Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 539(7628): 254-258, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27799655

RESUMEN

The optimal foraging strategy in a given environment depends on the number of competing individuals and their behavioural strategies. Little is known about the genes and neural circuits that integrate social information into foraging decisions. Here we show that ascaroside pheromones, small glycolipids that signal population density, suppress exploratory foraging in Caenorhabditis elegans, and that heritable variation in this behaviour generates alternative foraging strategies. We find that natural C. elegans isolates differ in their sensitivity to the potent ascaroside icas#9 (IC-asc-C5). A quantitative trait locus (QTL) regulating icas#9 sensitivity includes srx-43, a G-protein-coupled icas#9 receptor that acts in the ASI class of sensory neurons to suppress exploration. Two ancient haplotypes associated with this QTL confer competitive growth advantages that depend on ascaroside secretion, its detection by srx-43 and the distribution of food. These results suggest that balancing selection at the srx-43 locus generates alternative density-dependent behaviours, fulfilling a prediction of foraging game theory.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Conducta Alimentaria , Selección Genética , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/aislamiento & purificación , Proteínas de Caenorhabditis elegans/metabolismo , Conducta Alimentaria/efectos de los fármacos , Alimentos , Teoría del Juego , Haplotipos , Hexosas/metabolismo , Hexosas/farmacología , Indoles/farmacología , Masculino , Feromonas/metabolismo , Feromonas/farmacología , Densidad de Población , Sitios de Carácter Cuantitativo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/metabolismo , Conducta Social
2.
Mar Environ Res ; 196: 106371, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309244

RESUMEN

This study evaluated water quality, nitrogen (N), and phytoplankton assemblage linkages along the western Long Island Sound (USA) shoreline (Nov. 2020-Dec. 2021) following COVID-19 stay-in-place (SIP) orders through monthly surveys and N-addition bioassays. Ammonia-N (AmN; NH3+NH4+) negatively correlated with total chlorophyll-a (chl-a) at all sites; this was significant at Alley Creek, adjacent to urban wastewater inputs, and at Calf Pasture, by the Norwalk River (Spearman rank correlation, p < 0.01 and 0.02). Diatoms were abundant throughout the study, though dinoflagellates (Heterocapsa, Prorocentrum), euglenoids/cryptophytes, and both nano- and picoplankton biomass increased during summer. In field and experimental assessments, high nitrite + nitrate (N + N) and low AmN increased diatom abundances while AmN was positively linked to cryptophyte concentrations. Likely N + N decreases with presumably minimal changes in AmN and organic N during COVID-19 SIP resulted in phytoplankton assemblage shifts (decreased diatoms, increased euglenoids/cryptophytes), highlighting the ecological impacts of N-form delivered by wastewater to urban estuaries.


Asunto(s)
COVID-19 , Diatomeas , Dinoflagelados , Humanos , Fitoplancton/fisiología , Nitrógeno/análisis , Connecticut , New York , Aguas Residuales , Diatomeas/fisiología , Ríos , Estuarios
3.
Cell Rep ; 41(8): 111685, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417877

RESUMEN

Insulin/insulin-like growth factor (IGF) receptor signaling (IIS) supports context-dependent learning in vertebrates and invertebrates. Here, we identify cell-specific mechanisms of IIS that integrate sensory information with food context to drive synaptic plasticity and learning. In the nematode Caenorhabditis elegans, pairing food deprivation with an odor such as butanone suppresses attraction to that odor. We find that aversive olfactory learning requires the insulin receptor substrate (IRS) protein IST-1 and atypical signaling through the insulin/IGF-1 receptor DAF-2. Cell-specific knockout and rescue demonstrate that DAF-2 acts in the AWCON sensory neuron, which detects butanone, and that learning preferentially depends upon the axonally localized DAF-2c isoform. Acute food deprivation increases DAF-2 levels in AWCON post-transcriptionally through an insulin- and insulin receptor substrate-1 (ist-1)-dependent process. Aversive learning alters the synaptic output of AWCON by suppressing odor-regulated glutamate release in wild-type animals, but not in ist-1 mutants, suggesting that axonal insulin signaling regulates synaptic transmission to support aversive memory.


Asunto(s)
Proteínas de Caenorhabditis elegans , Somatomedinas , Animales , Insulina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Glutámico , Caenorhabditis elegans/metabolismo , Células Receptoras Sensoriales/metabolismo , Butanonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA