Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Nature ; 625(7995): 483-488, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233620

RESUMEN

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

2.
Nature ; 613(7942): 71-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36600065

RESUMEN

The two natural allotropes of carbon, diamond and graphite, are extended networks of sp3-hybridized and sp2-hybridized atoms, respectively1. By mixing different hybridizations and geometries of carbon, one could conceptually construct countless synthetic allotropes. Here we introduce graphullerene, a two-dimensional crystalline polymer of C60 that bridges the gulf between molecular and extended carbon materials. Its constituent fullerene subunits arrange hexagonally in a covalently interconnected molecular sheet. We report charge-neutral, purely carbon-based macroscopic crystals that are large enough to be mechanically exfoliated to produce molecularly thin flakes with clean interfaces-a critical requirement for the creation of heterostructures and optoelectronic devices2. The synthesis entails growing single crystals of layered polymeric (Mg4C60)∞ by chemical vapour transport and subsequently removing the magnesium with dilute acid. We explore the thermal conductivity of this material and find it to be much higher than that of molecular C60, which is a consequence of the in-plane covalent bonding. Furthermore, imaging few-layer graphullerene flakes using transmission electron microscopy and near-field nano-photoluminescence spectroscopy reveals the existence of moiré-like superlattices3. More broadly, the synthesis of extended carbon structures by polymerization of molecular precursors charts a clear path to the systematic design of materials for the construction of two-dimensional heterostructures with tunable optoelectronic properties.

3.
Nature ; 594(7864): 513-516, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34163054

RESUMEN

Dragging of light by moving media was predicted by Fresnel1 and verified by Fizeau's celebrated experiments2 with flowing water. This momentous discovery is among the experimental cornerstones of Einstein's special relativity theory and is well understood3,4 in the context of relativistic kinematics. By contrast, experiments on dragging photons by an electron flow in solids are riddled with inconsistencies and have so far eluded agreement with the theory5-7. Here we report on the electron flow dragging surface plasmon polaritons8,9 (SPPs): hybrid quasiparticles of infrared photons and electrons in graphene. The drag is visualized directly through infrared nano-imaging of propagating plasmonic waves in the presence of a high-density current. The polaritons in graphene shorten their wavelength when propagating against the drifting carriers. Unlike the Fizeau effect for light, the SPP drag by electrical currents defies explanation by simple kinematics and is linked to the nonlinear electrodynamics of Dirac electrons in graphene. The observed plasmonic Fizeau drag enables breaking of time-reversal symmetry and reciprocity10 at infrared frequencies without resorting to magnetic fields11,12 or chiral optical pumping13,14. The Fizeau drag also provides a tool with which to study interactions and nonequilibrium effects in electron liquids.

4.
Nano Lett ; 24(7): 2149-2156, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329715

RESUMEN

The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl3) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.

5.
Nat Mater ; 22(7): 838-843, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36997689

RESUMEN

Plasmon polaritons in van der Waals materials hold promise for various photonics applications1-4. The deterministic imprinting of spatial patterns of high carrier density in plasmonic cavities and nanoscale circuitry can enable the realization of advanced nonlinear nanophotonic5 and strong light-matter interaction platforms6. Here we demonstrate an oxidation-activated charge transfer strategy to program ambipolar low-loss graphene plasmonic structures. By covering graphene with transition-metal dichalcogenides and subsequently oxidizing the transition-metal dichalcogenides into transition-metal oxides, we activate charge transfer rooted in the dissimilar work functions between transition-metal oxides and graphene. Nano-infrared imaging reveals ambipolar low-loss plasmon polaritons at the transition-metal-oxide/graphene interfaces. Further, by inserting dielectric van der Waals spacers, we can precisely control the electron and hole densities induced by oxidation-activated charge transfer and achieve plasmons with a near-intrinsic quality factor. Using this strategy, we imprint plasmonic cavities with laterally abrupt doping profiles with nanoscale precision and demonstrate plasmonic whispering-gallery resonators based on suspended graphene encapsulated in transition-metal oxides.


Asunto(s)
Grafito , Electrones , Óxidos
6.
Phys Rev Lett ; 132(18): 186903, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759203

RESUMEN

Pump-probe nano-optical experiments were used to study the light-induced insulator to metal transition (IMT) in thin films of vanadium dioxide (VO_{2}), a prototypical correlated electron system. We show that inhomogeneous optical contrast is prompted by spatially uniform photoexcitation, indicating an inhomogeneous photosusceptibility of VO_{2}. We locally characterize temperature and time dependent variations of the photoexcitation threshold necessary to induce the IMT on picosecond timescales with hundred nanometer spatial resolution. We separately measure the critical temperature T_{L}, where the IMT onsets and the local transient electronic nano-optical contrast at the nanoscale. Our data reveal variations in the photosusceptibility of VO_{2} within nanoscopic regions characterized by the same critical temperature T_{L} where metallic domains can first nucleate.

7.
Nature ; 557(7706): 530-533, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795255

RESUMEN

Plasmon polaritons are hybrid excitations of light and mobile electrons that can confine the energy of long-wavelength radiation at the nanoscale. Plasmon polaritons may enable many enigmatic quantum effects, including lasing 1 , topological protection2,3 and dipole-forbidden absorption 4 . A necessary condition for realizing such phenomena is a long plasmonic lifetime, which is notoriously difficult to achieve for highly confined modes 5 . Plasmon polaritons in graphene-hybrids of Dirac quasiparticles and infrared photons-provide a platform for exploring light-matter interaction at the nanoscale6,7. However, plasmonic dissipation in graphene is substantial 8 and its fundamental limits remain undetermined. Here we use nanometre-scale infrared imaging to investigate propagating plasmon polaritons in high-mobility encapsulated graphene at cryogenic temperatures. In this regime, the propagation of plasmon polaritons is primarily restricted by the dielectric losses of the encapsulated layers, with a minor contribution from electron-phonon interactions. At liquid-nitrogen temperatures, the intrinsic plasmonic propagation length can exceed 10 micrometres, or 50 plasmonic wavelengths, thus setting a record for highly confined and tunable polariton modes. Our nanoscale imaging results reveal the physics of plasmonic dissipation and will be instrumental in mitigating such losses in heterostructure engineering applications.

8.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33479179

RESUMEN

We show that the Higgs mode of a superconductor, which is usually challenging to observe by far-field optics, can be made clearly visible using near-field optics by harnessing ultraconfined graphene plasmons. As near-field sources we investigate two examples: graphene plasmons and quantum emitters. In both cases the coupling to the Higgs mode is clearly visible. In the case of the graphene plasmons, the coupling is signaled by a clear anticrossing stemming from the interaction of graphene plasmons with the Higgs mode of the superconductor. In the case of the quantum emitters, the Higgs mode is observable through the Purcell effect. When combining the superconductor, graphene, and the quantum emitters, a number of experimental knobs become available for unveiling and studying the electrodynamics of superconductors.

9.
Proc Natl Acad Sci U S A ; 118(48)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819380

RESUMEN

Chiral Weyl fermions with linear energy-momentum dispersion in the bulk accompanied by Fermi-arc states on the surfaces prompt a host of enticing optical effects. While new Weyl semimetal materials keep emerging, the available optical probes are limited. In particular, isolating bulk and surface electrodynamics in Weyl conductors remains a challenge. We devised an approach to the problem based on near-field photocurrent imaging at the nanoscale and applied this technique to a prototypical Weyl semimetal TaIrTe4 As a first step, we visualized nano-photocurrent patterns in real space and demonstrated their connection to bulk nonlinear conductivity tensors through extensive modeling augmented with density functional theory calculations. Notably, our nanoscale probe gives access to not only the in-plane but also the out-of-plane electric fields so that it is feasible to interrogate all allowed nonlinear tensors including those that remained dormant in conventional far-field optics. Surface- and bulk-related nonlinear contributions are distinguished through their "symmetry fingerprints" in the photocurrent maps. Robust photocurrents also appear at mirror-symmetry breaking edges of TaIrTe4 single crystals that we assign to nonlinear conductivity tensors forbidden in the bulk. Nano-photocurrent spectroscopy at the boundary reveals a strong resonance structure absent in the interior of the sample, providing evidence for elusive surface states.

10.
Nano Lett ; 23(18): 8426-8435, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37494638

RESUMEN

The use of work-function-mediated charge transfer has recently emerged as a reliable route toward nanoscale electrostatic control of individual atomic layers. Using α-RuCl3 as a 2D electron acceptor, we are able to induce emergent nano-optical behavior in hexagonal boron nitride (hBN) that arises due to interlayer charge polarization. Using scattering-type scanning near-field optical microscopy (s-SNOM), we find that a thin layer of α-RuCl3 adjacent to an hBN slab reduces the propagation length of hBN phonon polaritons (PhPs) in significant excess of what can be attributed to intrinsic optical losses. Concomitant nano-optical spectroscopy experiments reveal a novel resonance that aligns energetically with the region of excess PhP losses. These experimental observations are elucidated by first-principles density-functional theory and near-field model calculations, which show that the formation of a large interfacial dipole suppresses out-of-plane PhP propagation. Our results demonstrate the potential utility of charge-transfer heterostructures for tailoring optoelectronic properties of 2D insulators.

11.
Nano Lett ; 23(11): 5070-5075, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37195262

RESUMEN

We investigate heterostructures composed of monolayer WSe2 stacked on α-RuCl3 using a combination of Terahertz (THz) and infrared (IR) nanospectroscopy and imaging, scanning tunneling spectroscopy (STS), and photoluminescence (PL). Our observations reveal itinerant carriers in the heterostructure prompted by charge transfer across the WSe2/α-RuCl3 interface. Local STS measurements show the Fermi level is shifted to the valence band edge of WSe2 which is consistent with p-type doping and verified by density functional theory (DFT) calculations. We observe prominent resonances in near-IR nano-optical and PL spectra, which are associated with the A-exciton of WSe2. We identify a concomitant, near total, quenching of the A-exciton resonance in the WSe2/α-RuCl3 heterostructure. Our nano-optical measurements show that the charge-transfer doping vanishes while excitonic resonances exhibit near-total recovery in "nanobubbles", where WSe2 and α-RuCl3 are separated by nanometer distances. Our broadband nanoinfrared inquiry elucidates local electrodynamics of excitons and an electron-hole plasma in the WSe2/α-RuCl3 system.

12.
Nano Lett ; 23(8): 3137-3143, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37036942

RESUMEN

Twisted van der Waals multilayers are widely regarded as a rich platform to access novel electronic phases thanks to the multiple degrees of freedom available for controlling their electronic and chemical properties. Here, we propose that the stacking domains that form naturally due to the relative twist between successive layers act as an additional "knob" for controlling the behavior of these systems and report the emergence and engineering of stacking domain-dependent surface chemistry in twisted few-layer graphene. Using mid-infrared near-field optical microscopy and atomic force microscopy, we observe a selective adhesion of metallic nanoparticles and liquid water at the domains with rhombohedral stacking configurations of minimally twisted double bi- and trilayer graphene. Furthermore, we demonstrate that the manipulation of nanoparticles located at certain stacking domains can locally reconfigure the moiré superlattice in their vicinity at the micrometer scale. Our findings establish a new approach to controlling moiré-assisted chemistry and nanoengineering.

13.
Nano Lett ; 22(14): 5689-5697, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35839312

RESUMEN

Ca2RuO4 is a transition-metal oxide that exhibits a Mott insulator-metal transition (IMT) concurrent with a symmetry-preserving Jahn-Teller distortion (JT) at 350 K. The coincidence of these two transitions demonstrates a high level of coupling between the electronic and structural degrees of freedom in Ca2RuO4. Using spectroscopic measurements with nanoscale spatial resolution, we interrogate the interplay of the JT and IMT through the temperature-driven transition. Then, we introduce photoexcitation with subpicosecond temporal resolution to explore the coupling of the JT and IMT via electron-hole injection under ambient conditions. Through the temperature-driven IMT, we observe phase coexistence in the form of a stripe phase existing at the domain wall between macroscopic insulating and metallic domains. Through ultrafast carrier injection, we observe the formation of midgap states via enhanced optical absorption. We propose that these midgap states become trapped by lattice polarons originating from the local perturbation of the JT.

14.
Nano Lett ; 22(5): 1946-1953, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35226804

RESUMEN

The ability to create nanometer-scale lateral p-n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl3, we realize nanoscale lateral p-n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p-n junctions. Our STM/STS results reveal that p-n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p-n nanojunctions in 2D materials.

15.
Opt Express ; 30(7): 11228-11242, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473071

RESUMEN

The modeling of the near-field interaction in the scattering-type scanning near-field optical microscope (s-SNOM) is rapidly advancing, although an accurate yet versatile modeling framework that can be easily adapted to various complex situations is still lacking. In this work, we propose a time-efficient numerical scheme in the quasi-electrostatic limit to capture the tip-sample interaction in the near field. This method considers an extended tip geometry, which is a significant advantage compared to the previously reported method based on the point-dipole approximation. Using this formalism, we investigate, among others, nontrivial questions such as uniaxial and biaxial anisotropy in the near-field interaction, the relationship between various experimental parameters (e.g. tip radius, tapping amplitude, etc.), and the tip-dependent spatial resolution. The demonstrated method further sheds light on the understanding of the contrast mechanism in s-SNOM imaging and spectroscopy, while also representing a valuable platform for future quantitative analysis of the experimental observations.

16.
Proc Natl Acad Sci U S A ; 116(40): 19875-19879, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527271

RESUMEN

Quantum materials are amenable to nonequilibrium manipulation with light, enabling modification and control of macroscopic properties. Light-based augmentation of superconductivity is particularly intriguing. Copper-oxide superconductors exhibit complex interplay between spin order, charge order, and superconductivity, offering the prospect of enhanced coherence by altering the balance between competing orders. We utilize terahertz time-domain spectroscopy to monitor the c-axis Josephson plasma resonance (JPR) in La2-xBaxCuO4 (x = 0.115) as a direct probe of superconductivity dynamics following excitation with near-infrared pulses. Starting from the superconducting state, c-axis polarized excitation with a fluence of 100 µJ/cm2 results in an increase of the far-infrared spectral weight by more than an order of magnitude as evidenced by a blueshift of the JPR, interpreted as resulting from nonthermal collapse of the charge order. The photoinduced signal persists well beyond our measurement window of 300 ps and exhibits signatures of spatial inhomogeneity. The electrodynamic response of this metastable state is consistent with enhanced superconducting fluctuations. Our results reveal that La2-xBaxCuO4 is highly sensitive to nonequilibrium excitation over a wide fluence range, providing an unambiguous example of photoinduced modification of order-parameter competition.

17.
Proc Natl Acad Sci U S A ; 116(4): 1168-1173, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30559211

RESUMEN

Using polarized optical and magneto-optical spectroscopy, we have demonstrated universal aspects of electrodynamics associated with Dirac nodal lines that are found in several classes of unconventional intermetallic compounds. We investigated anisotropic electrodynamics of [Formula: see text] where the spin-orbit coupling (SOC) triggers energy gaps along the nodal lines. These gaps manifest as sharp steps in the optical conductivity spectra [Formula: see text] This behavior is followed by the linear power-law scaling of [Formula: see text] at higher frequencies, consistent with our theoretical analysis for dispersive Dirac nodal lines. Magneto-optics data affirm the dominant role of nodal lines in the electrodynamics of [Formula: see text].

18.
Nano Lett ; 21(21): 9256-9261, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34709832

RESUMEN

Topological spin textures are field arrangements that cannot be continuously deformed to a fully polarized state. In particular, merons are topological textures characterized by half-integer topological charge ±1/2 and vortex-like swirling patterns at large distances. Merons have been studied previously in the context of cosmology, fluid dynamics, condensed matter physics and plasmonics. Here, we visualized optical spin angular momentum of phonon polaritons that resembles nanoscale meron spin textures. Phonon polaritons, hybrids of infrared photons and phonons in hexagonal boron nitride, were excited by circularly polarized light incident on a ring-shaped antenna and imaged using infrared near-field techniques. The polariton field reveals a half-integer topological charge determined by the handedness of the incident beam. Our phonon polaritonic platform opens up new pathways to create, control, and visualize topological textures.


Asunto(s)
Fonones , Fotones , Simulación por Computador
19.
Nano Lett ; 21(1): 308-316, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33320013

RESUMEN

Hyperbolic Cooper-pair polaritons (HCP) in cuprate superconductors are of fundamental interest due to their potential for providing insights into the nature of unconventional superconductivity. Here, we critically assess an experimental approach using near-field imaging to probe HCP in Bi2Sr2CaCu2O8+x (Bi-2212) in the presence of graphene surface plasmon polaritons (SPP). Our simulations show that inherently weak HCP features in the near-field can be strongly enhanced when coupled to graphene SPP in layered graphene/hexagonal boron nitride (hBN)/Bi-2212 heterostructures. This enhancement arises from our multilayered structures effectively acting as plasmonic cavities capable of altering collective modes of a layered superconductor by modifying its electromagnetic environment. The degree of enhancement can be selectively controlled by tuning the insulating spacer thickness with atomic precision. Finally, we verify the expected renormalization of room-temperature graphene SPP using near-field infrared imaging. Our modeling, augmented with data, attests to the validity of our approach for probing HCP modes in cuprate superconductors.

20.
Nano Lett ; 21(21): 9052-9060, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34724612

RESUMEN

We investigate transient nanotextured heterogeneity in vanadium dioxide (VO2) thin films during a light-induced insulator-to-metal transition (IMT). Time-resolved scanning near-field optical microscopy (Tr-SNOM) is used to study VO2 across a wide parameter space of infrared frequencies, picosecond time scales, and elevated steady-state temperatures with nanoscale spatial resolution. Room temperature, steady-state, phonon enhanced nano-optical contrast reveals preexisting "hidden" disorder. The observed contrast is associated with inequivalent twin domain structures. Upon thermal or optical initiation of the IMT, coexisting metallic and insulating regions are observed. Correlations between the transient and steady-state nano-optical textures reveal that heterogeneous nucleation is partially anchored to twin domain interfaces and grain boundaries. Ultrafast nanoscopic dynamics enable quantification of the growth rate and bound the nucleation rate. Finally, we deterministically anchor photoinduced nucleation to predefined nanoscopic regions by locally enhancing the electric field of pump radiation using nanoantennas and monitor the on-demand emergent metallicity in space and time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA