Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 229(4): 1107-1111, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37602528

RESUMEN

The sporadic occurrence of human infections with swine-origin influenza A(H3N2) viruses and the continual emergence of novel A(H3N2) viruses in swine herds underscore the necessity for ongoing assessment of the pandemic risk posed by these viruses. Here, we selected 3 recent novel swine-origin A(H3N2) viruses isolated between 2017 to 2020, bearing hemagglutinins from the 1990.1, 2010.1, or 2010.2 clades, and evaluated their ability to cause disease and transmit in a ferret model. We conclude that despite considerable genetic variances, all 3 contemporary swine-origin A(H3N2) viruses displayed a capacity for robust replication in the ferret respiratory tract and were also capable of limited airborne transmission. These findings highlight the continued public health risk of swine-origin A(H3N2) strains, especially in human populations with low cross-reactive immunity.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Humanos , Animales , Estados Unidos/epidemiología , Porcinos , Subtipo H3N2 del Virus de la Influenza A/genética , Hurones
2.
J Virol ; 96(24): e0140322, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448801

RESUMEN

Despite reports of confirmed human infection following ocular exposure with both influenza A virus (IAV) and SARS-CoV-2, the dynamics of virus spread throughout oculonasal tissues and the relative capacity of virus transmission following ocular inoculation remain poorly understood. Furthermore, the impact of exposure route on subsequent release of airborne viral particles into the air has not been examined previously. To assess this, ferrets were inoculated by the ocular route with A(H1N1)pdm09 and A(H7N9) IAVs and two SARS-CoV-2 (early pandemic Washington/1 and Delta variant) viruses. Virus replication was assessed in both respiratory and ocular specimens, and transmission was evaluated in direct contact or respiratory droplet settings. Viral RNA in aerosols shed by inoculated ferrets was quantified with a two-stage cyclone aerosol sampler (National Institute for Occupational Safety and Health [NIOSH]). All IAV and SARS-CoV-2 viruses mounted a productive and transmissible infection in ferrets following ocular inoculation, with peak viral titers and release of virus-laden aerosols from ferrets indistinguishable from those from ferrets inoculated by previously characterized intranasal inoculation methods. Viral RNA was detected in ferret conjunctival washes from all viruses examined, though infectious virus in this specimen was recovered only following IAV inoculation. Low-dose ocular-only aerosol exposure or inhalation aerosol exposure of ferrets to IAV similarly led to productive infection of ferrets and shedding of aerosolized virus. Viral evolution during infection was comparable between all inoculation routes examined. These data support that both IAV and SARS-CoV-2 can establish a high-titer mammalian infection following ocular exposure that is associated with rapid detection of virus-laden aerosols shed by inoculated animals. IMPORTANCE Documented human infection with influenza viruses and SARS-CoV-2 has been reported among individuals wearing respiratory protection in the absence of eye protection, highlighting the capacity of these respiratory tract-tropic viruses to exploit nonrespiratory routes of exposure to initiate productive infection. However, comprehensive evaluations of how ocular exposure may modulate virus pathogenicity and transmissibility in mammals relative to respiratory exposure are limited and have not investigated multiple virus families side by side. Using the ferret model, we show that ocular exposure with multiple strains of either coronaviruses or influenza A viruses leads to an infection that results in shedding of detectable aerosolized virus from inoculated animals, contributing toward onward transmission of both viruses to susceptible contacts. Collectively, these studies support that the ocular surface represents a susceptible mucosal surface that, if exposed to a sufficient quantity of either virus, permits establishment of an infection which is similarly transmissible as that following respiratory exposure.


Asunto(s)
COVID-19 , Infecciones por Orthomyxoviridae , Animales , Humanos , COVID-19/transmisión , COVID-19/virología , Modelos Animales de Enfermedad , Hurones , Subtipo H1N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Aerosoles y Gotitas Respiratorias , ARN Viral/aislamiento & purificación , SARS-CoV-2 , Esparcimiento de Virus
3.
Emerg Infect Dis ; 28(9): 1913-1915, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35840125

RESUMEN

Highly pathogenic avian influenza A(H5N1) viruses have spread rapidly throughout North American flyways in recent months, affecting wild birds in over 40 states. We evaluated the pathogenicity and transmissibility of a representative virus using a ferret model and examined replication kinetics of this virus in human respiratory tract cells.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Aves , Hurones , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , América del Norte/epidemiología , Infecciones por Orthomyxoviridae/veterinaria
4.
Appl Environ Microbiol ; 88(4): e0227121, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34985975

RESUMEN

Efficient human-to-human transmission represents a necessary adaptation for a zoonotic influenza A virus (IAV) to cause a pandemic. As such, many emerging IAVs are characterized for transmissibility phenotypes in mammalian models, with an emphasis on elucidating viral determinants of transmission and the role host immune responses contribute to mammalian adaptation. Investigations of virus infectivity and stability in aerosols concurrent with transmission assessments have increased in recent years, enhancing our understanding of this dynamic process. Here, we employed a diverse panel of 17 human and zoonotic IAVs, inclusive of seasonally circulating H1N1 and H3N2 viruses, as well as avian and swine viruses associated with human infection, to evaluate differences in spray factor (a value that assesses efficiency of the aerosolization process), stability, and infectivity following aerosolization. While most seasonal influenza viruses did not exhibit substantial variability within these parameters, there was more heterogeneity among zoonotic influenza viruses, which possess a diverse range of transmission phenotypes. Aging of aerosols at different relative humidities identified strain-specific levels of stability with different profiles identified between zoonotic H3, H5, and H7 subtype viruses associated with human infection. As studies continue to elucidate the complex components governing virus transmissibility, notably aerosol matrices and environmental parameters, considering the relative role of subtype- and strain-specific factors to modulate these parameters will improve our understanding of the pandemic potential of zoonotic influenza A viruses. IMPORTANCE Transmission of respiratory pathogens through the air can facilitate the rapid and expansive spread of infection and disease through a susceptible population. While seasonal influenza viruses are quite capable of airborne spread, there is a lack of knowledge regarding how well influenza viruses remain viable after aerosolization and whether influenza viruses capable of jumping species barriers to cause human infection differ in this property from seasonal strains. We evaluated a diverse panel of influenza viruses associated with human infection (originating from human, avian, and swine reservoirs) for their ability to remain viable after aerosolization in the laboratory under a range of conditions. We found greater diversity among avian and swine-origin viruses compared to seasonal influenza viruses; strain-specific stability was also noted. Although influenza virus stability in aerosols is an underreported property, if molecular markers associated with enhanced stability are identified, we will be able to quickly recognize emerging strains of influenza that present the greatest pandemic threat.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Mamíferos , Porcinos
5.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32611751

RESUMEN

Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses.IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.


Asunto(s)
Evolución Molecular , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/inmunología , Gripe Aviar/virología , Gripe Humana/virología , Fenotipo , Replicación Viral/genética , Animales , Asia , China , Modelos Animales de Enfermedad , Femenino , Variación Genética , Humanos , Gripe Aviar/inmunología , Gripe Aviar/transmisión , Gripe Humana/inmunología , Gripe Humana/transmisión , Masculino , Mamíferos , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Aves de Corral/virología , Enfermedades de las Aves de Corral/virología , Vietnam
6.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30814288

RESUMEN

Ferrets represent an invaluable animal model to study influenza virus pathogenesis and transmission. To further characterize this model, we developed a differentiated primary ferret nasal epithelial cell (FNEC) culture model for investigation of influenza A virus infection and virus-host interactions. This well-differentiated culture consists of various cell types, a mucociliary clearance system, and tight junctions, representing the nasal ciliated pseudostratified respiratory epithelium. Both α2,6-linked and α2,3-linked sialic acid (SA) receptors, which preferentially bind the hemagglutinin (HA) of human and avian influenza viruses, respectively, were detected on the apical surface of the culture with different cellular tropisms. In accordance with the distribution of SA receptors, we observed that a pre-2009 seasonal A(H1N1) virus infected both ciliated and nonciliated cells, whereas a highly pathogenic avian influenza (HPAI) A(H5N1) virus primarily infected nonciliated cells. Transmission electron microscopy revealed that virions were released from or associated with the apical membranes of ciliated, nonciliated, and mucin-secretory goblet cells. Upon infection, the HPAI A(H5N1) virus replicated to titers higher than those of the human A(H1N1) virus at 37°C; however, replication of the A(H5N1) virus was significantly attenuated at 33°C. Furthermore, we found that infection with the A(H5N1) virus induced higher expression levels of immune mediator genes and resulted in more cell damage/loss than with the human A(H1N1) virus. This primary differentiated FNEC culture model, recapitulating the structure of the nasal epithelium, provides a useful model to bridge in vivo and in vitro studies of cellular tropism, infectivity, and pathogenesis of influenza viruses during the initial stages of infection.IMPORTANCE Although ferrets serve as an important model of influenza virus infection, much remains unknown about virus-host interactions in this species at the cellular level. The development of differentiated primary cultures of ferret nasal epithelial cells is an important step toward understanding cellular tropism and the mechanisms of influenza virus infection and replication in the airway milieu of this model. Using lectin staining and microscopy techniques, we characterized the sialic acid receptor distribution and the cellular composition of the culture model. We then evaluated the replication of and immune response to human and avian influenza viruses at relevant physiological temperatures. Our findings offer significant insight into this first line of defense against influenza virus infection and provide a model for the evaluation of emerging influenza viruses in a well-controlled in vitro environmental setting.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Tropismo Viral/genética , Animales , Bronquios/virología , Técnicas de Cultivo de Célula/métodos , Cilios/virología , Modelos Animales de Enfermedad , Células Epiteliales/virología , Hurones/virología , Células Caliciformes/metabolismo , Células Caliciformes/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/fisiología , Gripe Humana/virología , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Cultivo Primario de Células , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Mucosa Respiratoria/virología , Tráquea/virología , Virosis/genética
7.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30305359

RESUMEN

The fifth wave of the H7N9 influenza epidemic in China was distinguished by a sudden increase in human infections, an extended geographic distribution, and the emergence of highly pathogenic avian influenza (HPAI) viruses. Genetically, some H7N9 viruses from the fifth wave have acquired novel amino acid changes at positions involved in mammalian adaptation, antigenicity, and hemagglutinin cleavability. Here, several human low-pathogenic avian influenza (LPAI) and HPAI H7N9 virus isolates from the fifth epidemic wave were assessed for their pathogenicity and transmissibility in mammalian models, as well as their ability to replicate in human airway epithelial cells. We found that an LPAI virus exhibited a similar capacity to replicate and cause disease in two animal species as viruses from previous waves. In contrast, HPAI H7N9 viruses possessed enhanced virulence, causing greater lethargy and mortality, with an extended tropism for brain tissues in both ferret and mouse models. These HPAI viruses also showed signs of adaptation to mammalian hosts by acquiring the ability to fuse at a lower pH threshold than other H7N9 viruses. All of the fifth-wave H7N9 viruses were able to transmit among cohoused ferrets but exhibited a limited capacity to transmit by respiratory droplets, and deep sequencing analysis revealed that the H7N9 viruses sampled after transmission showed a reduced amount of minor variants. Taken together, we conclude that the fifth-wave HPAI H7N9 viruses have gained the ability to cause enhanced disease in mammalian models and with further adaptation may acquire the ability to cause an H7N9 pandemic.IMPORTANCE The potential pandemic risk posed by avian influenza H7N9 viruses was heightened during the fifth epidemic wave in China due to the sudden increase in the number of human infections and the emergence of antigenically distinct LPAI and HPAI H7N9 viruses. In this study, a group of fifth-wave HPAI and LPAI viruses was evaluated for its ability to infect, cause disease, and transmit in small-animal models. The ability of HPAI H7N9 viruses to cause more severe disease and to replicate in brain tissues in animal models as well as their ability to fuse at a lower pH threshold than LPAI H7N9 viruses suggests that the fifth-wave H7N9 viruses have evolved to acquire novel traits with the potential to pose a higher risk to humans. Although the fifth-wave H7N9 viruses have not yet gained the ability to transmit efficiently by air, continuous surveillance and risk assessment remain essential parts of our pandemic preparedness efforts.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Infecciones por Orthomyxoviridae/epidemiología , ARN Viral/genética , Análisis de Secuencia de ARN/métodos , Animales , Línea Celular , China/epidemiología , Chlorocebus aethiops , Epidemias , Evolución Molecular , Hurones , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/transmisión , Ratones , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Medición de Riesgo , Células Vero , Tropismo Viral , Virulencia
8.
J Virol ; 92(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30158292

RESUMEN

Influenza A virus pandemics are rare events caused by novel viruses which have the ability to spread in susceptible human populations. With respect to H1 subtype viruses, swine H1N1 and H1N2 viruses occasionally cross the species barrier to cause human infection. Recently isolated from humans (termed variants), swine viruses were shown to display great genetic and antigenic diversity, hence posing considerable public health risk. Here, we utilized in vitro and in vivo approaches to provide characterization of H1 subtype variant viruses isolated since the 2009 pandemic and discuss the findings in context with previously studied H1 subtype human isolates. The variant viruses were well adapted to replicate in the human respiratory cell line Calu-3 and the respiratory tracts of mice and ferrets. However, with respect to hemagglutinin (HA) activation pH, the variant viruses had fusion pH thresholds closer to that of most classical swine and triple-reassortant H1 isolates rather than viruses that had adapted to humans. Consistent with previous observations for swine isolates, the tested variant viruses were capable of efficient transmission between cohoused ferrets but could transmit via respiratory droplets to differing degrees. Overall, this investigation demonstrates that swine H1 viruses that infected humans possess adaptations required for robust replication and, in some cases, efficient respiratory droplet transmission in a mammalian model and therefore need to be closely monitored for additional molecular changes that could facilitate transmission among humans. This work highlights the need for risk assessments of emerging H1 viruses as they continue to evolve and cause human infections.IMPORTANCE Influenza A virus is a continuously evolving respiratory pathogen. Endemic in swine, H1 and H3 subtype viruses sporadically cause human infections. As each zoonotic infection represents an opportunity for human adaptation, the emergence of a transmissible influenza virus to which there is little or no preexisting immunity is an ongoing threat to public health. Recently isolated variant H1 subtype viruses were shown to display extensive genetic diversity and in many instances were antigenically distinct from seasonal vaccine strains. In this study, we provide characterization of representative H1N1v and H1N2v viruses isolated since the 2009 pandemic. Our results show that although recent variant H1 viruses possess some adaptation markers of concern, these viruses have not fully adapted to humans and require further adaptation to present a pandemic threat. This investigation highlights the need for close monitoring of emerging variant influenza viruses for molecular changes that could facilitate efficient transmission among humans.


Asunto(s)
Hemaglutinación por Virus/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/genética , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/transmisión , Replicación Viral/genética , Animales , Chlorocebus aethiops , Femenino , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Especificidad de la Especie , Porcinos , Células Vero
9.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29848587

RESUMEN

While several swine-origin influenza A H3N2 variant (H3N2v) viruses isolated from humans prior to 2011 have been previously characterized for their virulence and transmissibility in ferrets, the recent genetic and antigenic divergence of H3N2v viruses warrants an updated assessment of their pandemic potential. Here, four contemporary H3N2v viruses isolated during 2011 to 2016 were evaluated for their replicative ability in both in vitro and in vivo in mammalian models as well as their transmissibility among ferrets. We found that all four H3N2v viruses possessed similar or enhanced replication capacities in a human bronchial epithelium cell line (Calu-3) compared to a human seasonal influenza virus, suggestive of strong fitness in human respiratory tract cells. The majority of H3N2v viruses examined in our study were mildly virulent in mice and capable of replicating in mouse lungs with different degrees of efficiency. In ferrets, all four H3N2v viruses caused moderate morbidity and exhibited comparable titers in the upper respiratory tract, but only 2 of the 4 viruses replicated in the lower respiratory tract in this model. Furthermore, despite efficient transmission among cohoused ferrets, recently isolated H3N2v viruses displayed considerable variance in their ability to transmit by respiratory droplets. The lack of a full understanding of the molecular correlates of virulence and transmission underscores the need for close genotypic and phenotypic monitoring of H3N2v viruses and the importance of continued surveillance to improve pandemic preparedness.IMPORTANCE Swine-origin influenza viruses of the H3N2 subtype, with the hemagglutinin (HA) and neuraminidase (NA) derived from historic human seasonal influenza viruses, continue to cross species barriers and cause human infections, posing an indelible threat to public health. To help us better understand the potential risk associated with swine-origin H3N2v viruses that emerged in the United States during the 2011-2016 influenza seasons, we use both in vitro and in vivo models to characterize the abilities of these viruses to replicate, cause disease, and transmit in mammalian hosts. The efficient respiratory droplet transmission exhibited by some of the H3N2v viruses in the ferret model combined with the existing evidence of low immunity against such viruses in young children and older adults highlight their pandemic potential. Extensive surveillance and risk assessment of H3N2v viruses should continue to be an essential component of our pandemic preparedness strategy.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Enfermedades de los Porcinos/virología , Replicación Viral , Animales , Línea Celular , Modelos Animales de Enfermedad , Hurones , Humanos , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Pulmón/virología , Ratones , Infecciones por Orthomyxoviridae/patología , Sistema Respiratorio/virología , Porcinos , Estados Unidos , Carga Viral
10.
Emerg Infect Dis ; 24(1): 149-152, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29260672

RESUMEN

Infections with low pathogenicity and highly pathogenic avian influenza A(H7N9) viruses affected poultry in 4 states in the southeastern United States in 2017. We evaluated pathogenicity and transmission of representative viruses in mouse and ferret models and examined replication kinetics in human respiratory tract cells. These viruses can cause respiratory infections in mammalian models.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Línea Celular , Pollos/virología , Brotes de Enfermedades/veterinaria , Hurones/virología , Humanos , Gripe Aviar/epidemiología , Gripe Humana/virología , Ratones , Infecciones por Orthomyxoviridae/virología , Sistema Respiratorio/citología , Tennessee/epidemiología , Virulencia
11.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28515300

RESUMEN

In December 2016, a low-pathogenic avian influenza (LPAI) A(H7N2) virus was identified to be the causative source of an outbreak in a cat shelter in New York City, which subsequently spread to multiple shelters in the states of New York and Pennsylvania. One person with occupational exposure to infected cats became infected with the virus, representing the first LPAI H7N2 virus infection in a human in North America since 2003. Considering the close contact that frequently occurs between companion animals and humans, it was critical to assess the relative risk of this novel virus to public health. The virus isolated from the human case, A/New York/108/2016 (NY/108), caused mild and transient illness in ferrets and mice but did not transmit to naive cohoused ferrets following traditional or aerosol-based inoculation methods. The environmental persistence of NY/108 virus was generally comparable to that of other LPAI H7N2 viruses. However, NY/108 virus replicated in human bronchial epithelial cells with an increased efficiency compared with that of previously isolated H7N2 viruses. Furthermore, the novel H7N2 virus was found to utilize a relatively lower pH for hemagglutinin activation, similar to human influenza viruses. Our data suggest that the LPAI H7N2 virus requires further adaptation before representing a substantial threat to public health. However, the reemergence of an LPAI H7N2 virus in the northeastern United States underscores the need for continuous surveillance of emerging zoonotic influenza viruses inclusive of mammalian species, such as domestic felines, that are not commonly considered intermediate hosts for avian influenza viruses.IMPORTANCE Avian influenza viruses are capable of crossing the species barrier to infect mammals, an event of public health concern due to the potential acquisition of a pandemic phenotype. In December 2016, an H7N2 virus caused an outbreak in cats in multiple animal shelters in New York State. This was the first detection of this virus in the northeastern United States in over a decade and the first documented infection of a felid with an H7N2 virus. A veterinarian became infected following occupational exposure to H7N2 virus-infected cats, necessitating the evaluation of this virus for its capacity to cause disease in mammals. While the H7N2 virus was associated with mild illness in mice and ferrets and did not spread well between ferrets, it nonetheless possessed several markers of virulence for mammals. These data highlight the promiscuity of influenza viruses and the need for diligent surveillance across multiple species to quickly identify an emerging strain with pandemic potential.


Asunto(s)
Subtipo H7N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Enfermedades Profesionales/virología , Veterinarios , Animales , Gatos , Línea Celular , Modelos Animales de Enfermedad , Transmisión de Enfermedad Infecciosa , Hurones , Humanos , Subtipo H7N2 del Virus de la Influenza A/patogenicidad , Subtipo H7N2 del Virus de la Influenza A/fisiología , Ratones , Ciudad de Nueva York , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Virulencia , Replicación Viral
12.
Mol Ther ; 25(4): 989-1002, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28215994

RESUMEN

Recombinant, Escherichia coli-derived outer membrane vesicles (rOMVs), which display heterologous protein subunits, have potential as a vaccine adjuvant platform. One drawback to rOMVs is their lipopolysaccharide (LPS) content, limiting their translatability to the clinic due to potential adverse effects. Here, we explore a unique rOMV construct with structurally remodeled lipids containing only the lipid IVa portion of LPS, which does not stimulate human TLR4. The rOMVs are derived from a genetically engineered B strain of E. coli, ClearColi, which produces lipid IVa, and which was further engineered in our laboratory to hypervesiculate and make rOMVs. We report that rOMVs derived from this lipid IVa strain have substantially attenuated pyrogenicity yet retain high levels of immunogenicity, promote dendritic cell maturation, and generate a balanced Th1/Th2 humoral response. Additionally, an influenza A virus matrix 2 protein-based antigen displayed on these rOMVs resulted in 100% survival against a lethal challenge with two influenza A virus strains (H1N1 and H3N2) in mice with different genetic backgrounds (BALB/c, C57BL/6, and DBA/2J). Additionally, a two-log reduction of lung viral titer was achieved in a ferret model of influenza infection with human pandemic H1N1. The rOMVs reported herein represent a potentially safe and simple subunit vaccine delivery platform.


Asunto(s)
Escherichia coli/inmunología , Vesículas Extracelulares/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Diferenciación Celular , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Escherichia coli/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Inmunoglobulina G , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo
13.
J Virol ; 89(10): 5515-24, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740986

RESUMEN

UNLABELLED: Glycoprotein D (gD) plays an essential role in cell entry of many simplexviruses. B virus (Macacine herpesvirus 1) is closely related to herpes simplex virus 1 (HSV-1) and encodes gD, which shares more than 70% amino acid similarity with HSV-1 gD. Previously, we have demonstrated that B virus gD polyclonal antibodies were unable to neutralize B virus infectivity on epithelial cell lines, suggesting gD is not required for B virus entry into these cells. In the present study, we confirmed this finding by producing a B virus mutant, BV-ΔgDZ, in which the gD gene was replaced with a lacZ expression cassette. Recombinant plaques were selected on complementing VD60 cells expressing HSV-1 gD. Virions lacking gD were produced in Vero cells infected with BV-ΔgDZ. In contrast to HSV-1, B virus lacking gD was able to infect and form plaques on noncomplementing cell lines, including Vero, HEp-2, LLC-MK2, primary human and macaque dermal fibroblasts, and U373 human glioblastoma cells. The gD-negative BV-ΔgDZ also failed to enter entry-resistant murine B78H1 cells bearing a single gD receptor, human nectin-1, but gained the ability to enter when phenotypically supplemented with HSV-1 gD. Cell attachment and penetration rates, as well as the replication characteristics of BV-ΔgDZ in Vero cells, were almost identical to those of wild-type (wt) B virus. These observations indicate that B virus can utilize gD-independent cell entry and transmission mechanisms, in addition to generally used gD-dependent mechanisms. IMPORTANCE: B virus is the only known simplexvirus that causes zoonotic infection, resulting in approximately 80% mortality in untreated humans or in lifelong persistence with the constant threat of reactivation in survivors. Here, we report that B virus lacking the gD envelope glycoprotein infects both human and monkey cells as efficiently as wild-type B virus. These data provide evidence for a novel mechanism(s) utilized by B virus to gain access to target cells. This mechanism is different from those used by its close relatives, HSV-1 and -2, where gD is a pivotal protein in the virus entry process. The possibility remains that unidentified receptors, specific for B virus, permit virus entry into target cells through gD-independent pathways. Understanding the molecular mechanisms of B virus entry may help in developing rational therapeutic strategies for the prevention and treatment of B virus infection in both macaques and humans.


Asunto(s)
Herpesvirus Cercopitecino 1/fisiología , Proteínas del Envoltorio Viral/fisiología , Internalización del Virus , Animales , Línea Celular , Chlorocebus aethiops , Eliminación de Gen , Genes Virales , Prueba de Complementación Genética , Herpesvirus Cercopitecino 1/genética , Herpesvirus Cercopitecino 1/patogenicidad , Humanos , Macaca mulatta , Piel/citología , Piel/virología , Células Vero , Proteínas del Envoltorio Viral/genética , Replicación Viral
15.
mBio ; 15(1): e0295723, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112470

RESUMEN

IMPORTANCE: Despite the accumulation of evidence showing that airborne transmissible influenza A virus (IAV) typically has a lower pH threshold for hemagglutinin (HA) fusion activation, the underlying mechanism for such a link remains unclear. In our study, by using a pair of isogenic recombinant A(H9N2) viruses with a phenotypical difference in virus airborne transmission in a ferret model due to an acid-destabilizing mutation (HA1-Y17H) in the HA, we demonstrate that an acid-stable A(H9N2) virus possesses a multitude of advantages over its less stable counterpart, including better fitness in the ferret respiratory tract, more effective aerosol emission from infected animals, and improved host susceptibility. Our study provides supporting evidence for the requirement of acid stability in efficient airborne transmission of IAV and sheds light on fundamental mechanisms for virus airborne transmission.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Animales , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/metabolismo , Aerosoles y Gotitas Respiratorias/virología , Gripe Humana/transmisión , Humanos , Modelos Animales de Enfermedad , Sustitución de Aminoácidos
16.
Emerg Microbes Infect ; 13(1): 2332667, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38494746

RESUMEN

Clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses have caused large outbreaks within avian populations on five continents, with concurrent spillover into a variety of mammalian species. Mutations associated with mammalian adaptation have been sporadically identified in avian isolates, and more frequently among mammalian isolates following infection. Reports of human infection with A(H5N1) viruses following contact with infected wildlife have been reported on multiple continents, highlighting the need for pandemic risk assessment of these viruses. In this study, the pathogenicity and transmissibility of A/Chile/25945/2023 HPAI A(H5N1) virus, a novel reassortant with four gene segments (PB1, PB2, NP, MP) from North American lineage, isolated from a severe human case in Chile, was evaluated in vitro and using the ferret model. This virus possessed a high capacity to cause fatal disease, characterized by high morbidity and extrapulmonary spread in virus-inoculated ferrets. The virus was capable of transmission to naïve contacts in a direct contact setting, with contact animals similarly exhibiting severe disease, but did not exhibit productive transmission in respiratory droplet or fomite transmission models. Our results indicate that the virus would need to acquire an airborne transmissible phenotype in mammals to potentially cause a pandemic. Nonetheless, this work warrants continuous monitoring of mammalian adaptations in avian viruses, especially in strains isolated from humans, to aid pandemic preparedness efforts.


Asunto(s)
Hurones , Subtipo H5N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Hurones/virología , Humanos , Chile , Gripe Humana/virología , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/veterinaria , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/fisiología , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Virus Reordenados/patogenicidad , Virus Reordenados/clasificación , Filogenia , Gripe Aviar/virología , Gripe Aviar/transmisión
17.
Commun Biol ; 6(1): 90, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690690

RESUMEN

The ferret transmission model is routinely used to evaluate the pandemic potential of newly emerging influenza A viruses. However, concurrent measurement of viral load in the air is typically not a component of such studies. To address this knowledge gap, we measured the levels of virus in ferret nasal washes as well as viral RNA emitted into the air for 14 diverse influenza viruses, encompassing human-, swine-, and avian-origin strains. Here we show that transmissible viruses display robust replication and fast release into the air. In contrast, poorly- and non-transmissible viruses show significantly reduced or delayed replication along with lower detection of airborne viral RNA at early time points post inoculation. These findings indicate that efficient ferret-to-ferret transmission via the air is directly associated with fast emission of virus-laden particles; as such, quantification of viral RNA in the air represents a useful addition to established assessments of new influenza virus strains.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Humanos , Animales , Porcinos , Hurones , Aves , ARN Viral
18.
Virology ; 582: 57-61, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028126

RESUMEN

Competition assays were conducted in vitro and in vivo to examine how the Delta (B.1.617.2) variant displaced the prototype Washington/1/2020 (WA/1) strain. While WA/1 virus exhibited a moderately increased proportion compared to that in the inoculum following co-infection in human respiratory cells, Delta variant possessed a substantial in vivo fitness advantage as this virus becoming predominant in both inoculated and contact animals. This work identifies critical traits of the Delta variant that likely played a role in it becoming a dominant variant and highlights the necessities of employing multiple model systems to assess the fitness of newly emerged SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Hurones , Animales , Humanos , SARS-CoV-2/genética , Bioensayo
19.
Emerg Microbes Infect ; 11(1): 1452-1459, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35537045

RESUMEN

Influenza A viruses (IAVs) in the swine reservoir constantly evolve, resulting in expanding genetic and antigenic diversity of strains that occasionally cause infections in humans and pose a threat of emerging as a strain capable of human-to-human transmission. For these reasons, there is an ongoing need for surveillance and characterization of newly emerging strains to aid pandemic preparedness efforts, particularly for the selection of candidate vaccine viruses and conducting risk assessments. Here, we performed a parallel comparison of the pathogenesis and transmission of genetically and antigenically diverse swine-origin A(H1N1) variant (v) and A(H1N2)v, and human seasonal A(H1N1)pdm09 IAVs using the ferret model. Both groups of viruses were capable of replication in the ferret upper respiratory tract; however, variant viruses were more frequently isolated from the lower respiratory tract as compared to the human-adapted viruses. Regardless of virus origin, observed clinical signs of infection differed greatly between strains, with some viruses causing nasal discharge, sneezing and, in some instances, diarrhea in ferrets. The most striking difference between the viruses was the ability to transmit through the air. Human-adapted viruses were capable of airborne transmission between all ferret pairs. In contrast, only one out of the four tested variant viruses was able to transmit via the air as efficiently as the human-adapted viruses. Overall, this work highlights the need for sustained monitoring of emerging swine IAVs to identify strains of concern such as those that are antigenically different from vaccine strains and that possess adaptations required for efficient respiratory droplet transmission in mammals.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Estaciones del Año , Porcinos
20.
mBio ; 13(5): e0242122, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135377

RESUMEN

The continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans necessitates evaluation of variants for enhanced virulence and transmission. We used the ferret model to perform a comparative analysis of four SARS-CoV-2 strains, including an early pandemic isolate from the United States (WA1), and representatives of the Alpha, Beta, and Delta lineages. While Beta virus was not capable of pronounced replication in ferrets, WA1, Alpha, and Delta viruses productively replicated in the ferret upper respiratory tract, despite causing only mild disease with no overt histopathological changes. Strain-specific transmissibility was observed; WA1 and Delta viruses transmitted in a direct contact setting, whereas Delta virus was also capable of limited airborne transmission. Viral RNA was shed in exhaled air particles from all inoculated animals but was highest for Delta virus. Prior infection with SARS-CoV-2 offered varied protection against reinfection with either homologous or heterologous variants. Notable genomic variants in the spike protein were most frequently detected following WA1 and Delta virus infection. IMPORTANCE Continued surveillance and risk assessment of emerging SARS-CoV-2 variants are critical for pandemic response and preparedness. As such, in vivo evaluations are indispensable for early detection of variants with enhanced virulence and transmission. Here, we used the ferret model to compare the pathogenicity and transmissibility of an original SARS-CoV-2 isolate (USA-WA1/2020 [WA1]) to those of a panel of Alpha, Beta, and Delta variants, as well as to evaluate protection from homologous and heterologous reinfection. We observed strain-specific differences in replication kinetics in the ferret respiratory tract and virus load emitted into the air, revealing enhanced transmissibility of the Delta virus relative to previously detected strains. Prior infection with SARS-CoV-2 provided varied levels of protection from reinfection, with the Beta strain eliciting the lowest level of protection. Overall, we found that ferrets represent a useful model for comparative assessments of SARS-CoV-2 infection, transmission, and reinfection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Hurones , Reinfección , ARN Viral/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA