enterocytes; these effects were not seen in animals infected with the 042 ΔAAF/II strain. At 3 days post-infection, MUC1 expression on ileal enterocytes was mainly detectable among infected mice and colocalized with 042 strains on the enterocyte surface. We developed a novel mouse model of EAEC infection, which mimics human infection, not an illness, revealing that EAEC 042 exerts its pathogenic effects in the mouse ileum and causes dysbiosis. This model is a unique tool to unveil early molecular mechanisms of EAEC infection in vivo and in situ.


Subject(s)
Escherichia coli Infections , Ileum , Microbiota , Mucin-1 , beta Catenin , Adhesins, Escherichia coli/genetics , Animals , Bacterial Adhesion/genetics , Diarrhea/microbiology , Disease Models, Animal , Dysbiosis , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Humans , Mice , Mice, Inbred C57BL , Mucin-1/genetics , Mucus/metabolism , Travel , beta Catenin/genetics
19.
Noncoding RNA ; 8(5)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36287117

ABSTRACT

Ubiquitous eukaryotic non-coding circular RNAs regulate transcription and translation. We have reported full-length intronic circular RNAs (flicRNAs) in Entamoeba histolytica with esterified 3'ss and 5'ss. Their 5'ss GU-rich elements are essential for their biogenesis and their suggested role in transcription regulation. Here, we explored whether exonic, exonic-intronic, and intergenic circular RNAs are also part of the E. histolytica and E. invadens ncRNA RNAome and investigated their possible functions. Available RNA-Seq libraries were analyzed with the CIRI-full software in search of circular exonic RNAs (circRNAs). The robustness of the analyses was validated using synthetic decoy sequences with bona fide back splice junctions. Differentially expressed (DE) circRNAs, between the virulent HM1:IMSS and the nonvirulent Rahman E. histolytica strains, were identified, and their miRNA sponging potential was analyzed using the intaRNA software. Respectively, 188 and 605 reverse overlapped circRNAs from E. invadens and E. histolytica were identified. The sequence composition of the circRNAs was mostly exonic although different to human circRNAs in other attributes. 416 circRNAs from E. histolytica were virulent-specific and 267 were nonvirulent-specific. Out of the common circRNAs, 32 were DE between strains. Finally, we predicted that 8 of the DE circRNAs could function as sponges of the bioinformatically reported miRNAs in E. histolytica, whose functions are still unknown. Our results extend the E. histolytica RNAome and allow us to devise a hypothesis to test circRNAs/miRNAs/siRNAs interactions in determining the virulent/nonvirulent phenotypes and to explore other regulatory mechanisms during amoebic encystment.

20.
Front Cell Infect Microbiol ; 12: 907890, 2022.
Article in English | MEDLINE | ID: mdl-35873160

ABSTRACT

Mycobacteria, like other microorganisms, survive under different environmental variations by expressing an efficient adaptive response, oriented by regulatory elements, such as transcriptional repressors of the TetR family. These repressors in mycobacteria also appear to be related to cholesterol metabolism. In this study, we have evaluated the effect of a fatty acid (oleic-palmitic-stearic)/cholesterol mixture on some phenotypic and genotypic characteristics of a tetR-mutant strain (BCG_2177c mutated gene) of M. bovis BCG, a homologous of Rv2160A of M. tuberculosis. In order to accomplish this, we have analyzed the global gene expression of this strain by RNA-seq and evaluated its neutral-lipid storage capacity and potential to infect macrophages. We have also determined the macrophage response by measuring some pro- and anti-inflammatory cytokine expressions. In comparison with wild-type microorganisms, we showed that the mutation in the BCG_2177c gene did not affect the growth of M. bovis BCG in the presence of lipids but it probably modified the structure/composition of its cell envelope. Compared to with dextrose, an overexpression of the transcriptome of the wild-type and mutant strains was observed when these mycobacteria were cultured in lipids, mainly at the exponential phase. Twelve putative intracellular redox balance maintenance genes and four others coding for putative transcriptional factors (including WhiB6 and three TetR-like) were the main elements repeatedly overexpressed when cultured in the presence of lipids. These genes belonged to the central part of what we called the "genetic lipid signature" for M. bovis BCG. We have also found that all these mycobacteria genotypic changes affected the outcome of BCG-infected macrophages, being the mutant strain most adapted to persist longer inside the host. This high persistence result was also confirmed when mutant-infected macrophages showed overexpression of the anti-inflammatory cytokine TGF-ß versus pro-inflammatory cytokines. In summary, the lack of this TetR-like repressor expression, within a lipid environment, may help mycobacteria overcome intracellular redox stress and survive longer inside their host.


Subject(s)
Mycobacterium Infections , Mycobacterium bovis , Mycobacterium tuberculosis , BCG Vaccine , Cholesterol/metabolism , Cytokines/metabolism , Humans , Macrophages/microbiology , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL