Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
PLoS Genet ; 18(9): e1010370, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121880

RESUMEN

The introgression of genetic traits through gene drive may serve as a powerful and widely applicable method of biological control. However, for many applications, a self-perpetuating gene drive that can spread beyond the specific target population may be undesirable and preclude use. Daisy-chain gene drives have been proposed as a means of tuning the invasiveness of a gene drive, allowing it to spread efficiently into the target population, but be self-limiting beyond that. Daisy-chain gene drives are made up of multiple independent drive elements, where each element, except one, biases the inheritance of another, forming a chain. Under ideal inheritance biasing conditions, the released drive elements remain linked in the same configuration, generating copies of most of their elements except for the last remaining link in the chain. Through mathematical modelling of populations connected by migration, we have evaluated the effect of resistance alleles, different fitness costs, reduction in the cut-rate, and maternal deposition on two alternative daisy-chain gene drive designs. We find that the self-limiting nature of daisy-chain gene drives makes their spread highly dependent on the efficiency and fidelity of the inheritance biasing mechanism. In particular, reductions in the cut-rate and the formation of non-lethal resistance alleles can cause drive elements to lose their linked configuration. This severely reduces the invasiveness of the drives and allows for phantom cutting, where an upstream drive element cuts a downstream target locus despite the corresponding drive element being absent, creating and biasing the inheritance of additional resistance alleles. This phantom cutting can be mitigated by an alternative indirect daisy-chain design. We further find that while dominant fitness costs and maternal deposition reduce daisy-chain invasiveness, if overcome with an increased release frequency, they can reduce the spread of the drive into a neighbouring population.


Asunto(s)
Tecnología de Genética Dirigida , Alelos , Sistemas CRISPR-Cas , Tecnología de Genética Dirigida/métodos , Mutación
2.
PLoS Genet ; 18(2): e1010060, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180218

RESUMEN

The increasing prevalence of insecticide resistance and the ongoing global burden of vector-borne diseases have encouraged new efforts in mosquito control. For Aedes aegypti, the most important arboviral vector, integration rates achieved in Cas9-based knock-ins so far have been rather low, highlighting the need to understand gene conversion patterns and other factors that influence homology-directed repair (HDR) events in this species. In this study, we report the effects of sequence mismatches or donor template forms on integration rates. We found that modest sequence differences between construct homology arms [DNA sequence in the donor template which resembles the region flanking the target cut] and genomic target comprising 1.2% nucleotide dissimilarity (heterology) significantly reduced integration rates. While most integrations (59-88%) from plasmid templates were the result of canonical [on target, perfect repair] HDR events, no canonical events were identified from other donor types (i.e. ssDNA, biotinylated ds/ssDNA). Sequencing of the transgene flanking region in 69 individuals with canonical integrations revealed 60% of conversion tracts to be unidirectional and extend up to 220 bp proximal to the break, though in three individuals bidirectional conversion of up to 725 bp was observed.


Asunto(s)
Sistemas CRISPR-Cas , Culicidae , Animales , Culicidae/genética , Reparación del ADN/genética , Genoma , Humanos , Mosquitos Vectores/genética
3.
Proc Natl Acad Sci U S A ; 119(46): e2206025119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343250

RESUMEN

The Lepidoptera are an insect order of cultural, economic, and environmental importance, representing ∼10% of all described living species. Yet, for all but one of these species (silkmoth, Bombyx mori), the molecular genetics of how sexual fate is determined remains unknown. We investigated this in the diamondback moth (Plutella xylostella), a globally important, highly invasive, and economically damaging pest of cruciferous crops. Our previous work uncovered a regulator of male sex determination in P. xylostella-PxyMasc, a homolog of B. mori Masculinizer-which, although initially expressed in embryos of both sexes, is then reduced in female embryos, leading to female-specific splicing of doublesex. Here, through sequencing small RNA libraries generated from early embryos and sexed larval pools, we identified a variety of small silencing RNAs (predominantly Piwi-interacting RNAs [piRNAs]) complementary to PxyMasc, whose temporal expression correlated with the reduction in PxyMasc transcript observed previously in females. Analysis of these small RNAs showed that they are expressed from tandemly arranged, multicopy arrays found exclusively on the W (female-specific) chromosome, which we term "Pxyfem". Analysis of the Pxyfem sequences showed that they are partial complementary DNAs (cDNAs) of PxyMasc messenger RNA (mRNA) transcripts, likely integrated into transposable element graveyards by the noncanonical action of retrotransposons (retrocopies), and that their apparent similarity to B. mori feminizer more probably represents convergent evolution. Our study helps elucidate the sex determination cascade in this globally important pest and highlights the "shortcuts" that retrotransposition events can facilitate in the evolution of complex molecular cascades, including sex determination.


Asunto(s)
Bombyx , Mariposas Nocturnas , Femenino , Masculino , Animales , Bombyx/genética , Bombyx/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Empalme del ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Mensajero/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(30): 17702-17709, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661163

RESUMEN

A dominant male-determining locus (M-locus) establishes the male sex (M/m) in the yellow fever mosquito, Aedes aegyptiNix, a gene in the M-locus, was shown to be a male-determining factor (M factor) as somatic knockout of Nix led to feminized males (M/m) while transient expression of Nix resulted in partially masculinized females (m/m), with male reproductive organs but retained female antennae. It was not clear whether any of the other 29 genes in the 1.3-Mb M-locus are also needed for complete sex-conversion. Here, we report the generation of multiple transgenic lines that express Nix under the control of its own promoter. Genetic and molecular analyses of these lines provided insights unattainable from previous transient experiments. We show that the Nix transgene alone, in the absence of the M-locus, was sufficient to convert females into males with all male-specific sexually dimorphic features and male-like gene expression. The converted m/m males are flightless, unable to perform the nuptial flight required for mating. However, they were able to father sex-converted progeny when presented with cold-anesthetized wild-type females. We show that myo-sex, a myosin heavy-chain gene also in the M-locus, was required for male flight as knockout of myo-sex rendered wild-type males flightless. We also show that Nix-mediated female-to-male conversion was 100% penetrant and stable over many generations. Therefore, Nix has great potential for developing mosquito control strategies to reduce vector populations by female-to-male sex conversion, or to aid in a sterile insect technique that requires releasing only non-biting males.


Asunto(s)
Aedes/genética , Vuelo Animal , Genes de Insecto , Estudios de Asociación Genética , Proteínas de la Membrana/genética , Procesos de Determinación del Sexo/genética , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Femenino , Sitios Genéticos , Genotipo , Patrón de Herencia , Masculino , Penetrancia , Fenotipo , Regiones Promotoras Genéticas
5.
Proc Natl Acad Sci U S A ; 112(13): 4038-43, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775608

RESUMEN

Conventional control strategies for mosquito-borne pathogens such as malaria and dengue are now being complemented by the development of transgenic mosquito strains reprogrammed to generate beneficial phenotypes such as conditional sterility or pathogen resistance. The widespread success of site-specific nucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in model organisms also suggests that reprogrammable gene drive systems based on these nucleases may be capable of spreading such beneficial phenotypes in wild mosquito populations. Using the mosquito Aedes aegypti, we determined that mutations in the FokI domain used in TALENs to generate obligate heterodimeric complexes substantially and significantly reduce gene editing rates. We found that CRISPR/Cas9-based editing in the mosquito Ae. aegypti is also highly variable, with the majority of guide RNAs unable to generate detectable editing. By first evaluating candidate guide RNAs using a transient embryo assay, we were able to rapidly identify highly effective guide RNAs; focusing germ line-based experiments only on this cohort resulted in consistently high editing rates of 24-90%. Microinjection of double-stranded RNAs targeting ku70 or lig4, both essential components of the end-joining response, increased recombination-based repair in early embryos as determined by plasmid-based reporters. RNAi-based suppression of Ku70 concurrent with embryonic microinjection of site-specific nucleases yielded consistent gene insertion frequencies of 2-3%, similar to traditional transposon- or ΦC31-based integration methods but without the requirement for an initial docking step. These studies should greatly accelerate investigations into mosquito biology, streamline development of transgenic strains for field releases, and simplify the evaluation of novel Cas9-based gene drive systems.


Asunto(s)
Aedes/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Reparación del ADN , Silenciador del Gen , Mutagénesis Insercional , Animales , Secuencia de Bases , Dimerización , Exones , Vectores Genéticos , Genoma , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Edición de ARN , ARN Bicatenario/genética , Recombinación Genética , Temperatura , Transgenes
6.
Nucleic Acids Res ; 43(7): 3688-700, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25765650

RESUMEN

Aedes aegypti mosquitoes vector several arboviruses of global health significance, including dengue viruses and chikungunya virus. RNA interference (RNAi) plays an important role in antiviral immunity, gene regulation and protection from transposable elements. Double-stranded RNA binding proteins (dsRBPs) are important for efficient RNAi; in Drosophila functional specialization of the miRNA, endo-siRNA and exo-siRNA pathway is aided by the dsRBPs Loquacious (Loqs-PB, Loqs-PD) and R2D2, respectively. However, this functional specialization has not been investigated in other dipterans. We were unable to detect Loqs-PD in Ae. aegypti; analysis of other dipteran genomes demonstrated that this isoform is not conserved outside of Drosophila. Overexpression experiments and small RNA sequencing following depletion of each dsRBP revealed that R2D2 and Loqs-PA cooperate non-redundantly in siRNA production, and that these proteins exhibit an inhibitory effect on miRNA levels. Conversely, Loqs-PB alone interacted with mosquito dicer-1 and was essential for full miRNA production. Mosquito Loqs interacted with both argonaute 1 and 2 in a manner independent of its interactions with dicer. We conclude that the functional specialization of Loqs-PD in Drosophila is a recently derived trait, and that in other dipterans, including the medically important mosquitoes, Loqs-PA participates in both the miRNA and endo-siRNA based pathways.


Asunto(s)
Culicidae/genética , MicroARNs/genética , Proteínas/genética , ARN Interferente Pequeño/genética , Animales , Línea Celular , Fracciones Subcelulares/metabolismo
7.
Nat Commun ; 15(1): 729, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272895

RESUMEN

Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene drivesHere, we test the regulatory sequences from the Ae. aegypti benign gonial cell neoplasm (bgcn) homolog to express Cas9 and a separate multiplexing sgRNA-expressing cassette inserted into the Ae. aegypti kynurenine 3-monooxygenase (kmo) gene. When combined, these two elements provide highly effective germline cutting at the kmo locus and act as a gene drive. Our target genetic element drives through a cage trial population such that carrier frequency of the element increases from 50% to up to 89% of the population despite significant fitness costs to kmo insertions. Deep sequencing suggests that the multiplexing design could mitigate resistance allele formation in our gene drive system.


Asunto(s)
Aedes , Tecnología de Genética Dirigida , Insecticidas , Infección por el Virus Zika , Virus Zika , Animales , Sistemas CRISPR-Cas/genética , Aedes/genética , ARN Guía de Sistemas CRISPR-Cas , Infección por el Virus Zika/genética , Virus Zika/genética
8.
Sci Rep ; 13(1): 20352, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990055

RESUMEN

Molecular tools for modulating transgene expression in Aedes aegypti are few. Here we demonstrate that adjustments to the AePUb promoter length can alter expression levels of two reporter proteins in Ae. aegypti cell culture and in mosquitoes. This provides a simple means for increasing or decreasing expression of a gene of interest and easy translation from cells to whole insects.


Asunto(s)
Aedes , Animales , Aedes/genética , Aedes/metabolismo , Regiones Promotoras Genéticas , Transgenes , Expresión Génica
9.
Nat Commun ; 14(1): 338, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670107

RESUMEN

CRISPR/Cas9-based homing gene drives have emerged as a potential new approach to mosquito control. While attempts have been made to develop such systems in Aedes aegypti, none have been able to match the high drive efficiency observed in Anopheles species. Here we generate Ae. aegypti transgenic lines expressing Cas9 using germline-specific regulatory elements and assess their ability to bias inheritance of an sgRNA-expressing element (kmosgRNAs). Four shu-Cas9 and one sds3-Cas9 isolines can significantly bias the inheritance of kmosgRNAs, with sds3G1-Cas9 causing the highest average inheritance of ~86% and ~94% from males and females carrying both elements outcrossed to wild-type, respectively. Our mathematical model demonstrates that sds3G1-Cas9 could enable the spread of the kmosgRNAs element to either reach a higher (by ~15 percentage point) maximum carrier frequency or to achieve similar maximum carrier frequency faster (by 12 generations) when compared to two other established split drive systems.


Asunto(s)
Aedes , Tecnología de Genética Dirigida , Animales , Masculino , Femenino , Aedes/genética , Animales Modificados Genéticamente , Secuencias Reguladoras de Ácidos Nucleicos
10.
Front Bioeng Biotechnol ; 11: 1254863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811374

RESUMEN

Introduction: Genetic manipulation of Aedes aegypti is key to developing a deeper understanding of this insects' biology, vector-virus interactions and makes future genetic control strategies possible. Despite some advances, this process remains laborious and requires highly skilled researchers and specialist equipment. Methods: Here we present two improved methods for genetic manipulation in this species. Use of transgenic lines which express Cre recombinase and a plasmid-based method for expressing PhiC31 when injected into early embryos. Results: Use of transgenic lines which express Cre recombinase allowed, by simple crossing schemes, germline or somatic recombination of transgenes, which could be utilized for numerous genetic manipulations. PhiC31 integrase based methods for site-specific integration of genetic elements was also improved, by developing a plasmid which expresses PhiC31 when injected into early embryos, eliminating the need to use costly and unstable mRNA as is the current standard. Discussion: Here we have expanded the toolbox for synthetic biology in Ae. aegypti. These methods can be easily transferred into other mosquito and even insect species by identifying appropriate promoter sequences. This advances the ability to manipulate these insects for fundamental studies, and for more applied approaches for pest control.

11.
Front Bioeng Biotechnol ; 10: 856981, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419354

RESUMEN

Making discrete and precise genetic changes to wild populations has been proposed as a means of addressing some of the world's most pressing ecological and public health challenges caused by insect pests. Technologies that would allow this, such as synthetic gene drives, have been under development for many decades. Recently, a new generation of programmable nucleases has dramatically accelerated technological development. CRISPR-Cas9 has improved the efficiency of genetic engineering and has been used as the principal effector nuclease in different gene drive inheritance biasing mechanisms. Of these nuclease-based gene drives, homing endonuclease gene drives have been the subject of the bulk of research efforts (particularly in insects), with many different iterations having been developed upon similar core designs. We chart the history of homing gene drive development, highlighting the emergence of challenges such as unintended repair outcomes, "leaky" expression, and parental deposition. We conclude by discussing the progress made in developing strategies to increase the efficiency of homing endonuclease gene drives and mitigate or prevent unintended outcomes.

12.
PLoS Negl Trop Dis ; 16(6): e0010548, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737714

RESUMEN

Aedes aegypti and Ae. albopictus are the main vectors of mosquito-borne viruses of medical and veterinary significance. Many of these viruses have RNA genomes. Exogenously provided, e.g. transgene encoded, small RNAs could be used to inhibit virus replication, breaking the transmission cycle. We tested, in Ae. aegypti and Ae. albopictus cell lines, reporter-based strategies for assessing the ability of two types of small RNAs to inhibit a chikungunya virus (CHIKV) derived target. Both types of small RNAs use a Drosophila melanogaster pre-miRNA-1 based hairpin for their expression, either with perfect base-pairing in the stem region (shRNA-like) or containing two mismatches (miRNA-like). The pre-miRNA-1 stem loop structure was encoded within an intron; this allows co-expression of one or more proteins, e.g. a fluorescent protein marker tracking the temporal and spatial expression of the small RNAs in vivo. Three reporter-based systems were used to assess the relative silencing efficiency of ten shRNA-like siRNAs and corresponding miRNA-like designs. Two systems used a luciferase reporter RNA with CHIKV RNA inserted either in the coding sequence or within the 3' UTR. A third reporter used a CHIKV derived split replication system. All three reporters demonstrated that while silencing could be achieved with both miRNA-like and shRNA-like designs, the latter were substantially more effective. Dcr-2 was required for the shRNA-like siRNAs as demonstrated by loss of inhibition of the reporters in Dcr-2 deficient cell lines. These positive results in cell culture are encouraging for the potential use of this pre-miRNA-1-based system in transgenic mosquitoes.


Asunto(s)
Aedes , Virus Chikungunya , MicroARNs , Aedes/genética , Animales , Virus Chikungunya/genética , Drosophila melanogaster/genética , Intrones , MicroARNs/genética , Mosquitos Vectores/genética , ARN Interferente Pequeño/genética
13.
Nat Commun ; 13(1): 7145, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414618

RESUMEN

CRISPR/Cas gene drives can bias transgene inheritance through different mechanisms. Homing drives are designed to replace a wild-type allele with a copy of a drive element on the homologous chromosome. In Aedes aegypti, the sex-determining locus is closely linked to the white gene, which was previously used as a target for a homing drive element (wGDe). Here, through an analysis using this linkage we show that in males inheritance bias of wGDe did not occur by homing, rather through increased propagation of the donor drive element. We test the same wGDe drive element with transgenes expressing Cas9 with germline regulatory elements sds3, bgcn, and nup50. We only find inheritance bias through homing, even with the identical nup50-Cas9 transgene. We propose that DNA repair outcomes may be more context dependent than anticipated and that other previously reported homing drives may, in fact, bias their inheritance through other mechanisms.


Asunto(s)
Aedes , Tecnología de Genética Dirigida , Masculino , Sistemas CRISPR-Cas/genética , Endonucleasas/genética , Células Germinativas , Patrón de Herencia/genética , Aedes/genética , Animales , Transgenes
14.
Sci Rep ; 11(1): 14964, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294769

RESUMEN

Culex quinquefasciatus Say is a mosquito distributed in both tropical and subtropical regions of the world. It is a night-active, opportunistic blood-feeder and vectors many animal and human diseases, including West Nile Virus and avian malaria. Current vector control methods (e.g. physical/chemical) are increasingly ineffective; use of insecticides also imposes hazards to both human and ecosystem health. Advances in genome editing have allowed the development of genetic insect control methods, which are species-specific and, theoretically, highly effective. CRISPR/Cas9 is a bacteria-derived programmable gene editing tool that is functional in a range of species. We describe the first successful germline gene knock-in by homology dependent repair in C. quinquefasciatus. Using CRISPR/Cas9, we integrated an sgRNA expression cassette and marker gene encoding a fluorescent protein fluorophore (Hr5/IE1-DsRed, Cq7SK-sgRNA) into the kynurenine 3-monooxygenase (kmo) gene. We achieved a minimum transformation rate of 2.8%, similar to rates in other mosquito species. Precise knock-in at the intended locus was confirmed. Insertion homozygotes displayed a white eye phenotype in early-mid larvae and a recessive lethal phenotype by pupation. This work provides an efficient method for engineering C. quinquefasciatus, providing a new tool for developing genetic control tools for this vector.


Asunto(s)
Culex/crecimiento & desarrollo , Técnicas de Sustitución del Gen/veterinaria , Quinurenina 3-Monooxigenasa/genética , ARN Polimerasa III/genética , Animales , Sistemas CRISPR-Cas , Culex/genética , Culex/virología , Reparación del ADN , Vectores de Enfermedades , Femenino , Genes Recesivos , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Proteínas de Insectos/genética , Masculino , Control Biológico de Vectores , Regiones Promotoras Genéticas , Virus del Nilo Occidental/patogenicidad
15.
PLoS Negl Trop Dis ; 15(4): e0009334, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826624

RESUMEN

As a key vector for major arthropod-borne viruses (arboviruses) such as dengue, Zika and chikungunya, control of Aedes aegypti represents a major challenge in public health. Bloodmeal acquisition is necessary for the reproduction of vector mosquitoes and pathogen transmission. Blood contains potentially toxic amounts of iron while it provides nutrients for mosquito offspring; disruption of iron homeostasis in the mosquito may therefore lead to novel control strategies. We previously described a potential iron exporter in Ae. aegypti after a targeted functional screen of ZIP (zinc-regulated transporter/Iron-regulated transporter-like) and ZnT (zinc transporter) family genes. In this study, we performed an RNAseq-based screen in an Ae. aegypti cell line cultured under iron-deficient and iron-excess conditions. A subset of differentially expressed genes were analyzed via a cytosolic iron-sensitive dual-luciferase reporter assay with several gene candidates potentially involved in iron transport. In vivo gene silencing resulted in significant reduction of fecundity (egg number) and fertility (hatch rate) for one gene, termed dyspepsia. Silencing of dyspepsia reduced the induction of ferritin expression in the midgut and also resulted in delayed/impaired excretion and digestion. Further characterization of this gene, including a more direct confirmation of its substrate (iron or otherwise), could inform vector control strategies as well as to contribute to the field of metal biology.


Asunto(s)
Aedes/genética , Dispepsia/genética , Proteínas de Insectos/genética , Proteínas de Transporte de Membrana/genética , Aedes/metabolismo , Animales , Línea Celular , Células Cultivadas , Dispepsia/metabolismo , Silenciador del Gen , Aptitud Genética , Proteínas de Insectos/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Análisis de Secuencia de ARN , Zinc/metabolismo
16.
PLoS Negl Trop Dis ; 14(12): e0008876, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270627

RESUMEN

Aedes aegypti Act4 is a paralog of the Drosophila melanogaster indirect flight muscle actin gene Act88F. Act88F has been shown to be haploinsufficient for flight in both males and females (amorphic mutants are dominant). Whereas Act88F is expressed in indirect flight muscles of both males and females, expression of Act4 is substantially female-specific. We therefore used CRISPR/Cas9 and homology directed repair to examine the phenotype of Act4 mutants in two Culicine mosquitoes, Aedes aegypti and Culex quinquefasciatus. A screen for dominant female-flightless mutants in Cx. quinquefasciatus identified one such mutant associated with a six base pair deletion in the CxAct4 coding region. A similar screen in Ae. aegypti identified no dominant mutants. Disruption of the AeAct4 gene by homology-dependent insertion of a fluorescent protein marker cassette gave a recessive female-flightless phenotype in Ae. aegypti. Reproducing the six-base deletion from Cx. quinquefasciatus in Ae. aegypti using oligo-directed mutagenesis generated dominant female-flightless mutants and identified additional dominant female-flightless mutants with other in-frame insertions or deletions. Our data indicate that loss of function mutations in the AeAct4 gene are recessive but that short in-frame deletions produce dominant-negative versions of the AeAct4 protein that interfere with flight muscle function. This makes Act4 an interesting candidate for genetic control methods, particularly population-suppression gene drives targeting female viability/fertility.


Asunto(s)
Aedes/genética , Culex/genética , Culex/fisiología , Vuelo Animal , Proteínas de Insectos/metabolismo , Control de Mosquitos , Animales , Sistemas CRISPR-Cas , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Masculino , Mutación
17.
ACS Synth Biol ; 9(3): 678-681, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32129976

RESUMEN

CRISPR-Cas9-based "gene drive" technologies have been proposed as a novel and effective means of controlling human diseases vectored by mosquitoes. However, more complex designs than those demonstrated to date-and an expanded molecular toolbox with which to build them-will be required to overcome the issues of resistance formation/evolution and drive spatial/temporal limitation. Foreseeing this need, we assessed the sgRNA transcriptional activities of 33 phylogenetically diverse insect Polymerase III promoters using three disease-relevant Culicine mosquito cell lines (Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus). We show that U6 promoters work across species with a range of transcriptional activity levels and find 7SK promoters to be especially promising because of their broad phylogenetic activity. We further show that U6 promoters can be substantially truncated without affecting transcriptional levels. These results will be of great utility to researchers involved in developing the next generation of gene drives.


Asunto(s)
Aedes/genética , Culex/genética , Genes de Insecto , Regiones Promotoras Genéticas , ARN Polimerasa III/genética , Animales , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Filogenia , Reproducibilidad de los Resultados
18.
Insect Biochem Mol Biol ; 38(7): 705-13, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18549956

RESUMEN

The RNA interference pathway functions as an antiviral defense in invertebrates. In order to generate a phenotypic marker which "senses" the status of the RNAi pathway in Aedes aegypti, transgenic strains were developed to express EGFP and DsRED marker genes in the eye, as well as double-stranded RNA homologous to a portion of the EGFP gene. Transgenic "sensor" mosquitoes exhibited robust eye-specific DsRED expression with little EGFP, indicating RNAi-based silencing. Cloning and high-throughput sequencing of small RNAs confirmed that the inverted-repeat transgene was successfully processed into short-interfering RNAs by the mosquito RNAi pathway. When the A. aegypti homologues of the genes DCR-2 or AGO-2 were knocked down, a clear increase in EGFP fluorescence was observed in the mosquito eyes. Knockdown of DCR-2 was also associated with an increase in EGFP mRNA levels, as determined by Northern blot and real-time PCR. Knockdown of AGO-3, a gene involved in the germline-specific piRNA pathway, did not restore EGFP expression at either the mRNA or protein level. This transgenic sensor strain can now be used to identify other components of the mosquito RNAi pathway and has the potential to be used in the identification of arboviral suppressors of RNAi.


Asunto(s)
Aedes/genética , Proteínas de Insectos/genética , Interferencia de ARN , Aedes/metabolismo , Animales , Animales Modificados Genéticamente , Clonación Molecular , Elementos Transponibles de ADN , Ojo/metabolismo , Femenino , Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de Insectos/metabolismo , Insectos Vectores/genética , Insectos Vectores/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Mutagénesis , ARN Interferente Pequeño/genética , Especificidad de la Especie , Fiebre Amarilla/virología
19.
Mol Cell Biol ; 25(22): 10097-110, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16260623

RESUMEN

Overexpression of mutant p53 is a common theme in tumors, suggesting a selective pressure for p53 mutation in cancer development and progression. To determine how mutant p53 expression may lead to survival advantage in human cancer cells, we generated stable cell lines expressing p53 mutants p53-R175H, -R273H, and -D281G by use of p53-null human H1299 (lung carcinoma) cells. Compared to vector-transfected cells, H1299 cells expressing mutant p53 showed a survival advantage when treated with etoposide, a common chemotherapeutic agent; however, cells expressing the transactivation-deficient triple mutant p53-D281G (L22Q/W23S) had significantly lower resistance to etoposide. Gene expression profiling of cells expressing transcriptionally active mutant p53 proteins revealed the striking pattern that all three p53 mutants induced expression of approximately 100 genes involved in cell growth, survival, and adhesion. The gene NF-kappaB2 is a prominent member of this group, whose overexpression in H1299 cells also leads to chemoresistance. Treatment of H1299 cells expressing p53-R175H with small interfering RNA specific for NF-kappaB2 made these cells more sensitive to etoposide. We have also observed activation of the NF-kappaB2 pathway in mutant p53-expressing cells. Thus, one possible pathway through which mutants of p53 may induce loss of drug sensitivity is via the NF-kappaB2 pathway.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mutación , Subunidad p52 de NF-kappa B/biosíntesis , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/fisiología , Adenoviridae/genética , Adenoviridae/metabolismo , Bromodesoxiuridina/farmacología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Progresión de la Enfermedad , Etopósido/farmacología , Exones , Vectores Genéticos , Humanos , FN-kappa B/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Activación Transcripcional , Transfección , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
20.
Front Physiol ; 9: 380, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706902

RESUMEN

Mosquito-transmitted viral pathogens, such as dengue and Zika, afflict tens of thousands of people every year. These viruses are transmitted during the blood-feeding process that is required for mosquito reproduction, the most important vector being Aedes aegypti. While vertebrate blood is rich in protein, its high iron content is potentially toxic to mosquitoes. Although iron transport and sequestration are essential in the reproduction of vector mosquitoes, we discovered that culicine mosquitoes lack homologs of the common iron transporter NRAMP. Using a novel cell-based screen, we identified two ZIP and one ZnT genes as candidate iron transporters in the mosquito A. aegypti, the vector of dengue, Zika, and chikungunya. We determined the organ-specific expression pattern of these genes at critical time points in early reproduction. The result indicates modulation of these genes upon blood feeding, especially a ZIP13 homolog that is highly up-regulated after blood feeding, suggesting its importance in iron mobilization during blood digestion and reproduction. Gene silencing resulted in differential iron accumulation in the midgut and ovaries. This study sets a foundation for further investigation of iron transport and control strategies of this viral vector.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA