Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Opt Lett ; 47(14): 3612-3615, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838743

RESUMEN

We demonstrate ultrashort pulse compression from 300 fs down to 17 fs at a repetition rate of 20 kHz and 160-µJ output pulse energy (3.2 W of average power) using multidimensional solitary states (MDSS) in a 1-meter hollow-core fiber (HCF) filled with N2O. Under static pressure, thermal limitations at this repetition rate annihilate the MDSS with suppression of spectral broadening. The results obtained in differential pressure configuration mitigate thermal effects and significantly increase the range of repetition rate over which MDSS can be used to compress sub-picosecond laser pulses.

2.
Nat Mater ; 17(5): 416-420, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29610487

RESUMEN

The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces1,2, ultracold Fermi atoms3,4 and cuprate superconductors5,6, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2Sr2CaCu2O8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.

3.
Phys Rev Lett ; 122(6): 067002, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822056

RESUMEN

Optimally doped cuprate are characterized by the presence of superconducting fluctuations in a relatively large temperature region above the critical transition temperature. We reveal here that the effect of thermal disorder, which decreases the condensate phase coherence at equilibrium, can be dynamically contrasted by photoexcitation with ultrashort midinfrared pulses. In particular, our findings reveal that light pulses with photon energy comparable to the amplitude of the superconducting gap and polarized in plane along the copper-copper direction can dynamically enhance the optical response associated with the onset of superconductivity. We propose that this effect can be rationalized by an effective d-wave BCS model, which reveals that midinfrared pulses result in a transient increase of the phase coherence.

4.
Phys Rev Lett ; 121(7): 076401, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30169095

RESUMEN

We report on the influence of spin-orbit coupling (SOC) in Fe-based superconductors via application of circularly polarized spin and angle-resolved photoemission spectroscopy. We combine this technique in representative members of both the Fe-pnictides (LiFeAs) and Fe-chalcogenides (FeSe) with tight-binding calculations to establish an ubiquitous modification of the electronic structure in these materials imbued by SOC. At low energy, the influence of SOC is found to be concentrated on the hole pockets, where the largest superconducting gaps are typically found. This effect varies substantively with the k_{z} dispersion, and in FeSe we find SOC to be comparable to the energy scale of orbital order. These results contest descriptions of superconductivity in these materials in terms of pure spin-singlet eigenstates, raising questions regarding the possible pairing mechanisms and role of SOC therein.

5.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517258

RESUMEN

We present the development of a versatile apparatus for 6.2 eV laser-based time and angle-resolved photoemission spectroscopy with micrometer spatial resolution (time-resolved µ-ARPES). With a combination of tunable spatial resolution down to ∼11 µm, high energy resolution (∼11 meV), near-transform-limited temporal resolution (∼280 fs), and tunable 1.55 eV pump fluence up to 3 mJ/cm2, this time-resolved µ-ARPES system enables the measurement of ultrafast electron dynamics in exfoliated and inhomogeneous materials. We demonstrate the performance of our system by correlating the spectral broadening of the topological surface state of Bi2Se3 with the spatial dimension of the probe pulse, as well as resolving the spatial inhomogeneity contribution to the observed spectral broadening. Finally, after in situ exfoliation, we performed time-resolved µ-ARPES on a ∼30 µm flake of transition metal dichalcogenide WTe2, thus demonstrating the ability to access ultrafast electron dynamics with momentum resolution on micro-exfoliated materials.

6.
Nat Commun ; 13(1): 3096, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654938

RESUMEN

In spintronics, the two main approaches to actively control the electrons' spin involve static magnetic or electric fields. An alternative avenue relies on the use of optical fields to generate spin currents, which can bolster spin-device performance, allowing for faster and more efficient logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin-splitting. To explore the optical manipulation of a material's spin properties, we consider the Rashba effect. Using time- and angle-resolved photoemission spectroscopy (TR-ARPES), we demonstrate that an optical excitation can tune the Rashba-induced spin splitting of a two-dimensional electron gas at the surface of Bi2Se3. We establish that light-induced photovoltage and charge carrier redistribution - which in concert modulate the Rashba spin-orbit coupling strength on a sub-picosecond timescale - can offer an unprecedented platform for achieving optically-driven spin logic devices.

7.
Science ; 376(6595): 860-864, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35587968

RESUMEN

Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa2Cu3O6+x after the quench of superconductivity by an infrared laser pulse. We observe a nonthermal response of the CDW order characterized by a near doubling of the correlation length within ≈1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDWs manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations.

8.
Nat Commun ; 12(1): 597, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500415

RESUMEN

In strongly correlated systems the strength of Coulomb interactions between electrons, relative to their kinetic energy, plays a central role in determining their emergent quantum mechanical phases. We perform resonant x-ray scattering on Bi2Sr2CaCu2O8+δ, a prototypical cuprate superconductor, to probe electronic correlations within the CuO2 plane. We discover a dynamic quasi-circular pattern in the x-y scattering plane with a radius that matches the wave vector magnitude of the well-known static charge order. Along with doping- and temperature-dependent measurements, our experiments reveal a picture of charge order competing with superconductivity where short-range domains along x and y can dynamically rotate into any other in-plane direction. This quasi-circular spectrum, a hallmark of Brazovskii-type fluctuations, has immediate consequences to our understanding of rotational and translational symmetry breaking in the cuprates. We discuss how the combination of short- and long-range Coulomb interactions results in an effective non-monotonic potential that may determine the quasi-circular pattern.

9.
Rev Sci Instrum ; 90(8): 083001, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472611

RESUMEN

With its direct correspondence to electronic structure, angle-resolved photoemission spectroscopy (ARPES) is a ubiquitous tool for the study of solids. When extended to the temporal domain, time-resolved (TR)-ARPES offers the potential to move beyond equilibrium properties, exploring both the unoccupied electronic structure as well as its dynamical response under ultrafast perturbation. Historically, ultrafast extreme ultraviolet sources employing high-order harmonic generation (HHG) have required compromises that make it challenging to achieve a high energy resolution-which is highly desirable for many TR-ARPES studies-while producing high photon energies and a high photon flux. We address this challenge by performing HHG inside a femtosecond enhancement cavity, realizing a practical source for TR-ARPES that achieves a flux of over 1011 photons/s delivered to the sample, operates over a range of 8-40 eV with a repetition rate of 60 MHz. This source enables TR-ARPES studies with a temporal and energy resolution of 190 fs and 22 meV, respectively. To characterize the system, we perform ARPES measurements of polycrystalline Au and MoTe2, as well as TR-ARPES studies on graphite.

10.
Science ; 366(6470): 1231-1236, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31806810

RESUMEN

Ultrafast spectroscopies have become an important tool for elucidating the microscopic description and dynamical properties of quantum materials. In particular, by tracking the dynamics of nonthermal electrons, a material's dominant scattering processes can be revealed. Here, we present a method for extracting the electron-phonon coupling strength in the time domain, using time- and angle-resolved photoemission spectroscopy (TR-ARPES). This method is demonstrated in graphite, where we investigate the dynamics of photoinjected electrons at the [Formula: see text] point, detecting quantized energy-loss processes that correspond to the emission of strongly coupled optical phonons. We show that the observed characteristic time scale for spectral weight transfer mediated by phonon-scattering processes allows for the direct quantitative extraction of electron-phonon matrix elements for specific modes.

11.
J Phys Condens Matter ; 29(30): 30LT01, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28574404

RESUMEN

The three-dimensional topological insulator Bi2Se3 presents two cone-like dispersive topological surface states centered at the [Formula: see text] point. One of them is unoccupied in equilibrium conditions and located 1.8 eV above the other one lying close to the Fermi level. In this work we employ time- and angle-resolved photoemission spectroscopy with circularly polarized pump photons to selectively track the spin dynamics of the empty topological states. We observe that spin-polarized electrons flow along the topological cone and recombine towards the unpolarized bulk states on a timescale of few tens of femtoseconds. This provides direct evidence of the capability to trigger a spin current with circularly polarized light.

13.
Int J Pharm ; 494(1): 312-20, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26283279

RESUMEN

The flowing properties of 10 lactose powders commonly used in pharmaceutical industries have been analyzed with three recently improved measurement methods. The first method is based on the heap shape measurement. This straightforward measurement method provides two physical parameters (angle of repose αr and static cohesive index σr) allowing to make a first screening of the powder properties. The second method allows to estimate the rheological properties of a powder by analyzing the powder flow in a rotating drum. This more advanced method gives a large set of physical parameters (flowing angle αf, dynamic cohesive index σf, angle of first avalanche αa and powder aeration %ae) leading to deeper interpretations. The third method is an improvement of the classical bulk and tapped density measurements. In addition to the improvement of the measurement precision, the densification dynamics of the powder bulk submitted to taps is analyzed. The link between the macroscopic physical parameters obtained with these methods and the powder granulometry is analyzed. Moreover, the correlations between the different flowability indexes are discussed. Finally, the link between grain shape and flowability is discussed qualitatively.


Asunto(s)
Lactosa , Polvos , Reología/métodos , Tamaño de la Partícula , Propiedades de Superficie
14.
Rev Sci Instrum ; 86(1): 013909, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25638099

RESUMEN

A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO2 single crystals as a benchmark.

15.
Sci Rep ; 5: 15304, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26510509

RESUMEN

Topological insulators are candidates to open up a novel route in spin based electronics. Different to traditional ferromagnetic materials, where the carrier spin-polarization and magnetization are based on the exchange interaction, the spin properties in topological insulators are based on the coupling of spin- and orbit interaction connected to its momentum. Specific ways to control the spin-polarization with light have been demonstrated: the energy momentum landscape of the Dirac cone provides spin-momentum locking of the charge current and its spin. We investigate a spin-related signal present only during the laser excitation studying real and imaginary part of the complex Kerr angle by disentangling spin and lattice contributions. This coherent signal is only present at the time of the pump-pulses' light field and can be described in terms of a Raman coherence time. The Raman transition involves states at the bottom edge of the conduction band. We demonstrate a coherent femtosecond control of spin-polarization for electronic states at around the Dirac cone.

16.
Rev Sci Instrum ; 85(12): 123903, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25554305

RESUMEN

Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 1): 041309, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20481719

RESUMEN

Granular gravity driven flows of glass beads have been observed in a silo with a flat bottom. A dc high electric field has been applied perpendicularly to the silo to tune the cohesion. The outlet mass flow has been measured. An image subtraction technique has been applied to visualize the flow geometry and a spatiotemporal analysis of the flow dynamics has been performed. The outlet mass flow is independent of voltage, but a transition from funnel flow to rathole flow is observed. This transition is of probabilistic nature and an intermediate situation exists between the funnel and the rathole situations. At a given voltage, two kinds of flow dynamics can occur: a continuous flow or an intermittent flow. The electric field increases the probability to observe an intermittent flow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA