Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-29, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37594230

RESUMEN

Animal-derived foods are susceptible to microbial spoilage due to their superior nutritional composition and high moisture content. Among the various options, edible packaging is a relatively nascent area and can effectively control microbial growth without substantially affecting the sensory and techno-functional properties. Numerous studies have evaluated the effect of edible packaging systems on the microbial quality of animal-derived foods, however, a review that specifically covers the effect of edible packaging on animal foods and summarizes the findings of these studies is missing in the literature. To fill this gap, the present review analyses the findings of the studies on animal foods published during the last five years. Studies have reported edible-packaging systems for improving microbial stability of animal foods using different biopolymers (proteins, polysaccharides, lipids, and their derivatives) and bioactive ingredients (phytochemicals, peptides, plant extracts, essential oils, and their nanoparticles, nanoemulsions or coarse emulsions). In general, nanoparticles and nanoemulsions are more effective in controlling microbial spoilage in animal foods compared to the direct addition of bioactive agents to the film matrices. Studies have reported the use of non-thermal and emerging technologies in combination with edible packaging systems for improved food safety or their use for enhancing functionality, bioactivity and characteristics of the packaging systems. Future studies should focus on developing sustainable packaging systems using widely available biopolymers and bioactive ingredients and should also consider the economic feasibility at the commercial scale.

2.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36762672

RESUMEN

Osteoarthritis (OA) is a common joint disease and has been studied extensively in recent years as no promising therapy available so far for its treatment and remains a great challenge for health care specialists. Although the identification of some major mechanisms that contribute to this disease suggests a plethora of bioactive agents in tackling the associated complications yet OA's pathophysiology is still poorly understood owing to complex mechanistic changes observed. Experimental research is now exploring a wide range of therapeutically effective agents in an effort to find a way to repair OA-related joint degeneration and halt it from getting worse. Data was acquired and reviewed from most relevant and recent studies. This review summarizes the studies that are currently available and focuses on how various unconventional functional oils affect osteoarthritis and the affected joint tissues. An analysis of the recent scientific literature allowed us to highlight the potential anti-arthritic properties of edible oils and their main constituents, which seems to suggest an interesting new potential therapeutic application. Due to eccentric nature of OA, it is necessary to concentrate initially on the management of symptoms. The evidence supporting functional oils chondroprotective potential is still accumulating, underpinning a global need for more sustainable natural sources of treatment. More clinical research that focuses on the consequences of long-term treatment, possible negative effects, and epigenetic implications is necessary to get optimistic results. However, different animal or clinical studies suggest that linolenic and linoleic fatty acids decreased chondrocyte oxidative stress, cartilage breakdown, and expression of inflammatory markers. Distinct fatty acids along with minor components of oils also reduced the generation of prostaglandins and decreased oxidative stress. Furthermore, the potential roles of the main components of edible oils and possible negative results (if any) are also reported. While no severe side effects have been reported for any edible oils. Overall, these studies identify and support the use of functional oils as an adjuvant therapy for the management of OA and as a means of symptomatic alleviation for OA patients. However, to prove the effectiveness or to draw precise conclusions, high-quality clinical trials are required.

3.
Crit Rev Food Sci Nutr ; 62(28): 7773-7800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33939555

RESUMEN

Muscle proteins undergo several processes before being ready in a final consumable form. All these processes affect the digestibility of muscle proteins and subsequent release of amino acids and peptides during digestion in the human gut. The present review examines the effects of different processing techniques, such as curing, drying, ripening, comminution, aging, and marination on the digestibility of muscle proteins. The review also examines how the source of muscle proteins alters the gastrointestinal protein digestion. Processing techniques affect the structural and functional properties of muscle proteins and can affect their digestibility negatively or positively depending on the processing conditions. Some of these techniques, such as aging and mincing, can induce favorable changes in muscle proteins, such as partial unfolding or exposure of cleavage sites, and increase susceptibility to hydrolysis by digestive enzymes whereas others, such as drying and marination, can induce unfavorable changes, such as severe cross-linking, protein aggregation, oxidation induced changes or increased disulfide (S-S) bond content, thereby decreasing proteolysis. The underlying mechanisms have been discussed in detail and the conclusions drawn in the light of existing knowledge provide information with potential industrial importance.


Asunto(s)
Digestión , Proteínas Musculares , Aminoácidos , Disulfuros , Humanos , Proteínas Musculares/química , Péptidos , Agregado de Proteínas
4.
Trends Food Sci Technol ; 120: 25-35, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35002078

RESUMEN

BACKGROUND: The distressing COVID-19 pandemic has had a substantial impact on public mental health, and the importance of food and nutrients in several aspects of mental health has been recognized. People in isolation or quarantine suffer from severe stress, anger, panic attack, and anxiety. SCOPE AND APPROACH: Although, people who have improved and progressed through medications or vaccines have reduced anxiety levels to some extent yet the efficacy of these measures, in the long run, remains a question. The review depicts that such negative emotional reactions were particularly higher in elderly individuals in the first wave than in other phases. The emotional and behavioral response to the COVID-19 pandemic is multifactorial. From different research studies, it has been found that stress scores were considerably higher for those engaging in unhealthy eating practices. This factor relies not only on external components but on personal and innate ones as well. In the present pandemic, the sustainable development of the food system would have been a major issue; this should be carefully restored to avoid a food crisis in the future. KEY FINDINGS AND CONCLUSIONS: Changes in mind-body interactions are triggered by psychosocial stresses such as interpersonal loss and social rejection. Physiological response (in terms of psychological stress) in COVID-19 affected patients varies due to individual physical health status. This review explores the relationship between nutrition and mental health as what we eat and think is interlinked with the gut-brain-axis. The role of dietary components along with the Mediterranean diet, DASH diet and use of psychobiotics in improving psychological distress in pandemic induced stress, anxiety and depression has also been discussed.

5.
Compr Rev Food Sci Food Saf ; 21(4): 3297-3325, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35638360

RESUMEN

Seafood products have been one of the main drivers behind the popularity of high-pressure processing (HPP) in the food industry owing to a high demand for fresh ready-to-eat seafood products and food safety. This review provides an overview of the advanced knowledge available on the use of HPP for production of wholesome and highly nutritive clean label fish and shellfish products. Out of 653 explored items, 65 articles published during 2016-2021 were used. Analysis of the literature showed that most of the earlier work evaluated the HPP effect on physicochemical and sensorial properties, and limited information is available on nutritional aspects. HPP has several applications in the seafood industry. Application of HPP (400-600 MPa) eliminates common seafood pathogens, such as Vibrio and Listeria spp., and slows the growth of spoilage microorganisms. Use of cold water as a pressure medium induces minimal changes in sensory and nutritional properties and helps in the development of clean label seafood products. This technology (200-350 MPa) is also useful to shuck oysters, lobsters, crabs, mussels, clams, and scallops to increase recovery of the edible meat. High-pressure helps to preserve organoleptic and functional properties for an extended time during refrigerated storage. Overall, HPP helps seafood manufacturers to maintain a balance between safety, quality, processing efficiency, and regulatory compliance. Further research is required to understand the mechanisms of pressure-induced modifications and clean label strategies to minimize these modifications.


Asunto(s)
Alimentos Marinos , Mariscos , Animales , Peces , Inocuidad de los Alimentos , Carne
6.
Molecules ; 26(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34946779

RESUMEN

Hemp (Cannabis sativa L.) is a herbaceous anemophilous plant that belongs to the Cannabinaceae family. The cannabis seed (hemp) has long been utilized as a food source and is commercially important as an edible oil source. In this review, the positive and negative health effects of cannabis, the relationship between cannabis and various diseases, and the use of cannabis in various food products have been discussed. In addition, the scientific literature on the potential use of cannabis and its derivatives as a dietary supplement for the prevention and treatment of inflammatory and chronic degenerative diseases in animals and humans has been reviewed. Cannabis is being developed as a key ingredient in a variety of food items, including bakery, confectionery, beverages, dairy, fruits, vegetables, and meat. Hemp seeds are high in readily digestible proteins, lipids, polyunsaturated fatty acids (PUFA), insoluble fiber, carbs, and favorable omega-6 PUFA acid to omega-3 PUFA ratio and have high nutritional value. The antioxidants of cannabis, such as polyphenols, help with anxiety, oxidative stress, and the risk of chronic illnesses, including cancer, neurological disorders, digestive problems, and skin diseases. Cannabis has been shown to have negative health impacts on the respiratory system, driving, and psychomotor functions, and the reproductive system. Overall, the purpose of this research is to stimulate more in-depth research on cannabis's adaptation in various foods and for the treatment of chronic illnesses.


Asunto(s)
Cannabis/química , Suplementos Dietéticos , Aditivos Alimentarios , Valor Nutritivo , Semillas/química , Animales , Antioxidantes/química , Humanos , Aceites de Plantas/química , Polifenoles/química
7.
Compr Rev Food Sci Food Saf ; 20(5): 4511-4548, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34350699

RESUMEN

Thermal processing is an inevitable part of the processing and preparation of meat and meat products for human consumption. However, thermal processing techniques, both commercial and domestic, induce modifications in muscle proteins which can have implications for their digestibility. The nutritive value of muscle proteins is closely related to their digestibility in the gastrointestinal tract and is determined by the end products that it presents in the assimilable form (amino acids and small peptides) for the absorption. The present review examines how different thermal processing techniques, such as sous-vide, microwave, stewing, roasting, boiling, frying, grilling, and steam cooking, affect the digestibility of muscle proteins in the gastrointestinal tract. By altering the functional and structural properties of muscle proteins, thermal processing has the potential to influence the digestibility negatively or positively, depending on the processing conditions. Thermal processes such as sous-vide can induce favourable changes, such as partial unfolding or exposure of cleavage sites, in muscle proteins and improve their digestibility whereas processes such as stewing and roasting can induce unfavourable changes, such as protein aggregation, severe oxidation, cross linking or increased disulfide (S-S) content and decrease the susceptibility of proteins during gastrointestinal digestion. The review examines how the underlying mechanisms of different processing conditions can be translated into higher or lower protein digestibility in detail. This review expands the current understanding of muscle protein digestion and generates knowledge that will be indispensable for optimizing the digestibility of thermally processed muscle foods for maximum nutritional benefits and optimal meal planning.


Asunto(s)
Culinaria , Carne , Animales , Digestión , Humanos , Carne/análisis , Valor Nutritivo , Alimentos Marinos/análisis
8.
Compr Rev Food Sci Food Saf ; 20(5): 4703-4738, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34355496

RESUMEN

Egg and egg products are a rich source of highly bioavailable animal proteins. Several processing technologies can affect the structural and functional properties of these proteins differently and can influence their fate inside the gastrointestinal tract. The present review examines some of the processing technologies for improving egg protein digestibility and discusses how different processing conditions affect the digestibility of egg proteins under gastrointestinal digestion environments. To provide up-to-date information, most of the studies included in this review have been published in the last 5 years on different aspects of egg protein digestibility. Digestibility of egg proteins can be improved by employing some processing technologies that are able to improve the susceptibility of egg proteins to gastrointestinal proteases. Processing technologies, such as pulsed electric field, high-pressure, and ultrasound, can induce conformational and microstructural changes that lead to unfolding of the polypeptides and expose active sites for further interactions. These changes can enhance the accessibility of digestive proteases to cleavage sites. Some of these technologies may inactivate some egg proteins that are enzyme inhibitors, such as trypsin inhibitors. The underlying mechanisms of how different technologies mediate the egg protein digestibility have been discussed in detail. The proteolysis patterns and digestibility of the processed egg proteins are not always predictable and depends on the processing conditions. Empirical input is required to tailor the optimization of processing conditions for favorable effects on protein digestibility.


Asunto(s)
Digestión , Proteínas del Huevo , Animales , Péptidos , Proteolisis , Inhibidores de Tripsina
9.
Crit Rev Food Sci Nutr ; 59(10): 1660-1674, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29393666

RESUMEN

Pulsed electric field (PEF) is a novel non-thermal technology that has recently attracted the attention of meat scientists and technologists due to its ability to modify membrane structure and enhance mass transfer. Several studies have confirmed the potential of pulsed electric field for improving meat tenderness in both pre-rigor and post-rigor muscles during aging. However, there is a high degree of variability between studies and the underlying mechanisms are not clearly understood. While some studies have suggested physical disruption as the main cause of PEF induced tenderness, enzymatic nature of the tenderization seems to be the most plausible mechanism. Several studies have suggested the potential of PEF to mediate the tenderization process due to its membrane altering properties causing early release of calcium ions and early activation of the calpain proteases. However, experimental research is yet to confirm this postulation. Recent studies have also reported increased post-mortem proteolysis in PEF treated muscles during aging. PEF has also been reported to accelerate curing, enhance drying and reduce the numbers of both pathogens and spoilage organisms in meat, although that demands intense processing conditions. While tenderization, meat safety and accelerated curing appears to be the areas where PEF could provide attractive options in meat processing, further research is required before the application of PEF becomes a commercial reality in the meat industry. It needs to deal with carcasses which vary biochemically and in composition (muscle, fat, and bones). This review critically evaluates the published reports on the topic with the aim of reaching a clear understanding of the possible applications of PEF in the meat sector in addition to providing some insight on critical issues that need to be addressed for the technology to be a practical option for the meat industry.


Asunto(s)
Electricidad , Manipulación de Alimentos/métodos , Tecnología de Alimentos , Carne/análisis , Calcio , Calpaína , Frío , Digestión , Inocuidad de los Alimentos , Humanos , Proteínas de la Carne/análisis , Minerales/análisis , Desnaturalización Proteica , Proteolisis , Sodio/análisis
10.
Crit Rev Food Sci Nutr ; 59(8): 1294-1310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29257910

RESUMEN

Obesity is considered a major public health concern throughout the world among children, adolescents, as well as adults and several therapeutic, preventive and dietary interventions are available. In addition to life style changes and medical interventions, significant milestones have been achieved in the past decades in the development of several functional foods and dietary regimens to reduce this menace. Being a multifactorial phenomenon and related to increased fat mass that adversely affects health, obesity has been associated with the development of several other co-morbidities. A great body of research and strong scientific evidence identifies obesity as an important risk factor for onset and progression of several neurological disorders. Obesity induced dyslipidaemia, metabolic dysfunction, and inflammation are attributable to the development of a variety of effects on central nervous system (CNS). Evidence suggests that neurological diseases such as Parkinson's disease and Alzheimer's disease could be initiated by various metabolic changes, related to CNS damage, caused by obesity. These metabolic changes could alter the synaptic plasticity of the neurons and lead to neural death, affecting the normal physiology of CNS. Dietary intervention in combination with exercise can affect the molecular events involved in energy metabolism and synaptic plasticity and are considered effective non-invasive strategy to counteract cognitive and neurological disorders. The present review gives an overview of the obesity and related neurological disorders and the possible dietary interventions.


Asunto(s)
Dieta , Enfermedades del Sistema Nervioso/etiología , Obesidad/complicaciones , Adolescente , Adulto , Enfermedad de Alzheimer , Sistema Nervioso Central , Niño , Dislipidemias/etiología , Metabolismo Energético , Ejercicio Físico , Humanos , Inflamación/etiología , Estilo de Vida , Enfermedades Metabólicas/etiología , Enfermedad de Parkinson , Factores de Riesgo
11.
Compr Rev Food Sci Food Saf ; 18(4): 1192-1208, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33336995

RESUMEN

Defined as meat cultured in a laboratory within a bioreactor under controlled artificial conditions, in vitro meat is a relatively recent area that has opened a whole universe of possibilities and opportunities for the meat sector. With improved chemical and microbial safety and varied options, in vitro meat has been proposed as a green, healthy, environmentally friendly, and nutritionally better product that is free from animal suffering and death. Cell culture and tissue culture are the most probable technologies for the development of this futuristic muscle product. However, there are many challenges in the production of a suitable product at an industrial scale under a sustainable production system and a great body of research is required to fill the gaps in our knowledge. Many materials used in the product development are novel and untested within the food industry and demand urgent regulatory and safety assessment systems capable of managing any risks associated with the development of cultured meat. The future of this product will depend on the actions of governments and regulatory agencies. This article highlights emerging biotechnological options for the development of cultured meat and suggests ways to integrate these emerging technologies into meat research. It considers the problems and possibilities of developing cultured meat, opportunities, ethical issues as well as emerging safety and regulatory issues in this area.

12.
J Cell Physiol ; 233(7): 5142-5159, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28464259

RESUMEN

Dystrophin protein in association with several other cellular proteins and glycoproteins leads to the formation of a large multifaceted protein complex at the cell membrane referred to as dystrophin glycoprotein complex (DGC), that serves distinct functions in cell signaling and maintaining the membrane stability as well as integrity. In accordance with this, several findings suggest exquisite role of DGC in signaling pathways associated with cell development and/or maintenance of homeostasis. In the present review, we summarize the established facts about the various components of this complex with emphasis on recent insights into specific contribution of the DGC in cell signaling at the membrane. We have also discussed the recent advances made in exploring the molecular associations of DGC components within the cells and the functional implications of these interactions. Our review would help to comprehend the composition, role, and functioning of DGC and may lead to a deeper understanding of its role in several human diseases.


Asunto(s)
Membrana Celular/genética , Complejo de Proteínas Asociado a la Distrofina/genética , Distrofina/genética , Glicoproteínas/genética , Membrana Celular/química , Distrofina/química , Complejo de Proteínas Asociado a la Distrofina/química , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Transducción de Señal
13.
Compr Rev Food Sci Food Saf ; 17(4): 841-859, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33350109

RESUMEN

The tenderization process, which can be influenced by both pre- and post-slaughter interventions, begins immediately after an animal's death and is followed with the disruption of the muscle structure by endogenous proteolytic systems. The post-slaughter technological interventions like electrical stimulation, suspension methods, blade tenderization, tumbling, use of exogenous enzymes, and traditional aging are some of the methods currently employed by the meat industry for improving tenderness. Over the time, technological advancement resulted in development of several novel methods, for maximizing the tenderness, which are being projected as quick, economical, nonthermal, green, and energy-efficient technologies. Comparison of these advanced technological methods with the current applied industrial methods is necessary to understand the feasibility and benefits of the novel technology. This review discusses the benefits and advantages of different emerging tenderization techniques such as hydrodynamic-pressure processing, high-pressure processing, pulsed electric field, ultrasound, SmartStretch™ , Pi-Vac Elasto-Pack® system, and some of the current applied methods used in the meat industry.

14.
J Food Sci Technol ; 51(5): 821-31, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803688

RESUMEN

Paneer, a popular indigenous dairy product of India, is similar to an unripened variety of soft cheese which is used in the preparation of a variety of culinary dishes and snacks. It is obtained by heat and acid coagulation of milk, entrapping almost all the fat, casein complexed with denatured whey proteins and a portion of salts and lactose. Paneer is marble white in appearance, having firm, cohesive and spongy body with a close-knit texture and a sweetish-acidic-nutty flavour. Preparation of paneer using different types of milk and varied techniques results in wide variation in physico-chemical, microbiological and sensory quality of the product. Paneer blocks of required size are packaged in laminated plastic pouches, preferably vacuum packaged, heat sealed and stored under refrigeration. Paneer keeps well for about a day at ambient temperature and for about a week under refrigeration (7 °C). The spoilage of paneer is mainly due to bacterial action. Successful attempts have been made to enhance the shelf life of paneer. This review deals with the history, method of manufacture, factors affecting the quality, physico-chemical changes during manufacture, chemical composition and nutritional profile, packaging and shelf life of paneer.

15.
Int J Biol Macromol ; 257(Pt 1): 128553, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056736

RESUMEN

The work was designed to assess the amelioration effect of papain hydrolysis on the biochemical, techno-functional, and biological properties of apple seed protein isolate (API) after 0-90 min of hydrolysis. Hydrolysis significantly enhanced the nutritional value (protein content ˃ 90 %) while decreasing the average particle size. With increasing hydrolysis time, FTIR analysis revealed a transition from α-helix to ß-turn structure, indicating the unfolding of protein structure. This structural alteration positively influenced the functional characteristics, with samples hydrolyzed for 90 min exhibiting excellent solubility, higher water and oil absorption capacity, foaming capacity, and increased emulsifying activity index. Moreover, samples hydrolyzed for 90 min displayed the highest α-glucosidase (29.62-57.43 %), pancreatic lipase inhibition (12.87-31.08 %), and ACE inhibition (25.32-62.70 %) activity. Interestingly, the inhibiting ability of protein hydrolysates against α-glucosidase and ACE was more effective than pancreatic lipase, suggesting their usefulness as a functional ingredient, particularly in type II diabetes and hypertension management.


Asunto(s)
Diabetes Mellitus Tipo 2 , Malus , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Hidrolisados de Proteína/química , alfa-Glucosidasas/metabolismo , Malus/metabolismo , Lipasa , Hidrólisis , Antioxidantes/química , Angiotensinas , Semillas/metabolismo
16.
Heliyon ; 10(7): e29036, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601692

RESUMEN

The objective of this study was to prepare an insect protein-based composite film containing plant extract-based nanoparticles to augment the lipid and microbial stability of cheese. An ultrasonication-mediated green method of synthesis was followed to develop the nanoparticles using E. purpurea flower extract (EP-NPs). The film was developed using locust protein (Loc-Pro) and different levels of EP-NPs [2.0% (T3), 1.5% (T2), 1.0% (T1), and 0.0% (T0)]. It was characterised and evaluated for efficacy using parmesan cheese (Par-Che) as a model system stored for 90 days (4 ± 1 °C). The addition of EP-NPs markedly enhanced the antioxidant and antimicrobial activities of the Loc-Pro-based film as indicated by the results of radical-scavenging activity (ABTS and DPPH), total-flavonoid and total-phenolic contents, ion-reducing potential (FRAP), and inhibitory halos (mm). It also increased (P < 0.05) the density (g/ml), redness (a*), and yellowness (b*) and reduced (P < 0.05) the WVTR (mg/m2t), transparency (%) and lightness (L*) of the Loc-Pro-based film. The film incorporated with EP-NPs showed a marked desirable impact on protein oxidation, lipid stability, microbial quality and antioxidant potential of Par-Che during 90 days of storage. While cheese samples without any film showed mean values of 2.24 mg malondialdehyde/kg, 0.79% oleic acid, 1.22 nm/mg protein, 2.52 log CFU/g and 1.24 log CFU/g on day 90 for TBARS, FFA, total carbonyl content, total plate count and psychrophilic count, samples within T3 films showed significantly lower values of 1.82, 0.67, 0.81, 2.15, and 0.81, respectively. A positive impact of the Loc-Pro-based film was found on the sensory characteristics of Par-Che. Both the Loc-Pro-based film and the digestion simulation improved the radical-scavenging activity and ion-reducing potential of the Par-Che. Our results indicate the potential of Loc-Pro-based film as a means to enhance the storage quality of cheese.

17.
Ultrason Sonochem ; 102: 106744, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38219546

RESUMEN

Food waste presents a continuous challenge for the food industry, leading to environmental pollution and economic issues. A substantial amount of waste, including by-products from fruits and vegetables, non-edible food items, and other waste materials, is produced throughout the food supply chain, from production to consumption. Recycling and valorizing waste from perishable goods is emerging as a key multidisciplinary approach within the circular bio-economy framework. This waste, rich in raw by-products, can be repurposed as a natural source of ingredients. Researchers increasingly focus on biomass valorization to extract and use components that add significant value. Traditional methods for extracting these bio-compounds typically require the use of solvents and are time-consuming, underscoring the need for innovative techniques like ultrasound (US) extraction. Wastes from the processing of fruits and vegetables in the food industry can be used to develop functional foods and edible coatings, offering protection against various environmental factors. This comprehensive review paper discusses the valorization of waste from perishable items like fruits and vegetables using US technology, not only to extract valuable components from waste but also to treat wastewater in the beverage industry. It also covers the application of biomolecules recovered from this process in the development of functional foods and packaging.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Frutas , Verduras , Industria de Alimentos , Tecnología
18.
Food Chem X ; 21: 101185, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38384687

RESUMEN

Foods of animal origin are prone to oxidation due to their high lipid content and fatty acid profile. Edible packaging systems have evolved as a new way of preserving animal-derived foods and have been reported to retard lipid oxidation using antioxidant molecules from side-streams, waste, and agricultural by-products. Studies have evaluated previously undocumented film materials and novel bioactive molecules as additives for edible packaging for animal-derived foods. However, none of the studies is specifically focused on evaluating the packaging systems available for enhancing lipid stability. This paper thoroughly examines and discusses the application of edible packaging containing novel antioxidant molecules for controlling the lipid oxidation of animal-derived foods. The paper analyses and interprets the main findings of the recently published research papers. The materials and active principles used for enhancing lipid stability have been summarised and the underlying mechanisms discussed in detail. Studies should aim at using cheaper and readily available natural ingredients in future for the production of affordable packaging systems.

19.
Heliyon ; 10(5): e27197, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463859

RESUMEN

The utilization of stem cells in tissue engineering holds great promise as efficient tools for tissue regeneration and in treating numerous musculoskeletal diseases. However, several limiting factors, such as precise delivery and control of differentiation of these stem cells as well as mimicking the microenvironment required to modulate stem cell behaviour in-vivo, have given rise to an urgent need for the development of new biomaterials which could be tailored to enhance cell renewal and/or direct cell fates. Keratin-rich biological materials offer several advantages, such as biocompatibility, tailorable mechanical properties, huge bioavailability, non-toxicity, non-immunogenic, and intrinsic tissue repair and/or regeneration capabilities, which makes them highly valued. In the present work, we report the preparation of keratin-based bio-materials from goat hair waste and its effectiveness as a coating material for in vitro culture and induced differentiation of mesenchymal stem cells (MSC's) and primary goat fibroblast cells. Since no known keratinase enzymes are expressed as such in human and/or animal systems, these keratin biomaterials could be used to slow the rate of degradation and deliver keratin-loaded stem cell scaffolds to induce their directed differentiation in vivo. The generated keratin materials have been characterized for surface morphology, protein structures, size and other properties using SDS-PAGE, LC/MS-MS, SEM, FTIR etc. Also, in vitro cell culture assays such as cell adhesion, viability using MTT, live dead assays, differentiation assays and in vitro scratch/wound healing assays were performed. Our results provide important data supporting tissue engineering applications of these keratinous biomaterials by combining the unique biological characteristics of goat hair-derived keratin material with the regenerative power of stem cells and their combinatorial use in applications such as disease treatment and injury repair as well as their use in the preparation of wound healing products, such as dressings and bandages, for management of clinical care in animals.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122932, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37270971

RESUMEN

In the present study, the focus was to evaluate the potential of three spectroscopic techniques (Mid Infrared -MIR-, fluorescence, and multispectral imaging -MSI-) to check the level of adulteration in camel milk with goat, cow, and ewe milks. Camel milk was adulterated with goat, ewe, and cow milks, respectively, at 6 different levels viz. 0.5, 1, 2, 5, 10, and 15%. After preprocessing the data with standard normal variate (SNV), multiplicative scattering correction (MSC), and normalization (area under spectrum = 1), partial least squares regression (PLSR) and partial least squares discriminant analysis (PLSDA) were used to predict the adulteration level and their belonging group, respectively. The PLSR and PLSDA models, validated using external data, highlighted that fluorescence spectroscopy was the most accurate technique giving a R2p ranging between 0.63 and 0.96 and an accuracy ranging between 67 and 83%. However, no technique has allowed the construction of robust PLSR and PLSDA models for the simultaneous prediction of contamination of camel milk by the three milks.


Asunto(s)
Camelus , Leche , Animales , Femenino , Bovinos , Leche/química , Contaminación de Alimentos/análisis , Espectrofotometría Infrarroja , Análisis de los Mínimos Cuadrados , Cabras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA