Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 34, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782185

RESUMEN

BACKGROUND: One intrastriatal administration of quinolinic acid (QA) in rats induces a lesion with features resembling those observed in Huntington's disease. Our aim is to evaluate the effects of the cysteinyl leukotriene receptor antagonist montelukast (MLK), which exhibited neuroprotection in different preclinical models of neurodegeneration, on QA-induced neuroinflammation and regional metabolic functions. METHODS: The right and left striatum of Sprague Dawley and athymic nude rats were injected with QA and vehicle (VEH), respectively. Starting from the day before QA injection, animals were treated with 1 or 10 mg/kg of MLK or VEH for 14 days. At 14 and 30 days post-lesion, animals were monitored with magnetic resonance imaging (MRI) and positron emission tomography (PET) using [18F]-VC701, a translocator protein (TSPO)-specific radiotracer. Striatal neuroinflammatory response was measured post-mortem in rats treated with 1 mg/kg of MLK by immunofluorescence. Rats treated with 10 mg/kg of MLK also underwent a [18F]-FDG PET study at baseline and 4 months after lesion. [18F]-FDG PET data were then used to assess metabolic connectivity between brain regions by applying a covariance analysis method. RESULTS: MLK treatment was not able to reduce the QA-induced increase in striatal TSPO PET signal and MRI lesion volume, where we only detected a trend towards reduction in animals treated with 10 mg/kg of MLK. Post-mortem immunofluorescence analysis revealed that MLK attenuated the increase in striatal markers of astrogliosis and activated microglia in the lesioned hemisphere. We also found a significant increase in a marker of anti-inflammatory activity (MannR) and a trend towards reduction in a marker of pro-inflammatory activity (iNOS) in the lesioned striatum of MLK-compared to VEH-treated rats. [18F]-FDG uptake was significantly reduced in the striatum and ipsilesional cortical regions of VEH-treated rats at 4 months after lesion. MLK administration preserved glucose metabolism in these cortical regions, but not in the striatum. Finally, MLK was able to counteract changes in metabolic connectivity and measures of network topology induced by QA, in both lesioned and non-lesioned hemispheres. CONCLUSIONS: Overall, MLK treatment produced a significant neuroprotective effect by reducing neuroinflammation assessed by immunofluorescence and preserving regional brain metabolism and metabolic connectivity from QA-induced neurotoxicity in cortical and subcortical regions.


Asunto(s)
Encefalitis , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley , Ácido Quinolínico/toxicidad , Ácido Quinolínico/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Enfermedades Neuroinflamatorias , Cuerpo Estriado/metabolismo , Síndromes de Neurotoxicidad/patología , Encefalitis/patología , Modelos Animales de Enfermedad
2.
Neurobiol Dis ; 162: 105579, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871735

RESUMEN

The G2019S mutation of LRRK2 represents a risk factor for idiopathic Parkinson's disease. Here, we investigate whether LRRK2 kinase activity regulates susceptibility to the environmental toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). G2019S knock-in mice (bearing enhanced kinase activity) showed greater nigro-striatal degeneration compared to LRRK2 knock-out, LRRK2 kinase-dead and wild-type mice following subacute MPTP treatment. LRRK2 kinase inhibitors PF-06447475 and MLi-2, tested under preventive or therapeutic treatments, protected against nigral dopamine cell loss in G2019S knock-in mice. MLi-2 also rescued striatal dopaminergic terminal degeneration in both G2019S knock-in and wild-type mice. Immunoblot analysis of LRRK2 Serine935 phosphorylation levels confirmed target engagement of LRRK2 inhibitors. However, MLi-2 abolished phosphoSerine935 levels in the striatum and midbrain of both wild-type and G2019S knock-in mice whereas PF-06447475 partly reduced phosphoSerine935 levels in the midbrain of both genotypes. In vivo and ex vivo uptake of the 18-kDa translocator protein (TSPO) ligand [18F]-VC701 revealed a similar TSPO binding in MPTP-treated wild-type and G2019S knock-in mice which was consistent with an increased GFAP striatal expression as revealed by Real Time PCR. We conclude that LRRK2 G2019S, likely through enhanced kinase activity, confers greater susceptibility to mitochondrial toxin-induced parkinsonism. LRRK2 kinase inhibitors are neuroprotective in this model.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Cuerpo Estriado/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Mutación , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo , Fosforilación
3.
Mol Psychiatry ; 26(11): 6531-6549, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34035473

RESUMEN

Mutations in the RAB39B gene cause X-linked intellectual disability (XLID), comorbid with autism spectrum disorders or early Parkinson's disease. One of the functions of the neuronal small GTPase RAB39B is to drive GluA2/GluA3 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) maturation and trafficking, determining AMPAR subunit composition at glutamatergic postsynaptic neuronal terminals. Taking advantage of the Rab39b knockout murine model, we show that a lack of RAB39B affects neuronal dendritic spine refinement, prompting a more Ca2+-permeable and excitable synaptic network, which correlates with an immature spine arrangement and behavioural and cognitive alterations in adult mice. The persistence of immature circuits is triggered by increased hypermobility of the spine, which is restored by the Ca2+-permeable AMPAR antagonist NASPM. Together, these data confirm that RAB39B controls AMPAR trafficking, which in turn plays a pivotal role in neuronal dendritic spine remodelling and that targeting Ca2+-permeable AMPARs may highlight future pharmaceutical interventions for RAB39B-associated disease conditions.


Asunto(s)
Espinas Dendríticas , Discapacidad Intelectual , Proteínas de Unión al GTP rab , Animales , Calcio , Espinas Dendríticas/fisiología , Ratones , Plasticidad Neuronal , Neuronas/fisiología , Receptores de Glutamato/fisiología , Proteínas de Unión al GTP rab/fisiología
4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925229

RESUMEN

Obesity is a chronic, complex pathology associated with a risk of developing secondary pathologies, including cardiovascular diseases, cancer, type 2 diabetes (T2DM) and musculoskeletal disorders. Since skeletal muscle accounts for more than 70% of total glucose disposal, metabolic alterations are strictly associated with the onset of insulin resistance and T2DM. The present study relies on the proteomic analysis of gastrocnemius muscle from 15 male and 15 female C56BL/J mice fed for 14 weeks with standard, 45% or 60% high-fat diets (HFD) adopting a label-free LC-MS/MS approach followed by bioinformatic pathway analysis. Results indicate changes in males due to HFD, with increased muscular stiffness (Col1a1, Col1a2, Actb), fiber-type switch from slow/oxidative to fast/glycolytic (decreased Myh7, Myl2, Myl3 and increased Myh2, Mylpf, Mybpc2, Myl1), increased oxidative stress and mitochondrial dysfunction (decreased respiratory chain complex I and V and increased complex III subunits). At variance, females show few alterations and activation of compensatory mechanisms to counteract the increase of fatty acids. Bioinformatics analysis allows identifying upstream molecules involved in regulating pathways identified at variance in our analysis (Ppargc1a, Pparg, Cpt1b, Clpp, Tp53, Kdm5a, Hif1a). These findings underline the presence of a gender-specific response to be considered when approaching obesity and related comorbidities.


Asunto(s)
Músculo Esquelético/metabolismo , Obesidad/metabolismo , Animales , Cromatografía Liquida/métodos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/métodos , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/fisiología , Obesidad/fisiopatología , Estrés Oxidativo , Proteómica/métodos , Sarcopenia/metabolismo , Factores Sexuales , Espectrometría de Masas en Tándem/métodos
5.
Cereb Cortex ; 29(12): 4948-4957, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30877789

RESUMEN

Brain energy metabolism actively regulates synaptic transmission and activity. We have previously shown that acute footshock (FS)-stress induces fast and long-lasting functional and morphological changes at excitatory synapses in prefrontal cortex (PFC). Here, we asked whether FS-stress increased energy metabolism in PFC, and modified related cognitive functions. Using positron emission tomography (PET), we found that FS-stress induced a redistribution of glucose metabolism in the brain, with relative decrease of [18F]FDG uptake in ventro-caudal regions and increase in dorso-rostral ones. Absolute [18F]FDG uptake was inversely correlated with serum corticosterone. Increased specific hexokinase activity was also measured in purified PFC synaptosomes (but not in total extract) of FS-stressed rats, which positively correlated with 2-Deoxy [3H] glucose uptake by synaptosomes. In line with increased synaptic energy demand, using an electron microscopy-based stereological approach, we found that acute stress induced a redistribution of mitochondria at excitatory synapses, together with an increase in their volume. The fast functional and metabolic activation of PFC induced by acute stress, was accompanied by rapid and sustained alterations of working memory performance in delayed response to T-maze test. Taken together, the present data suggest that acute stress increases energy consumption at PFC synaptic terminals and alters working memory.


Asunto(s)
Metabolismo Energético/fisiología , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/metabolismo , Estrés Psicológico/metabolismo , Sinapsis/metabolismo , Animales , Masculino , Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley
6.
Proc Natl Acad Sci U S A ; 114(7): E1234-E1242, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137879

RESUMEN

Medium spiny neurons (MSNs) are a key population in the basal ganglia network, and their degeneration causes a severe neurodegenerative disorder, Huntington's disease. Understanding how ventral neuroepithelial progenitors differentiate into MSNs is critical for regenerative medicine to develop specific differentiation protocols using human pluripotent stem cells. Studies performed in murine models have identified some transcriptional determinants, including GS Homeobox 2 (Gsx2) and Early B-cell factor 1 (Ebf1). Here, we have generated human embryonic stem (hES) cell lines inducible for these transcription factors, with the aims of (i) studying their biological role in human neural progenitors and (ii) incorporating TF conditional expression in a developmental-based protocol for generating MSNs from hES cells. Using this approach, we found that Gsx2 delays cell-cycle exit and reduces Pax6 expression, whereas Ebf1 promotes neuronal differentiation. Moreover, we found that Gsx2 and Ebf1 combined overexpression in hES cells achieves high yields of MSNs, expressing Darpp32 and Ctip2, in vitro as well in vivo after transplantation. We show that hES-derived striatal progenitors can be transplanted in animal models and can differentiate and integrate into the host, extending fibers over a long distance.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Células Madre Embrionarias Humanas/metabolismo , Neuronas/metabolismo , Transactivadores/genética , Animales , Ciclo Celular/genética , Línea Celular , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Expresión Génica , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/trasplante , Humanos , Ratones Desnudos , Neuronas/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Trasplante de Células Madre/métodos , Telencéfalo/citología , Transactivadores/metabolismo , Trasplante Heterólogo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
7.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781585

RESUMEN

This review highlights the importance and the complexity of tumour biology and microenvironment in the progression and therapy resistance of glioma. Specific gene mutations, the possible functions of several non-coding microRNAs and the intra-tumour and inter-tumour heterogeneity of cell types contribute to limit the efficacy of the actual therapeutic options. In this scenario, identification of molecular biomarkers of response and the use of multimodal in vivo imaging and in particular the Positron Emission Tomography (PET) based molecular approach, can help identifying glioma features and the modifications occurring during therapy at a regional level. Indeed, a better understanding of tumor heterogeneity and the development of diagnostic procedures can favor the identification of a cluster of patients for personalized medicine in order to improve the survival and their quality of life.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Diagnóstico por Imagen , Resistencia a Antineoplásicos , Glioma/genética , Glioma/patología , Microambiente Tumoral , Glioma/tratamiento farmacológico , Humanos , MicroARNs/genética , MicroARNs/metabolismo
8.
J Neuroinflammation ; 15(1): 33, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402285

RESUMEN

BACKGROUND: Positron emission tomography (PET) using translocator protein (TSPO) ligands has been used to detect neuroinflammatory processes in neurological disorders, including multiple sclerosis (MS). The aim of this study was to evaluate neuroinflammation in a mouse MS model (EAE) using TSPO-PET with 18F-VC701, in combination with magnetic resonance imaging (MRI). METHODS: MOG35-55/CFA and pertussis toxin protocol was used to induce EAE in C57BL/6 mice. Disease progression was monitored daily, whereas MRI evaluation was performed at 1, 2, and 4 weeks post-induction. Microglia activation was assessed in vivo by 18F-VC701 PET at the time of maximum disease score and validated by radioligand ex vivo distribution and immunohistochemistry at 2 and 4 weeks post-immunization. RESULTS: In vivo and ex vivo analyses show that 18F-VC701 significantly accumulates within the central nervous system (CNS), particularly in the cortex, striatum, hippocampus, cerebellum, and cervical spinal cord of EAE compared to control mice, at 2 weeks post-immunization. MRI confirmed the presence of focal brain lesions at 2 weeks post-immunization in both T1-weighted and T2 images. Of note, MRI abnormalities attenuated in later post-immunization phase. Neuropathological analysis confirmed the presence of microglial activation in EAE mice, consistent with the in vivo increase of 18F-VC701 uptake. CONCLUSION: Increase of 18F-VC701 uptake in EAE mice is strongly associated with the presence of microglia activation in the acute phase of the disease. The combined use of TSPO-PET and MRI provided complementary evidence on the ongoing disease process, thus representing an attractive new tool to investigate neuronal damage and neuroinflammation at preclinical levels.


Asunto(s)
Radioisótopos de Flúor/metabolismo , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/metabolismo , Tomografía de Emisión de Positrones/métodos , Quinolinas/metabolismo , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL
9.
Neurocrit Care ; 28(3): 370-378, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28875429

RESUMEN

BACKGROUND: Cardiac arrest is an important cause of morbidity and mortality. Brain injury severity and prognosis of cardiac arrest patients are related to the cerebral areas affected. To this aim, we evaluated the variability and the distribution of brain glucose metabolism after cardiac arrest and resuscitation in an adult rat model. METHODS: Ten rats underwent 8-min cardiac arrest, induced with a mixture of potassium and esmolol, and resuscitation, performed with chest compressions and epinephrine. Eight sham animals received anesthesia and experimental procedures identical to the ischemic group except cardiac arrest induction. Brain metabolism was assessed using [18F]FDG autoradiography and small animal-dedicated positron emission tomography. RESULTS: The absolute glucose metabolism measured with [18F]FDG autoradiography 2 h after cardiac arrest and resuscitation was lower in the frontal, parietal, occipital, and temporal cortices of cardiac arrest animals, showing, respectively, a 36% (p = 0.006), 32% (p = 0.016), 36% (p = 0.009), and 32% (p = 0.013) decrease compared to sham group. Striatum, hippocampus, thalamus, brainstem, and cerebellum showed no significant changes. Relative regional metabolism indicated a redistribution of metabolism from cortical area to brainstem and cerebellum. CONCLUSIONS: Our data suggest that cerebral regions have different susceptibility to moderate global ischemia in terms of glucose metabolism. The neocortex showed a higher sensibility to hypoxia-ischemia than other regions. Other subcortical regions, in particular brainstem and cerebellum, showed no significant change compared to non-ischemic rats.


Asunto(s)
Reanimación Cardiopulmonar/métodos , Paro Cardíaco/terapia , Hipoxia-Isquemia Encefálica/metabolismo , Neocórtex/metabolismo , Animales , Autorradiografía , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18 , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Masculino , Neocórtex/diagnóstico por imagen , Tomografía de Emisión de Positrones , Ratas
10.
Mol Imaging ; 142015.
Artículo en Inglés | MEDLINE | ID: mdl-26044669

RESUMEN

Positron emission tomography (PET) can be used to monitor in vivo translocator protein (TSPO) expression by using specific radioligands. Recently, several [11C]PK11195 analogues have been synthesized to improve binding stability and brain availability. [18F]VC701 was synthesized and validated in CD healthy rats by biodistribution and inhibition analysis. Imaging studies were also conducted on animals injected unilaterally in the striatum with quinolinic acid (QA) to evaluate the TSPO ligand uptake in a neuroinflammation/neurodegenerative model. [18F]VC701 was synthesized with a good chemical and radiochemical purity and specific activity higher than 37 GBq/µmol. Kinetic studies performed on healthy animals showed the highest tracer biodistribution in TSPO-rich organs, and preadministration of cold PK11195 caused an overall radioactivity reduction. Metabolism studies showed the absence of radiometabolites in the rat brain of QA lesioned rats, and biodistribution analysis revealed a progressive increase in radioactivity ratios (lesioned to nonlesioned striatum) during time, reaching an approximate value of 5 4 hours after tracer injection. These results encourage further evaluation of this TSPO radioligand in other models of central and peripheral diseases.


Asunto(s)
Proteínas Portadoras/metabolismo , Isoquinolinas/síntesis química , Isoquinolinas/metabolismo , Quinolinas/síntesis química , Quinolinas/metabolismo , Radiofármacos/síntesis química , Radiofármacos/metabolismo , Animales , Autorradiografía , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Flúor , Ligandos , Masculino , Metaboloma , Tomografía de Emisión de Positrones , Ratas , Distribución Tisular
11.
Exp Neurol ; 374: 114704, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38281587

RESUMEN

The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.


Asunto(s)
Enfermedad de Parkinson , Tropanos , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Dopamina/metabolismo , Probenecid/farmacología , Probenecid/uso terapéutico , Neuronas Dopaminérgicas/patología , Fluorodesoxiglucosa F18/uso terapéutico , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Degeneración Nerviosa/diagnóstico por imagen , Degeneración Nerviosa/patología
12.
Commun Biol ; 7(1): 140, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291108

RESUMEN

Plasma-derived therapeutic proteins are produced through an industrial fractionation process where proteins are purified from individual intermediates, some of which remain unused and are discarded. Relatively few plasma-derived proteins are exploited clinically, with most of available plasma being directed towards the manufacture of immunoglobulin and albumin. Although the plasma proteome provides opportunities to develop novel protein replacement therapies, particularly for rare diseases, the high cost of plasma together with small patient populations impact negatively on the development of plasma-derived orphan drugs. Enabling therapeutics development from unused plasma fractionation intermediates would therefore constitute a substantial innovation. To this objective, we characterized the proteome of unused plasma fractionation intermediates and prioritized proteins for their potential as new candidate therapies for human disease. We selected ceruloplasmin, a plasma ferroxidase, as a potential therapy for aceruloplasminemia, an adult-onset ultra-rare neurological disease caused by iron accumulation as a result of ceruloplasmin mutations. Intraperitoneally administered ceruloplasmin, purified from an unused plasma fractionation intermediate, was able to prevent neurological, hepatic and hematological phenotypes in ceruloplasmin-deficient mice. These data demonstrate the feasibility of transforming industrial waste plasma fraction into a raw material for manufacturing of new candidate proteins for replacement therapies, optimizing plasma use and reducing waste generation.


Asunto(s)
Ceruloplasmina , Trastornos del Metabolismo del Hierro , Enfermedades Neurodegenerativas , Proteoma , Adulto , Humanos , Animales , Ratones , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Proteoma/metabolismo , Enfermedades Raras , Residuos Industriales
13.
Sci Rep ; 12(1): 15822, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138085

RESUMEN

Automatic analysis toolboxes are popular in brain image analysis, both in clinical and in preclinical practices. In this regard, we proposed a new toolbox for mouse PET-CT brain image analysis including a new Statistical Parametric Mapping-based template and a pipeline for image registration of PET-CT images based on CT images. The new templates is compatible with the common coordinate framework (CCFv3) of the Allen Reference Atlas (ARA) while the CT based registration step allows to facilitate the analysis of mouse PET-CT brain images. From the ARA template, we identified 27 volumes of interest that are relevant for in vivo imaging studies and provided binary atlas to describe them. We acquired 20 C57BL/6 mice with [18F]FDG PET-CT, and 12 of them underwent 3D T2-weighted high-resolution MR scans. All images were elastically registered to the ARA atlas and then averaged. High-resolution MR images were used to validate a CT-based registration pipeline. The resulting method was applied to a mouse model of Parkinson's disease subjected to a test-retest study (n = 6) with the TSPO-specific radioligand [18F]VC701. The identification of regions of microglia/macrophage activation was performed in comparison to the Ma and Mirrione template. The new toolbox identified 11 (6 after false discovery rate adjustment, FDR) brain sub-areas of significant [18F]VC701 uptake increase versus the 4 (3 after FDR) macro-regions identified by the Ma and Mirrione template. Moreover, these 11 areas are functionally connected as found by applying the Mouse Connectivity tool of ARA. In conclusion, we developed a mouse brain atlas tool optimized for PET-CT imaging analysis that does not require MR. This tool conforms to the CCFv3 of ARA and could be applied to the analysis of mouse brain disease models.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones/métodos
14.
Commun Biol ; 5(1): 1276, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414721

RESUMEN

We examined effects of exposing female and male mice for 33 weeks to 45% or 60% high fat diet (HFD). Males fed with either diet were more vulnerable than females, displaying higher and faster increase in body weight and more elevated cholesterol and liver enzymes levels. Higher glucose metabolism was revealed by PET in the olfactory bulbs of both sexes. However, males also displayed altered anterior cortex and cerebellum metabolism, accompanied by a more prominent brain inflammation relative to females. Although both sexes displayed reduced transcripts of neuronal and synaptic genes in anterior cortex, only males had decreased protein levels of AMPA and NMDA receptors. Oppositely, to anterior cortex, cerebellum of HFD-exposed mice displayed hypometabolism and transcriptional up-regulation of neuronal and synaptic genes. These results indicate that male brain is more susceptible to metabolic changes induced by HFD and that the anterior cortex versus cerebellum display inverse susceptibility to HFD.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Animales , Ratones , Masculino , Femenino , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Encéfalo/metabolismo , Peso Corporal , Neuronas/metabolismo
15.
J Cereb Blood Flow Metab ; 42(2): 237-252, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34229512

RESUMEN

The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging. A complete biodistribution study in naïve (n = 59) and ischemic (n = 51) mice receiving intravenous or intraarterial nanocapsules, with two different magnet devices and imaged from 30 min to 48 h, showed an extraordinary advantage of the intraarterial route for brain delivery with a specific improvement in cortical targeting when using a magnetic device in both control and ischemic conditions. Safety was evaluated in ischemic mice (n = 69) showing no signs of systemic toxicity nor increasing mortality, infarct lesions or hemorrhages. In conclusion, the challenging brain delivery of therapeutic nanomaterials could be efficiently and safely overcome with a controlled endovascular administration and magnetic targeting, which could be considered in the context of endovascular interventions for the delivery of multiple treatments for stroke.


Asunto(s)
Carbocianinas , Medios de Contraste , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro/química , Imagen por Resonancia Magnética , Nanocápsulas , Imagen Óptica , Accidente Cerebrovascular , Animales , Carbocianinas/química , Carbocianinas/farmacología , Medios de Contraste/química , Medios de Contraste/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Nanocápsulas/química , Nanocápsulas/uso terapéutico , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico
16.
Int J Nanomedicine ; 16: 1943-1960, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33727808

RESUMEN

INTRODUCTION: The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) is usually associated with aggressive and infiltrating breast cancer (BC) phenotype, and metastases. Functionalized silica-based nanocarriers (SiNPs) can be labeled for in vivo imaging applications and loaded with chemotherapy drugs, making possible the simultaneous noninvasive diagnosis and treatment (theranostic) for HER2-positive BC. METHODS: Firstly, FITC-filled SiNPs, were engineered with two different amounts of Hc-TZ (trastuzumab half-chain) per single nanoparticle (1:2 and 1:8, SiNPs to Hc-TZ ratio), which was 99mTc-radiolabeled at histidine residues for ex vivo and in vivo biodistribution evaluations. Secondly, nanoparticles were loaded with DOX and their in vitro and ex vivo/in vivo delivery was assessed, in comparison with liposomal Doxorubicin (Caelyx). Finally, the treatment efficacy of DOX-SiNPs-TZ (1:8 Hc-TZ) was evaluated in vivo by PET and supported by MS-based proteomics profiling of tumors. RESULTS: SiNPs-TZ (1:8 Hc-TZ) tumor uptake was significantly greater than that of SiNPs-TZ (1:2 Hc-TZ) at 6 hours post-injection (p.i.) in ex vivo biodistribution experiment. At 24 h p.i., radioactivity values remained steady. Fluorescence microscopy, confirmed the presence of radiolabeled SiNPs-TZ (1:8 Hc-TZ) within tumor even at later times. SiNPs-TZ (1:8 Hc-TZ) nanoparticles loaded with Doxorubicin (DOX-SiNPs-TZ) showed a similar DOX delivery capability than Caelyx (at 6 h p.i.), in in vitro and ex vivo assays. Nevertheless, at the end of treatment, tumor volume was significantly reduced by DOX-SiNPs-TZ (1:8 Hc-TZ), compared to Caelyx and DOX-SiNPs treatment. Proteomics study identified 88 high stringent differentially expressed proteins comparing the three treatment groups with controls. CONCLUSION: These findings demonstrated a promising detection specificity and treatment efficacy for our system (SiNPs-TZ, 1:8 Hc-TZ), encouraging its potential use as a new theranostic agent for HER2-positive BC lesions. In addition, proteomic profile confirmed that a set of proteins, related to tumor aggressiveness, were positively affected by targeted nanoparticles.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Portadores de Fármacos/química , Nanopartículas/química , Radiofármacos/química , Receptor ErbB-2/metabolismo , Dióxido de Silicio/química , Tecnecio/química , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Endocitosis , Femenino , Fluoresceína-5-Isotiocianato/química , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Proteoma/metabolismo , Proteómica , Radiofármacos/farmacocinética , Tecnecio/farmacocinética , Distribución Tisular/efectos de los fármacos , Tomografía Computarizada de Emisión de Fotón Único , Resultado del Tratamiento
17.
Metabolism ; 116: 154463, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309713

RESUMEN

OBJECTIVES: GDI1 gene encodes for αGDI, a protein controlling the cycling of small GTPases, reputed to orchestrate vesicle trafficking. Mutations in human GDI1 are responsible for intellectual disability (ID). In mice with ablated Gdi1, a model of ID, impaired working and associative short-term memory was recorded. This cognitive phenotype worsens if the deletion of αGDI expression is restricted to neurons. However, whether astrocytes, key homeostasis providing neuroglial cells, supporting neurons via aerobic glycolysis, contribute to this cognitive impairment is unclear. METHODS: We carried out proteomic analysis and monitored [18F]-fluoro-2-deoxy-d-glucose uptake into brain slices of Gdi1 knockout and wild type control mice. d-Glucose utilization at single astrocyte level was measured by the Förster Resonance Energy Transfer (FRET)-based measurements of cytosolic cyclic AMP, d-glucose and L-lactate, evoked by agonists selective for noradrenaline and L-lactate receptors. To test the role of astrocyte-resident processes in disease phenotype, we generated an inducible Gdi1 knockout mouse carrying the Gdi1 deletion only in adult astrocytes and conducted behavioural tests. RESULTS: Proteomic analysis revealed significant changes in astrocyte-resident glycolytic enzymes. Imaging [18F]-fluoro-2-deoxy-d-glucose revealed an increased d-glucose uptake in Gdi1 knockout tissue versus wild type control mice, consistent with the facilitated d-glucose uptake determined by FRET measurements. In mice with Gdi1 deletion restricted to astrocytes, a selective and significant impairment in working memory was recorded, which was rescued by inhibiting glycolysis by 2-deoxy-d-glucose injection. CONCLUSIONS: These results reveal a new astrocyte-based mechanism in neurodevelopmental disorders and open a novel therapeutic opportunity of targeting aerobic glycolysis, advocating a change in clinical practice.


Asunto(s)
Desoxiglucosa/farmacología , Glucólisis/efectos de los fármacos , Inhibidores de Disociación de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Trastornos de la Memoria/prevención & control , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Desoxiglucosa/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Glucosa/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/deficiencia , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/genética , Ratones , Ratones Noqueados
18.
Front Aging Neurosci ; 12: 152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581765

RESUMEN

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the appearance of α-synuclein insoluble aggregates known as Lewy bodies. Neurodegeneration is accompanied by neuroinflammation mediated by cytokines and chemokines produced by the activated microglia. Several studies demonstrated that such an inflammatory process is an early event, and contributes to oxidative stress and mitochondrial dysfunctions. α-synuclein fibrillization and aggregation activate microglia and contribute to disease onset and progression. Mutations in different genes exacerbate the inflammatory phenotype in the monogenic compared to sporadic forms of PD. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) with selected radiopharmaceuticals allow in vivo imaging of molecular modifications in the brain of living subjects. Several publications showed a reduction of dopaminergic terminals and dopamine (DA) content in the basal ganglia, starting from the early stages of the disease. Moreover, non-dopaminergic neuronal pathways are also affected, as shown by in vivo studies with serotonergic and glutamatergic radiotracers. The role played by the immune system during illness progression could be investigated with PET ligands that target the microglia/macrophage Translocator protein (TSPO) receptor. These agents have been used in PD patients and rodent models, although often without attempting correlations with other molecular or functional parameters. For example, neurodegeneration and brain plasticity can be monitored using the metabolic marker 2-Deoxy-2-[18F]fluoroglucose ([18F]-FDG), while oxidative stress can be probed using the copper-labeled diacetyl-bis(N-methyl-thiosemicarbazone) ([Cu]-ATSM) radioligand, whose striatal-specific binding ratio in PD patients seems to correlate with a disease rating scale and motor scores. Also, structural and functional modifications during disease progression may be evaluated by Magnetic Resonance Imaging (MRI), using different parameters as iron content or cerebral volume. In this review article, we propose an overview of in vivo clinical and non-clinical imaging research on neuroinflammation as an emerging marker of early PD. We also discuss how multimodal-imaging approaches could provide more insights into the role of the inflammatory process and related events in PD development.

19.
Stem Cell Reports ; 14(5): 876-891, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32302555

RESUMEN

Huntington disease (HD) is an inherited late-onset neurological disorder characterized by progressive neuronal loss and disruption of cortical and basal ganglia circuits. Cell replacement using human embryonic stem cells may offer the opportunity to repair the damaged circuits and significantly ameliorate disease conditions. Here, we showed that in-vitro-differentiated human striatal progenitors undergo maturation and integrate into host circuits upon intra-striatal transplantation in a rat model of HD. By combining graft-specific immunohistochemistry, rabies virus-mediated synaptic tracing, and ex vivo electrophysiology, we showed that grafts can extend projections to the appropriate target structures, including the globus pallidus, the subthalamic nucleus, and the substantia nigra, and receive synaptic contact from both host and graft cells with 6.6 ± 1.6 inputs cell per transplanted neuron. We have also shown that transplants elicited a significant improvement in sensory-motor tasks up to 2 months post-transplant further supporting the therapeutic potential of this approach.


Asunto(s)
Cuerpo Estriado/citología , Células Madre Embrionarias Humanas/trasplante , Enfermedad de Huntington/terapia , Células-Madre Neurales/trasplante , Trasplante de Células Madre/métodos , Animales , Células Cultivadas , Cuerpo Estriado/fisiología , Células Madre Embrionarias Humanas/citología , Humanos , Locomoción , Masculino , Células-Madre Neurales/citología , Neurogénesis , Ratas , Regeneración , Sensación , Sustancia Negra/citología , Sustancia Negra/fisiología , Núcleo Subtalámico/citología , Núcleo Subtalámico/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
20.
Neurobiol Dis ; 34(1): 51-62, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19320046

RESUMEN

Microglia activation and neuroinflammation play a pivotal role in the pathogenesis of lysosomal storage disorders (LSD) affecting the central nervous system (CNS), which are amenable to treatment by hematopoietic stem cell transplantation (HSCT). HSCT efficacy relies on replacing the intra- and extra-vascular hematopoietic cell compartments, including CNS microglia, with a cell population expressing the functional enzyme. Non-invasive and quantitative assessment of microglia activation and of its reduction upon HSCT might allow for evaluation of disease evolution and response to treatment in LSD. We here demonstrate that microglia activation can be quantified ex vivo and in vivo by PET using the peripheral benzodiazepine receptor ligand PK11195 in two models of LSD. Furthermore, we show a differential PBR binding following microglia replacement by donor cells in mice undergoing HSCT. Our data indicates that PBR ligands constitute valuable tools for monitoring the evolution and the response to treatment of LSD with CNS involvement, and enable us to evaluate whether the turnover between endogenous and donor microglia following HSCT could be adequate enough to delay disease progression.


Asunto(s)
Enfermedades del Sistema Nervioso Central/fisiopatología , Trasplante de Células Madre Hematopoyéticas , Isoquinolinas/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/fisiopatología , Microglía/fisiología , Receptores de GABA-A/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Radioisótopos de Carbono , Enfermedades del Sistema Nervioso Central/diagnóstico por imagen , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Gliosis/fisiopatología , Ligandos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/diagnóstico por imagen , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/terapia , Ratones , Ratones Transgénicos , Microscopía Confocal , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA