RESUMEN
Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
Asunto(s)
Transducción de Señal , Tromboplastina , Animales , Ratones , Inflamación , Interferón-alfa , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Tromboplastina/genéticaRESUMEN
ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.
Asunto(s)
Proteínas de Unión al ADN , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Temozolomida , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Daño del ADN , Reparación del ADN , Células Germinativas/metabolismo , ADN , Factores de Transcripción/genéticaRESUMEN
Infectious events, such as sepsis and invasive fungal disease (IFD), pose significant risks in patients with acute myeloid leukemia (AML). Previous studies, including our own, have suggested a potential role of single nucleotide polymorphisms (SNPs) within the innate immune system in influencing individual infection susceptibility. However, many of these associations lack validation in independent cohorts. This study sought to validate the impact of 11 candidate SNPs across 6 genes (TLR2, TLR4, Dectin-1, DC-SIGN, PTX3, L-Ficolin) in an independent cohort of patients. Two cohorts with newly diagnosed AML patients receiving intensive induction chemotherapy were analyzed: a stratification cohort comprising 186 patients and a validation cohort consisting of 138 patients. Multiple SNPs in each cohort were found to be associated to infectious complications, notably the DC-SIGN SNP rs4804800 demonstrated a significant association with sepsis in both cohorts. SNPs within the PTX3 and Dectin-1 genes were linked to IFD development in one cohort each. This study represents the first validation study of candidate genes associated with infectious events in AML patients after intensive induction chemotherapy. Identifying genetic predispositions to infections could significantly impact the management of antimicrobial prophylaxis and treatment in AML patients.
Asunto(s)
Inmunidad Innata , Lectinas Tipo C , Leucemia Mieloide Aguda , Polimorfismo de Nucleótido Simple , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Femenino , Persona de Mediana Edad , Masculino , Adulto , Lectinas Tipo C/genética , Anciano , Inmunidad Innata/genética , Sepsis/genética , Sepsis/tratamiento farmacológico , Quimioterapia de Inducción , Receptores de Superficie Celular/genética , Moléculas de Adhesión Celular/genética , Receptor Toll-Like 2/genética , Componente Amiloide P Sérico/genética , Adolescente , Receptor Toll-Like 4/genética , Infecciones Fúngicas Invasoras/genética , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Proteína C-ReactivaRESUMEN
OBJECTIVE: Hepatocellular carcinoma (HCC) often develops in patients with alcohol-related cirrhosis at an annual risk of up to 2.5%. Some host genetic risk factors have been identified but do not account for the majority of the variance in occurrence. This study aimed to identify novel susceptibility loci for the development of HCC in people with alcohol related cirrhosis. DESIGN: Patients with alcohol-related cirrhosis and HCC (cases: n=1214) and controls without HCC (n=1866), recruited from Germany, Austria, Switzerland, Italy and the UK, were included in a two-stage genome-wide association study using a case-control design. A validation cohort of 1520 people misusing alcohol but with no evidence of liver disease was included to control for possible association effects with alcohol misuse. Genotyping was performed using the InfiniumGlobal Screening Array (V.24v2, Illumina) and the OmniExpress Array (V.24v1-0a, Illumina). RESULTS: Associations with variants rs738409 in PNPLA3 and rs58542926 in TM6SF2 previously associated with an increased risk of HCC in patients with alcohol-related cirrhosis were confirmed at genome-wide significance. A novel locus rs2242652(A) in TERT (telomerase reverse transcriptase) was also associated with a decreased risk of HCC, in the combined meta-analysis, at genome-wide significance (p=6.41×10-9, OR=0.61 (95% CI 0.52 to 0.70). This protective association remained significant after correction for sex, age, body mass index and type 2 diabetes (p=7.94×10-5, OR=0.63 (95% CI 0.50 to 0.79). Carriage of rs2242652(A) in TERT was associated with an increased leucocyte telomere length (p=2.12×10-44). CONCLUSION: This study identifies rs2242652 in TERT as a novel protective factor for HCC in patients with alcohol-related cirrhosis.
Asunto(s)
Carcinoma Hepatocelular , Predisposición Genética a la Enfermedad , Cirrosis Hepática Alcohólica , Neoplasias Hepáticas , Telomerasa , Humanos , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/genética , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/complicaciones , Variación Genética , Estudio de Asociación del Genoma Completo , Cirrosis Hepática Alcohólica/complicaciones , Cirrosis Hepática Alcohólica/genética , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Telomerasa/genéticaRESUMEN
Resistant disease is still a main obstacle in acute myeloid leukemia (AML) treatment. Therefore, individual genetic variations affecting therapy response are gaining increasing importance. Both SNPs and ABC transporter genes could already be associated with drug resistance. Here, we report allelic variants of MRP1 (ABCC1) SNPs rs129081, rs212090, and rs212091 with significant influences on survival in AML patients. DNA was extracted from bone marrow samples (n = 160) at diagnosis. Genotyping 48 SNPs within seven different ABC transporter genes using real-time PCR revealed rs129081 GG variant with a significant higher OS (p = 0.035) and DFS (p = 0.01). Comparing TT and AA rs212090 variants showed significant influences on DFS (p = 0.021). SNP rs212091 GG expression was associated with worse OS (p = 0.006) and a significant difference in DFS between alleles GG and AA (p = 0.018). The multivariable models confirmed a significant influence on OS for rs212091 (AA HR = 0.296, 95% CI 0.113-0.774, p = 0.013 and GG p = 0.044). Rs129081 variant CG, TT of rs212090, AA, and AG of rs212091 demonstrated significant impact on DFS (p = 0.024, p = 0.029, p = 0.017, and p = 0.042, respectively). This analysis demonstrates a significant influence of MRP1 SNPs on survival in AML. As they were not associated to prognostic characteristics, we suggest these SNPs to be independent prognostic markers for AML.
Asunto(s)
Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Adulto , Femenino , Humanos , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Tasa de Supervivencia/tendencias , Adulto JovenRESUMEN
Combinatory therapeutic approaches of different targeted therapies in acute myeloid leukaemia are currently under preclinical/early clinical investigation. To enhance anti-tumour effects, we combined the tyrosine kinase inhibitor (TKI) midostaurin and T-cell mediated immunotherapy directed against CD33. Clinically relevant concentrations of midostaurin abrogated T-cell mediated cytotoxicity both after activation with bispecific antibodies and chimeric antigen receptor T cells. This information is of relevance for clinicians exploring T-cell mediated immunotherapy in early clinical trials. Given the profound inhibition of T-cell functionality and anti-tumour activity, we recommend specific FLT3 TKIs for further clinical testing of combinatory approaches with T-cell based immunotherapy.
Asunto(s)
Antineoplásicos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Estaurosporina/análogos & derivados , Antineoplásicos/farmacología , Humanos , Leucemia Mieloide Aguda/patología , Estaurosporina/farmacología , Estaurosporina/uso terapéuticoRESUMEN
Immunogenetic association studies may give rise to new hypotheses on the immune surveillance of cancer. We hypothesized that certain combinations of killer immunoglobulin-like receptor (KIR) and HLA genotypes may enhance natural killer (NK) cell immunity against nascent acute myeloid leukemia (AML) and, thereby, lead to a skewed genotype distribution among patients. For this purpose, we analyzed KIR and HLA genotypes of 1767 German patients with AML and compared the results with that of the data of 51 890 German volunteers who had registered with German bone marrow donor file (DKMS). Patient samples were retrieved from the Collaborative Biobank and the biorepository of the Study Alliance Leukemia. All samples were genotyped with high-resolution amplicon-based next-generation sequencing. Because of the large number of controls, this study was very sensitive to detect the impact of KIR genotype. Knowledge on KIRs and their cognate HLA ligands allowed for testing of several hypotheses of NK cell-mediated endogenous leukemia surveillance. We did not find significant differences between the 2 cohorts in regard to the presence or absence of single KIR genes. When grouped based on telomeric or centromeric gene content, the major haplotypes A/A, A/B, and B/B were equally distributed among patients and control subjects. Using information on KIRs and their HLA ligands, we further tested receptor-ligand models and summation models without revealing markedly significant differences between patients and controls, albeit we observed a trend pointing at a minor protective effect of a low number of inhibitory KIR/KIR-ligand pairs. The results suggest that the KIR/KIR-ligand genotype has no effect on the susceptibility for the development of de novo AML.
Asunto(s)
Leucemia Mieloide Aguda , Receptores KIR , Humanos , Estudios de Casos y Controles , Ligandos , Genotipo , Receptores KIR/genética , Leucemia Mieloide Aguda/genéticaRESUMEN
Ex vivo drug response profiling is a powerful tool to study genotype-drug response associations and is being explored as a tool set for precision medicine in cancer. Here we conducted a prospective non-interventional trial to investigate feasibility of ex vivo drug response profiling for treatment guidance in hematologic malignancies (SMARTrial, NCT03488641 ). The primary endpoint to provide drug response profiling reports within 7 d was met in 91% of all study participants (N = 80). Secondary endpoint analysis revealed that ex vivo resistance to chemotherapeutic drugs predicted chemotherapy treatment failure in vivo. We confirmed the predictive value of ex vivo response to chemotherapy in a validation cohort of 95 individuals with acute myeloid leukemia treated with daunorubicin and cytarabine. Ex vivo drug response profiles improved ELN-22 risk stratification in individuals with adverse risk. We conclude that ex vivo drug response profiling is clinically feasible and has the potential to predict chemotherapy response in individuals with hematologic malignancies beyond clinically established genetic markers.
Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Citarabina/uso terapéutico , Daunorrubicina/uso terapéutico , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Estudios Prospectivos , Antibióticos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/uso terapéutico , Resultado del TratamientoRESUMEN
Precision medicine can significantly improve outcomes for patients with cancer, but implementation requires comprehensive characterization of tumor cells to identify therapeutically exploitable vulnerabilities. Here, we describe somatic biallelic TET2 mutations in an elderly patient with acute myeloid leukemia (AML) that was chemoresistant to anthracycline and cytarabine but acutely sensitive to 5'-azacitidine (5'-Aza) hypomethylating monotherapy, resulting in long-term morphological remission. Given the role of TET2 as a regulator of genomic methylation, we hypothesized that mutant TET2 allele dosage affects response to 5'-Aza. Using an isogenic cell model system and an orthotopic mouse xenograft, we demonstrate that biallelic TET2 mutations confer sensitivity to 5'-Aza compared with cells with monoallelic mutations. Our data argue in favor of using hypomethylating agents for chemoresistant disease or as first-line therapy in patients with biallelic TET2-mutated AML and demonstrate the importance of considering mutant allele dosage in the implementation of precision medicine for patients with cancer.
Asunto(s)
Dioxigenasas , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Azacitidina , Leucemia Mieloide Aguda/genética , Estimación de Kaplan-Meier , Mutación , Proteínas de Unión al ADN/genética , Dioxigenasas/genéticaRESUMEN
BackgroundImmune exhaustion and senescence are dominant dysfunctional states of effector T cells and major hurdles for the success of cancer immunotherapy. In the current study, we characterized how acute myeloid leukemia (AML) promotes the generation of senescent-like CD8+ T cells and whether they have prognostic relevance.METHODSWe analyzed NanoString, bulk RNA-Seq and single-cell RNA-Seq data from independent clinical cohorts comprising 1,896 patients treated with chemotherapy and/or immune checkpoint blockade (ICB).ResultsWe show that senescent-like bone marrow CD8+ T cells were impaired in killing autologous AML blasts and that their proportion negatively correlated with overall survival (OS). We defined what we believe to be new immune effector dysfunction (IED) signatures using 2 gene expression profiling platforms and reported that IED scores correlated with adverse-risk molecular lesions, stemness, and poor outcomes; these scores were a more powerful predictor of OS than 2017-ELN risk or leukemia stem cell (LSC17) scores. IED expression signatures also identified an ICB-unresponsive tumor microenvironment and predicted significantly shorter OS.ConclusionThe IED scores provided improved AML-risk stratification and could facilitate the delivery of personalized immunotherapies to patients who are most likely to benefit.TRIAL REGISTRATIONClinicalTrials.gov; NCT02845297.FUNDINGJohn and Lucille van Geest Foundation, Nottingham Trent University's Health & Wellbeing Strategic Research Theme, NIH/NCI P01CA225618, Genentech-imCORE ML40354, Qatar National Research Fund (NPRP8-2297-3-494).
Asunto(s)
Enfermedades del Sistema Inmune , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Pronóstico , Inmunoterapia , Microambiente Tumoral , Linfocitos T CD8-positivosRESUMEN
CONTEXT AND AIMS: Coronavirus disease 19 (COVID-19) trajectories show high interindividual variability, ranging from asymptomatic manifestations to fatal outcomes, the latter of which may be fueled by immunometabolic maladaptation of the host. Reliable identification of patients who are at risk of severe disease remains challenging. We hypothesized that serum concentrations of Dickkopf1 (DKK1) indicate disease outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals. METHODS: We recruited hospitalized patients with PCR-confirmed SARS-CoV-2 infection and included 80 individuals for whom blood samples from 2 independent time points were available. DKK1 serum concentrations were measured by ELISA in paired samples. Clinical data were extracted from patient charts and correlated with DKK1 levels. Publicly available datasets were screened for changes in cellular DKK1 expression on SARS-CoV-2 infection. Plasma metabolites were profiled by nuclear magnetic resonance spectroscopy in an unbiased fashion and correlated with DKK1 data. Kaplan-Meier and Cox regression analysis were used to investigate the prognostic value of DKK1 levels in the context of COVID-19. RESULTS: We report that serum levels of DKK1 predict disease outcomes in patients with COVID-19. Circulating DKK1 concentrations are characterized by high interindividual variability and change as a function of time during SARS-CoV-2 infection, which is linked to platelet counts. We further find that the metabolic signature associated with SARS-CoV-2 infection resembles fasting metabolism and is mirrored by circulating DKK1 abundance. Patients with low DKK1 levels are twice as likely to die from COVID-19 than those with high levels, and DKK1 predicts mortality independent of markers of inflammation, renal function, and platelet numbers. CONCLUSION: Our study suggests a potential clinical use of circulating DKK1 as a predictor of disease outcomes in patients with COVID-19. These results require validation in additional cohorts.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Ensayo de Inmunoadsorción EnzimáticaRESUMEN
Patients with acute promyelocytic leukemia (APL) often present with potentially life-threatening hemorrhagic diathesis. The underlying pathomechanisms of APL-associated coagulopathy are complex. However, two pathways considered to be APL-specific had been identified: 1) annexin A2 (ANXA2)-associated hyperfibrinolysis and 2) podoplanin (PDPN)-mediated platelet activation and aggregation. In contrast, since disseminated intravascular coagulation (DIC) is far less frequent in patients with non-APL acute myeloid leukemia (AML), the pathophysiology of AML-associated hemorrhagic disorders is not well understood. Furthermore, the potential threat of coagulopathy in non-APL AML patients may be underestimated. Herein, we report a patient with non-APL AML presenting with severe coagulopathy with hyperfibrinolysis. Since his clinical course resembled a prototypical APL-associated hemorrhagic disorder, we hypothesized pathophysiological similarities. Performing multiparametric flow cytometry (MFC) and immunofluorescence imaging (IF) studies, we found the patient's bone-marrow mononuclear cells (BM-MNC) to express ANXA2 - a biomarker previously thought to be APL-specific. In addition, whole-exome sequencing (WES) on sorted BM-MNC (leukemia-associated immunophenotype (LAIP)1: ANXAlo, LAIP2: ANXAhi) demonstrated high intra-tumor heterogeneity. Since ANXA2 regulation is not well understood, further research to determine the coagulopathy-initiating events in AML and APL is indicated. Moreover, ANXA2 and PDPN MFC assessment as a tool to determine the risk of life-threatening DIC in AML and APL patients should be evaluated.
RESUMEN
Clinical translation of novel immunotherapeutic strategies such as chimeric antigen receptor (CAR) T-cells in acute myeloid leukemia (AML) is still at an early stage. Major challenges include immune escape and disease relapse demanding for further improvements in CAR design. To overcome such hurdles, we have invented the switchable, flexible and programmable adaptor Reverse (Rev) CAR platform. This consists of T-cells engineered with RevCARs that are primarily inactive as they express an extracellular short peptide epitope incapable of recognizing surface antigens. RevCAR T-cells can be redirected to tumor antigens and controlled by bispecific antibodies cross-linking RevCAR T- and tumor cells resulting in tumor lysis. Remarkably, the RevCAR platform enables combinatorial tumor targeting following Boolean logic gates. We herein show for the first time the applicability of the RevCAR platform to target myeloid malignancies like AML. Applying in vitro and in vivo models, we have proven that AML cell lines as well as patient-derived AML blasts were efficiently killed by redirected RevCAR T-cells targeting CD33 and CD123 in a flexible manner. Furthermore, by targeting both antigens, a Boolean AND gate logic targeting could be achieved using the RevCAR platform. These accomplishments pave the way towards an improved and personalized immunotherapy for AML patients.
RESUMEN
We performed a registry-based analysis of 311 AML patients treated with decitabine in a standard of care setting to assess response and survival data with a distinct focus on the impact of the TP53 mutation status. Median age was 73 years. 172 patients received decitabine first-line and 139 in r/r disease. The ORR (whole cohort) was 30% with a median overall survival of 4.7 months. First-line patients achieved better responses than r/r-patients (ORR: 38% vs. 21%) resulting in a median OS of 5.8 months vs. 3.9 months. NGS based mutation analysis was performed in 180 patients. 20 patients (11%) harbored a TP53 mutation. Response rates and survival did not differ significantly between TP53 mutated patients and wild-type patients. This analysis of a large cohort of AML patients provides response rates and OS data after decitabine treatment. Interestingly, outcome was not negatively influenced by a TP53 mutation.
Asunto(s)
Leucemia Mieloide Aguda , Anciano , Análisis Mutacional de ADN , Decitabina/uso terapéutico , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Sistema de Registros , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).
Asunto(s)
Antígenos HLA/genética , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleótido Simple , Aldehído Reductasa/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Leucemia Mieloide Aguda/mortalidad , Persona de Mediana Edad , Reproducibilidad de los Resultados , Población Blanca/genéticaRESUMEN
BACKGROUND: Lysyl oxidase (LOX) has been described as necessary for premetastatic niche formation in epithelium-derived malignancies and its expression level therefore correlates with risk of metastatic disease and overall survival. However, its role in acute myeloid leukemia (AML) has not been sufficiently analyzed. METHODS: We investigated LOX plasma expression in 683 AML patients (age 17-60 years) treated within the prospective AML2003 trial (NCT00180102). The optimal cut-off LOX value was determined using a minimal-p-value method dichotomizing patients into a LOX-high group (> 109 ng/mL, n = 272, 40%) and a LOX-low group (≤ 109 ng/mL, n = 411, 60%). RESULTS: Higher LOX expression was associated with lower peripheral white blood cells, lower serum LDH, and a lower frequency of FLT3-ITD and NPM1 mutations at diagnosis. Higher LOX expression was found significantly more frequently in patients with secondary AML and therapy-related AML, in patients with French-American-British M5 subtypes, and in patients with adverse-risk cytogenetics. Comparing patients in the LOX-high group and the LOX-low group revealed a 3-year overall survival (OS) of 47 and 53% (p = 0.022) and 3-year event-free survival (EFS) of 27 and 35% (p = 0.005), respectively. In the LOX-high group significantly more patients had extramedullary AML compared to the LOX-low group (p = 0.037). Combining extramedullary AML and LOX as interacting factors in a multivariate analysis resulted in an independent impact on survival for the LOX-high-extramedullary interaction for OS (HR = 2.25, p = 0.025) and EFS (HR = 2.48, p = 0.008). Furthermore, in patients with extramedullary disease (n = 59) the LOX level predicted survival. Patients within the LOX-low group had an OS of 43% and EFS of 36% as compared to the LOX-high group with an OS of 13% and EFS of 6% (p = 0.002 and p = 0.008, respectively). CONCLUSION: We hypothesize LOX expression to be a new potential biomarker to predict outcome in AML, specifically in AML subgroups such as the prognostic heterogeneous group of AML patients with extramedullary disease. TRIAL REGISTRATION: This retrospective study was performed with patient samples registered within the prospective AML2003 trial (NCT00180102). Patients were enrolled between December 2003 and November 2009.
RESUMEN
Somatic TP53 mutations and 17p deletions with genomic loss of TP53 occur in 37% to 46% of acute myeloid leukemia (AML) with adverse-risk cytogenetics and correlate with primary induction failure, high risk of relapse, and dismal prognosis. Herein, we aimed to characterize the immune landscape of TP53-mutated AML and determine whether TP53 abnormalities identify a patient subgroup that may benefit from immunotherapy with flotetuzumab, an investigational CD123 × CD3 bispecific dual-affinity retargeting antibody (DART) molecule. The NanoString PanCancer IO360 assay was used to profile 64 diagnostic bone marrow (BM) samples from patients with TP53-mutated (n = 42) and TP53-wild-type (TP53-WT) AML (n = 22) and 45 BM samples from patients who received flotetuzumab for relapsed/refractory (R/R) AML (15 cases with TP53 mutations and/or 17p deletion). The comparison between TP53-mutated and TP53-WT primary BM samples showed higher expression of IFNG, FOXP3, immune checkpoints, markers of immune senescence, and phosphatidylinositol 3-kinase-Akt and NF-κB signaling intermediates in the former cohort and allowed the discovery of a 34-gene immune classifier prognostic for survival in independent validation series. Finally, 7 out of 15 patients (47%) with R/R AML and TP53 abnormalities showed complete responses to flotetuzumab (<5% BM blasts) on the CP-MGD006-01 clinical trial (NCT #02152956) and had significantly higher tumor inflammation signature, FOXP3, CD8, inflammatory chemokine, and PD1 gene expression scores at baseline compared with nonresponders. Patients with TP53 abnormalities who achieved a complete response experienced prolonged survival (median, 10.3 months; range, 3.3-21.3 months). These results encourage further study of flotetuzumab immunotherapy in patients with TP53-mutated AML.
Asunto(s)
Anticuerpos Biespecíficos , Leucemia Mieloide Aguda , Citogenética , Humanos , Inmunoterapia , Subunidad alfa del Receptor de Interleucina-3 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous hematological malignancy. Although immunotherapy may be an attractive modality to exploit in patients with AML, the ability to predict the groups of patients and the types of cancer that will respond to immune targeting remains limited. This study dissected the complexity of the immune architecture of AML at high resolution and assessed its influence on therapeutic response. Using 442 primary bone marrow samples from three independent cohorts of children and adults with AML, we defined immune-infiltrated and immune-depleted disease classes and revealed critical differences in immune gene expression across age groups and molecular disease subtypes. Interferon (IFN)-γ-related mRNA profiles were predictive for both chemotherapy resistance and response of primary refractory/relapsed AML to flotetuzumab immunotherapy. Our compendium of microenvironmental gene and protein profiles provides insights into the immuno-biology of AML and could inform the delivery of personalized immunotherapies to IFN-γ-dominant AML subtypes.
Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Leucemia Mieloide Aguda , Adulto , Anticuerpos Biespecíficos/uso terapéutico , Antineoplásicos/uso terapéutico , Niño , Humanos , Inmunoterapia , Leucemia Mieloide Aguda/tratamiento farmacológicoRESUMEN
Acute myeloid leukemia (AML) is a genetically heterogeneous hematological malignancy with variable responses to chemotherapy. Although recurring cytogenetic abnormalities and gene mutations are important predictors of outcome, 50% to 70% of AMLs harbor normal or risk-indeterminate karyotypes. Therefore, identifying more effective biomarkers predictive of treatment success and failure is essential for informing tailored therapeutic decisions. We applied an artificial neural network (ANN)-based machine learning approach to a publicly available data set for a discovery cohort of 593 adults with nonpromyelocytic AML. ANN analysis identified a parsimonious 3-gene expression signature comprising CALCRL, CD109, and LSP1, which was predictive of event-free survival (EFS) and overall survival (OS). We computed a prognostic index (PI) using normalized gene-expression levels and ß-values from subsequently created Cox proportional hazards models, coupled with clinically established prognosticators. Our 3-gene PI separated the adult patients in each European LeukemiaNet cytogenetic risk category into subgroups with different survival probabilities and identified patients with very high-risk features, such as those with a high PI and either FLT3 internal tandem duplication or nonmutated nucleophosmin 1. The PI remained significantly associated with poor EFS and OS after adjusting for established prognosticators, and its ability to stratify survival was validated in 3 independent adult cohorts (n = 905 subjects) and 1 cohort of childhood AML (n = 145 subjects). Further in silico analyses established that AML was the only tumor type among 39 distinct malignancies for which the concomitant upregulation of CALCRL, CD109, and LSP1 predicted survival. Therefore, our ANN-derived 3-gene signature refines the accuracy of patient stratification and the potential to significantly improve outcome prediction.
Asunto(s)
Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda , Modelos Biológicos , Proteínas de Neoplasias/biosíntesis , Redes Neurales de la Computación , Adolescente , Adulto , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Recién Nacido , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Medición de Riesgo , Tasa de SupervivenciaRESUMEN
The major cause of death after allogeneic Hematopoietic Stem Cell Transplantation (HSCT) for acute myeloid leukemia (AML) is disease relapse. We investigated the expression of Inhibitory Receptors (IR; PD-1/CTLA-4/TIM-3/LAG-3/2B4/KLRG1/GITR) on T cells infiltrating the bone marrow (BM) of 32 AML patients relapsing (median 251 days) or maintaining complete remission (CR; median 1 year) after HSCT. A higher proportion of early-differentiated Memory Stem (TSCM) and Central Memory BM-T cells express multiple IR in relapsing patients than in CR patients. Exhausted BM-T cells at relapse display a restricted TCR repertoire, impaired effector functions and leukemia-reactive specificities. In 57 patients, early detection of severely exhausted (PD-1+Eomes+T-bet-) BM-TSCM predicts relapse. Accordingly, leukemia-specific T cells in patients prone to relapse display exhaustion markers, absent in patients maintaining long-term CR. These results highlight a wide, though reversible, immunological dysfunction in the BM of AML patients relapsing after HSCT and suggest new therapeutic opportunities for the disease.