Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 128(5): 602-618, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33435713

RESUMEN

RATIONALE: Glomerular capillaries are lined with a highly specialized fenestrated endothelium and contribute to the glomerular filtration barrier. The Notch signaling pathway is involved in regulation of glomerular filtration barrier, but its role in glomerular endothelium has not been investigated due to the embryonic lethality of animal models with genetic modification of Notch pathway components in the endothelium. OBJECTIVE: To determine the effects of aberrant activation of the Notch signaling in glomerular endothelium and the underlying molecular mechanisms. METHODS AND RESULTS: We established the ZEG-NICD1 (notch1 intracellular domain)/Tie2-tTA/Tet-O-Cre transgenic mouse model to constitutively activate Notch1 signaling in endothelial cells of adult mice. The triple transgenic mice developed severe albuminuria with significantly decreased VE-cadherin (vascular endothelial cadherin) expression in the glomerular endothelium. In vitro studies showed that either NICD1 (Notch1 intracellular domain) lentiviral infection or treatment with Notch ligand DLL4 (delta-like ligand 4) markedly reduced VE-cadherin expression and increased monolayer permeability of human renal glomerular endothelial cells. In addition, Notch1 activation or gene knockdown of VE-cadherin reduced the glomerular endothelial glycocalyx. Further investigation demonstrated that activated Notch1 suppression of VE-cadherin was through the transcription factors SNAI1 (snail family transcriptional repressor 1) and ERG (Ets related gene), which bind to the -373 E-box and the -134/-118 ETS (E26 transformation-specific) element of the VE-cadherin promoter, respectively. CONCLUSIONS: Our results reveal novel regulatory mechanisms whereby endothelial Notch1 signaling dictates the level of VE-cadherin through the transcription factors SNAI1 and ERG, leading to dysfunction of glomerular filtration barrier and induction of albuminuria. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Albuminuria/metabolismo , Barrera de Filtración Glomerular/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Animales , Cadherinas/genética , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Barrera de Filtración Glomerular/citología , Glicocálix/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Regulador Transcripcional ERG/metabolismo
2.
Bioorg Med Chem ; 80: 117173, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36696874

RESUMEN

We combined a mechanism-informed phenotypic screening (MIPS) assay with a structural simplification strategy to guide the discovery of compounds that disrupt the localization of the mitotic regulator, Aurora kinase B (AURKB), rather than inhibiting its catalytic activity. An initial hit 4-(4-methylthiophen-2-yl)-N-(4-(quinolin-4-yloxy)phenyl)phthalazin-1-amine was identified after screening an in-house library of small molecules and phenocopied the loss of function mutations in AURKB without inhibiting its catalytic activity. We isolated this hit compound activity to its 4-phenoxy-quinoline moiety. The fragment was further optimized into a class of new chemical entities that potently disrupt the mitotic localization of AURKB at low nanomolar concentrations and consequently elicit severe growth inhibition in diverse human cancer cell lines. A lead compound, N-(3-methoxy-5-(6-methoxyquinolin-4-yl)oxy)phenyl)acetamide possessed desirable pharmacokinetic properties such as AUC0-∞: 227.15 [ng∙h/mL/(mg/kg)]; Cmax: 3378.52 ng/mL T1/2: 3.52 h; and F%: 42 % and produced the AURKB-inhibitory phenotypes in a mouse xenograft model. A lead compound is a powerful tool for interrogating the regulation of AURKB and has the potential to be further developed as a first-in-class oncology therapeutic.


Asunto(s)
Neoplasias , Quinolinas , Humanos , Ratones , Animales , Aurora Quinasa B , Fenotipo , Aurora Quinasa A/metabolismo
3.
J Nat Prod ; 84(8): 2312-2320, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34406008

RESUMEN

To identify novel bioactive compounds, an image-based, cell culture screening of natural product extracts was conducted. Specifically, our screen was designed to identify phytochemicals that might phenocopy inhibition of the chromosomal passenger protein complex in eliciting mitotic and cytokinetic defects. A known alkaloid, scoulerine, was identified from the rhizomes of the plant Corydalis decumbens as being able to elicit a transient mitotic arrest followed by either apoptosis induction or polyploidy. In examining the mitotic abnormality further, we observed that scoulerine could elicit supernumerary centrosomes during mitosis, but not earlier in the cell cycle. The localization of NUMA1 at spindle poles was also inhibited, suggesting diminished potential for microtubule recruitment and spindle-pole focusing. Polyploid cells emerged subsequent to cytokinetic failure. The concentration required for scoulerine to elicit all its cell division phenotypes was similar, and an examination of related compounds highlighted the requirement for proper positioning of a hydroxyl and a methoxy group about an aromatic ring for activity. Mechanistically, scoulerine inhibited AURKB activity at concentrations that elicited supernumerary centrosomes and polyploidy. AURKA was only inhibited at higher concentrations, so AURKB inhibition is the likely mechanism by which scoulerine elicited division defects. AURKB inhibition was never complete, so scoulerine may be a suboptimal AURK inhibitor or work upstream of the chromosomal passenger protein complex to reduce AURKB activity. Scoulerine inhibited the viability of a variety of human cancer cell lines. Collectively, these findings uncover a previously unknown activity of scoulerine that could facilitate targeting human cancers. Scoulerine, or a next-generation analogue, may be useful as a nontoxic component of combination therapies where inhibiting the chromosomal passenger protein complex is desired.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa B/antagonistas & inhibidores , Alcaloides de Berberina/farmacología , Citocinesis/efectos de los fármacos , Mitosis/efectos de los fármacos , Alcaloides de Berberina/aislamiento & purificación , Línea Celular , China , Corydalis/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Humanos , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Rizoma/química
4.
Exp Cell Res ; 394(1): 112112, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32473226

RESUMEN

Inhibition of Aurora-B kinase is a synthetic lethal therapy for tumors that overexpress the MYC oncoprotein. It is currently unclear whether co-occurring oncogenic alterations might influence this synthetic lethality by conferring more or less potency in the killing of tumor cells. To identify such modifiers, isogenic cell lines were utilized to test a variety of cancer genes that have been previously demonstrated to promote survival under conditions of cellular stress, contribute to chemoresistance and/or suppress MYC-primed apoptosis. It was found that Bcl-2 and Bcl-xL, two antiapoptotic members of the Bcl-2 family, can partially suppress the synthetic lethality, but not multinucleation, elicited by a pan-aurora kinase inhibitor, VX-680. Suppression was show to stem from the inhibition of autophagy, specifically in multinucleated cells, rather than a general inhibition of apoptosis. The anti-autophagic activity of Bcl-2 also impacted polyploid cell recovery in colony-forming assays, suggesting a route of escape from MYC-VX-680 synthetic lethality that may have clinical consequences. These findings expand on previous conclusions that autophagic death of VX-680-induced polyploid cells is mediated by Atg6. Bcl-2 and Bcl-xL negatively modulate MYC-VX-680 synthetic lethality and it is the anti-autophagic activity of these two Bcl-2 family proteins, specifically in multinucleate cells, that contributes to resistance to Aurora kinase-targeting drugs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Beclina-1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Beclina-1/genética , Línea Celular Tumoral , Humanos , Proteínas de la Membrana/metabolismo
5.
J Cell Mol Med ; 23(5): 3762-3766, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30784178

RESUMEN

Netrin4 (NTN4) is a chemotropic factor that regulates angiogenesis. We found that endothelial expression of the activated, intracellular domain of Notch1 (NICD1), significantly up-regulated NTN4 mRNA as well as intracellular NTN4 protein in both transgenic mice and cultured human umbilical vein endothelial cells (HUVECs). Notch1 activation also increased NTN4 secretion from HUVECs. We subsequently demonstrated that NICD1 bound to CSL (CBF1, Suppressor of Hairless, Lag-1), a core component of Notch transcription complex, at the -53 element of the human NTN4 gene promoter. Loss of the -53 element compromised NICD1-induced NTN4 expression. Our results suggest a conserved role for Notch signalling in transcriptional regulation of endothelial NTN4.


Asunto(s)
Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/genética , Netrinas/genética , Receptor Notch1/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Células Cultivadas , Humanos , Ratones Transgénicos , Netrinas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Receptor Notch1/metabolismo , Elementos Reguladores de la Transcripción/genética
6.
Br J Cancer ; 121(1): 51-64, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31114017

RESUMEN

BACKGROUND: Previous studies suggested that the metabolism is differently reprogrammed in the major subtypes of non-small cell lung cancer (NSCLC), squamous cell carcinomas (SCC) and adenocarcinomas (AdC). However, a comprehensive analysis of this differential metabolic reprogramming is lacking. METHODS: Publicly available gene expression data from human lung cancer samples and cell lines were analysed. Stable isotope resolved metabolomics were performed on SCC and ADC tumours in human patients and in freshly resected tumour slices. RESULTS: Analysis of multiple transcriptomics data from human samples identified a SCC-distinguishing enzyme gene signature. SCC tumours from patients infused with [U-13C]-glucose and SCC tissue slices incubated with stable isotope tracers demonstrated differential glucose and glutamine catabolism compared to AdCs or non-cancerous lung, confirming increased activity through pathways defined by the SCC metabolic gene signature. Furthermore, the upregulation of Notch target genes was a distinguishing feature of SCCs, which correlated with the metabolic signature. Notch and MYC-driven murine lung tumours recapitulated the SCC-distinguishing metabolic reprogramming. However, the differences between SCCs and AdCs disappear in established cell lines in 2D culture. CONCLUSIONS: Our data emphasise the importance of studying lung cancer metabolism in vivo. They also highlight potential targets for therapeutic intervention in SCC patients including differentially expressed enzymes that catalyse reactions in glycolysis, glutamine catabolism, serine, nucleotide and glutathione biosynthesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores Notch/fisiología , Adenocarcinoma del Pulmón/metabolismo , Animales , Carcinoma de Células Escamosas/metabolismo , Humanos , Ratones , Proteínas Proto-Oncogénicas c-myc/fisiología , Transcriptoma , Microambiente Tumoral
7.
J Cell Mol Med ; 22(3): 2028-2032, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29193726

RESUMEN

The antimalarial agent dihydroartemisinin (DHA) has been shown to be anti-inflammatory. In this study, we found that DHA increased the expression of the junctional protein vascular endothelial (VE)-cadherin in human renal glomerular endothelial cells. In addition, DHA inhibited TGF-ß RI-Smad2/3 signalling and its downstream effectors SNAIL and SLUG, which repress VE-cadherin gene transcription. Correspondingly, DHA decreased the binding of SNAIL and SLUG to the VE-cadherin promoter. Together, our results suggest an effect of DHA in regulating glomerular permeability by elevation of VE-cadherin expression.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antígenos CD/genética , Artemisininas/farmacología , Cadherinas/genética , Células Endoteliales/efectos de los fármacos , Proteína Smad2/genética , Factor de Crecimiento Transformador beta1/genética , Antígenos CD/metabolismo , Antimaláricos/farmacología , Cadherinas/agonistas , Cadherinas/metabolismo , Línea Celular , Reposicionamiento de Medicamentos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Glomérulos Renales/citología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal , Proteína Smad2/antagonistas & inhibidores , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo
8.
Biochem Biophys Res Commun ; 463(4): 1230-6, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26086099

RESUMEN

Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression.


Asunto(s)
Adenocarcinoma/prevención & control , Proteínas Co-Represoras/genética , Ácidos Hidroxámicos/farmacología , Neoplasias Pulmonares/prevención & control , Adenocarcinoma/genética , Animales , Línea Celular Tumoral , Genes erbB-1 , Genes erbB-2 , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Transgénicos
9.
Biochem Biophys Res Commun ; 450(1): 447-52, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24909688

RESUMEN

The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl2) on human umbilical vein endothelial cells (HUVECs). At 4 µM, CdCl2 induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24h. This effect of CdCl2 was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl2-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and ß-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.


Asunto(s)
Cadmio/toxicidad , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
10.
Front Immunol ; 15: 1372959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690277

RESUMEN

Introduction: Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods: We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results: Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion: Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.


Asunto(s)
Perfilación de la Expresión Génica , Hipertensión Pulmonar , Hipoxia , Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Hipoxia/metabolismo , Hipoxia/inmunología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/genética , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Pulmón/inmunología , Pulmón/patología , Pulmón/metabolismo
11.
J Pharm Biomed Anal ; 232: 115415, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37120975

RESUMEN

This study investigated the metabolism of LXY18, a quinolone-based compound that suppresses tumorigenesis by blocking AURKB localization. Metabolite profiling of LXY18 in liver microsomes from six species and human S9 fractions revealed that LXY18 undergoes various conserved metabolic reactions, such as N-hydroxylation, N-oxygenation, O-dealkylation, and hydrolysis, resulting in ten metabolites. These metabolites were produced through a combination of CYP450 enzymes, and non-CYP450 enzymes including CES1, and AO. Two metabolites, M1 and M2 were authenticated by chemically synthesized standards. M1 was the hydrolyzed product catalyzed by CES1 whereas M2 was a mono-N-oxidative derivative catalyzed by a CYP450 enzyme. AO was identified as the enzyme responsible for the formation of M3 with the help of AO-specific inhibitors and LXY18 analogs, 5b and 5c. M1 was the intermediate of LXY18 to produce M7, M8, M9, and M10. LXY18 potently inhibited 2C19 with an IC50 of 290 nM but had a negligible impact on the other CYP450s, indicating a low risk of drug-drug interaction. Altogether, the study provides valuable insights into the metabolic process of LXY18 and its suitability as a drug candidate. The data generated serves as a significant reference point for conducting further safety assessments and optimizing drug development.


Asunto(s)
Aurora Quinasa B , Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Mitosis , Humanos , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Microsomas Hepáticos/metabolismo , Oxidación-Reducción
12.
PLoS One ; 18(10): e0293283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903144

RESUMEN

The mitotic regulator, Aurora kinase B (AURKB), is frequently overexpressed in malignancy and is a target for therapeutic intervention. The compound, LXY18, is a potent, orally available small molecule that inhibits the proper localization of AURKB during late mitosis, without affecting its kinase activity. In this study, we demonstrate that LXY18 elicits apoptosis in cancer cells derived from various indications, but not in non-transformed cell lines. The apoptosis is p53-independent, triggered by a prolonged mitotic arrest and occurs predominantly in mitosis. Some additional cells succumb post-mitotic slippage. We also demonstrate that cancer cell lines refractory to AURKB kinase inhibitors are sensitive to LXY18. The mitotic proteins MKLP2, NEK6, NEK7 and NEK9 are known regulators of AURKB localization during the onset of anaphase. LXY18 fails to inhibit the catalytic activity of these AURKB localization factors. Overall, our findings suggest a novel activity for LXY18 that produces a prolonged mitotic arrest and lethality in cancer cells, leaving non-transformed cells healthy. This new activity suggests that the compound may be a promising drug candidate for cancer treatment and that it can also be used as a tool compound to further dissect the regulatory network controlling AURKB localization.


Asunto(s)
Aurora Quinasa A , Neoplasias , Humanos , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Muerte Celular , Mitosis , Neoplasias/tratamiento farmacológico , Quinasas Relacionadas con NIMA
13.
ACS Pharmacol Transl Sci ; 6(8): 1155-1163, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588758

RESUMEN

We investigated a novel 4-phenoxy-quinoline-based scaffold that mislocalizes the essential mitotic kinase, Aurora kinase B (AURKB). Here, we evaluated the impact of halogen substitutions (F, Cl, Br, and I) on this scaffold with respect to various drug parameters. Br-substituted LXY18 was found to be a potent and orally bioavailable disruptor of cell division, at sub-nanomolar concentrations. LXY18 prevents cytokinesis by blocking AURKB relocalization in mitosis and exhibits broad-spectrum antimitotic activity in vitro. With a favorable pharmacokinetic profile, it shows widespread tissue distribution including the blood-brain barrier penetrance and effective accumulation in tumor tissues. More importantly, it markedly suppresses tumor growth. The novel mode of action of LXY18 may eliminate some drawbacks of direct catalytic inhibition of Aurora kinases. Successful development of LXY18 as a clinical candidate for cancer treatment could enable a new, less toxic means of antimitotic attack that avoids drug resistance mechanisms.

14.
Eur J Med Chem ; 245(Pt 1): 114904, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36413818

RESUMEN

Activity-based drug screens have successfully led to the development of various inhibitors of the catalytic activity of aurora kinases (AURKs), major regulatory kinases of cell division. Disrupting the localization of AURKB, rather than its catalytic activity, represents a largely unexplored alternative approach to disabling AURKB-dependent processes. Localization disruptors could be just as specific as direct inhibitors of AURKB activity, may bypass their off-target and select on-target toxicities, and are likely less susceptible to drug resistance resulting from mutations of the AURKB catalytic site. In this study, we demonstrate that the pan-AURK inhibitor AMG900 works at a low concentration not by inhibiting the phosphorylation of H3 at Ser10, an AURKB substrate, but by disrupting the mitotic localization of AURKB. Structural deletion studies pinpoint this undescribed activity to the 2-phenoxy-3,4'-bipyridine moiety of AMG900. Guided by a mechanism-informed phenotypic screening (MIPS) assay, the drug fragment is optimized into a novel class of inhibitors that, at low nanomolar concentrations, can disable AURKB through disruption of its mitotic localization and have desirable oral PK properties. Hierarchical clustering of cell fitness profiles reveals that these compounds cluster with each other, rather than with known AURK inhibitors such as AMG900 and VX-680. Validation studies in mice demonstrate that compound 15a elicits mitotic arrest and apoptosis in NCI-H23 human lung adenocarcinoma xenografts, resulting in a pronounced suppression of tumor growth. The discovery and optimization of compounds that disrupt AURKB localization are successfully facilitated by MIPS. Our findings suggest that 2-phenoxy-3, 4'-bipyridine derivatives have the potential to be further developed as effective therapeutics for the treatment of malignancy by delocalizing AURKB.


Asunto(s)
Compuestos Heterocíclicos , Neoplasias Pulmonares , Humanos , Animales , Ratones , Mitosis , Aurora Quinasas , Fosforilación , Aurora Quinasa B
15.
Biomed Pharmacother ; 147: 112645, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35051862

RESUMEN

Plants are a rich source for bioactive compounds. However, plant extracts can harbor a mixture of bioactive molecules that promote divergent phenotypes and potentially have confounding effects in bioassays. Even with further purification and identification, target deconvolution can be challenging. Corynoline and acetylcorynoline, are phytochemicals that were previously isolated through a screen for compounds able to induce mitotic arrest and polyploidy in oncogene expressing retinal pigment epithelial (RPE) cells. Here, we shed light on the mechanism by which these phytochemicals can attack human cancer cells. Mitotic arrest was coincident to the induction of centrosome amplification and declustering, causing multi-polar spindle formation. Corynoline was demonstrated to have true centrosome declustering activity in a model where A549 cells were chemically induced to have more than a regular complement of centrosomes. Corynoline could inhibit the centrosome clustering required for pseudo-bipolar spindle formation in these cells. The activity of AURKB, but not AURKA or polo-like kinase 4, was diminished by corynoline. It only partially inhibited AURKB, so it may be a partial antagonist or corynoline may work upstream on an unknown regulator of AURKB activity or localization. Nonetheless, corynoline and acetylcorynoline inhibited the viability of a variety of human cancer derived cell lines. These phytochemicals could serve as prototypes for a next-generation analog with improved potency, selectivity or in vivo bioavailability. Such an analog could be useful as a non-toxic component of combination therapies where inhibiting the chromosomal passenger protein complex is desired.


Asunto(s)
Aurora Quinasa B/efectos de los fármacos , Alcaloides de Berberina/farmacología , Mitosis/efectos de los fármacos , Fitoquímicos/farmacología , Poliploidía , Células A549 , Apoptosis/efectos de los fármacos , Aurora Quinasa A/efectos de los fármacos , Línea Celular Tumoral , Centrosoma/efectos de los fármacos , Humanos
17.
Proc Natl Acad Sci U S A ; 105(14): 5402-7, 2008 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-18378907

RESUMEN

Recent evidence demonstrates that senescence acts as a barrier to tumorigenesis in response to oncogene activation. Using a mouse model of breast cancer, we tested the importance of the senescence response in solid cancer and identified genetic pathways regulating this response. Mammary expression of activated Ras led to the formation of senescent cellular foci in a majority of mice. Deletion of the p19(ARF), p53, or p21(WAF1) tumor suppressors but not p16(INK4a) prevented senescence and permitted tumorigenesis. Id1 has been implicated in the control of senescence in vitro, and elevated expression of Id1 is found in a number of solid cancers, so we tested whether overexpression of Id1 regulates senescence in vivo. Although overexpression of Id1 in the mammary epithelium was not sufficient for tumorigenesis, mice with expression of both Id1 and activated Ras developed metastatic cancer. These tumors expressed high levels of p19(Arf), p53, and p21(Waf1), demonstrating that Id1 acts to make cells refractory to p21(Waf1)-dependent cell cycle arrest. Inactivation of the conditional Id1 allele in established tumors led to widespread senescence within 10 days, tumor growth arrest, and tumor regression in 40% of mice. Mice in which Id1 expression was inactivated also exhibited greatly reduced pulmonary metastatic load. These data demonstrate that established tumors remain sensitive to senescence and that Id1 may be a valuable target for therapy.


Asunto(s)
Senescencia Celular , Proteína 1 Inhibidora de la Diferenciación/fisiología , Neoplasias Mamarias Experimentales/etiología , Neoplasias Mamarias Experimentales/patología , Proteínas ras/fisiología , Animales , Trasplante de Células , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Células Epiteliales , Femenino , Humanos , Glándulas Mamarias Animales , Ratones , Metástasis de la Neoplasia , Proteína p53 Supresora de Tumor
18.
PLoS One ; 16(3): e0248355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33760847

RESUMEN

A synthetic lethal effect arises when a cancer-associated change introduces a unique vulnerability to cancer cells that makes them unusually susceptible to a drug's inhibitory activity. The synthetic lethal approach is attractive because it enables targeting of cancers harboring specific genomic or epigenomic alterations, the products of which may have proven refractory to direct targeting. An example is cancer driven by overexpression of MYC. Here, we conducted a high-content screen for compounds that are synthetic lethal to elevated MYC using a small-molecule library to identify compounds that are closely related to, or are themselves, regulatory-approved drugs. The screen identified dimethylfasudil, a potent and reversible inhibitor of Rho-associated kinases, ROCK1 and ROCK2. Close analogs of dimethylfasudil are used clinically to treat neurologic and cardiovascular disorders. The synthetic lethal interaction was conserved in rodent and human cell lines and could be observed with activation of either MYC or its paralog MYCN. The synthetic lethality seems specific to MYC overexpressing cells as it could not be substituted by a variety of oncogenic manipulations and synthetic lethality was diminished by RNAi-mediated depletion of MYC in human cancer cell lines. Collectively, these data support investigation of the use of dimethylfasudil as a drug that is synthetic lethal for malignancies that specifically overexpress MYC.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/genética , Mutaciones Letales Sintéticas/efectos de los fármacos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Línea Celular Tumoral , Humanos
20.
Cancer Res ; 66(3): 1294-301, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16452182

RESUMEN

Groucho proteins are transcriptional corepressors that are recruited to gene regulatory regions by numerous transcription factors. Long isoforms, such as Grg1, have all the domains of the prototype Drosophila Groucho. Short Groucho proteins, such as Grg5, have only the amino-terminal Q and G/P domains. We generated Grg1 and Grg5 transgenic mice and found that Grg1 overexpression induces lung adenocarcinoma, whereas Grg5 overexpression does not. Coexpression of Grg5 with Grg1 reduces tumor burden. Grg1 and Grg5 both diminish p53 protein levels; however, only Grg1 overexpression induces elevated levels of ErbB1 and ErbB2 receptor tyrosine kinases. The molecular and biological changes that accompany tumor progression in Grg1 transgenic mice closely reiterate events seen in human lung cancer. We also found that within a human lung tumor tissue array, a significant number of carcinomas overexpress Grg1/TLE1. Our data suggest that Grg1 overexpression contributes to malignancy in human lung cancers.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , Oncogenes , Proteínas Represoras/genética , Adenocarcinoma/metabolismo , Animales , Proteínas Co-Represoras , Receptores ErbB/biosíntesis , Receptores ErbB/genética , Vectores Genéticos/genética , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Transgénicos , Células 3T3 NIH , Receptor ErbB-2/biosíntesis , Receptor ErbB-2/genética , Proteínas Represoras/biosíntesis , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA