Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 188(1): 208-219, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34662399

RESUMEN

Recent studies demonstrate that several polyphenolic compounds produced from beyond the canonical monolignol biosynthetic pathways can behave as lignin monomers, participating in radical coupling reactions and being incorporated into lignin polymers. Here, we show various classes of flavonoids, the chalconoid naringenin chalcone, the flavanones naringenin and dihydrotricin, and the flavone tricin, incorporated into the lignin polymer of papyrus (Cyperus papyrus L.) rind. These flavonoids were released from the rind lignin by Derivatization Followed by Reductive Cleavage (DFRC), a chemical degradative method that cleaves the ß-ether linkages, indicating that at least a fraction of each was integrated into the lignin as ß-ether-linked structures. Due to the particular structure of tricin and dihydrotricin, whose C-3' and C-5' positions at their B-rings are occupied by methoxy groups, these compounds can only be incorporated into the lignin through 4'-O-ß bonds. However, naringenin chalcone and naringenin have no substituents at these positions and can therefore form additional carbon-carbon linkages, including 3'- or 5'-ß linkages that form phenylcoumaran structures not susceptible to cleavage by DFRC. Furthermore, Nuclear Magnetic Resonance analysis indicated that naringenin chalcone can also form additional linkages through its conjugated double bond. The discovery expands the range of flavonoids incorporated into natural lignins, further broadens the traditional definition of lignin, and enhances the premise that any phenolic compound present at the cell wall during lignification could be oxidized and potentially integrated into the lignin structure, depending only on its chemical compatibility. This study indicates that papyrus lignin has a unique structure, as it is the only lignin known to date that integrates such a diversity of phenolic compounds from different classes of flavonoids. This discovery will open up new ways to engineer and design lignins with specific properties and for enhanced value.


Asunto(s)
Sitios de Unión , Cyperus/química , Cyperus/metabolismo , Flavonoides/biosíntesis , Lignina/biosíntesis , Estructura Molecular , Vías Biosintéticas , Egipto
2.
J Exp Bot ; 73(18): 6307-6333, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35788296

RESUMEN

The molecular mechanisms associated with secondary cell wall (SCW) deposition in sorghum remain largely uncharacterized. Here, we employed untargeted metabolomics and large-scale transcriptomics to correlate changes in SCW deposition with variation in global gene expression profiles and metabolite abundance along an elongating internode of sorghum, with a major focus on lignin and phenolic metabolism. To gain deeper insight into the metabolic and transcriptional changes associated with pathway perturbations, a bmr6 mutant [with reduced cinnamyl alcohol dehydrogenase (CAD) activity] was analyzed. In the wild type, internode development was accompanied by an increase in the content of oligolignols, p-hydroxybenzaldehyde, hydroxycinnamate esters, and flavonoid glucosides, including tricin derivatives. We further identified modules of genes whose expression pattern correlated with SCW deposition and the accumulation of these target metabolites. Reduced CAD activity resulted in the accumulation of hexosylated forms of hydroxycinnamates (and their derivatives), hydroxycinnamaldehydes, and benzenoids. The expression of genes belonging to one specific module in our co-expression analysis correlated with the differential accumulation of these compounds and contributed to explaining this metabolic phenotype. Metabolomics and transcriptomics data further suggested that CAD perturbation activates distinct detoxification routes in sorghum internodes. Our systems biology approach provides a landscape of the metabolic and transcriptional changes associated with internode development and with reduced CAD activity in sorghum.


Asunto(s)
Sorghum , Sorghum/genética , Sorghum/metabolismo , Lignina/metabolismo , Regulación de la Expresión Génica de las Plantas , Grano Comestible/metabolismo , Flavonoides/metabolismo , Glucósidos/metabolismo , Ésteres/metabolismo
3.
Molecules ; 26(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299657

RESUMEN

Papyri belong to the oldest writing grounds in history. Their conservation is of the highest importance in preserving our cultural heritage, which is best achieved based on an extensive knowledge of the materials' constituents to choose a tailored conservation approach. Thermogravimetric Analysis (TGA) has been widely employed to quantify cellulose and lignin in papyrus sheets, yielding reported lignin contents of 25% to 40%. In this work, the TGA method conventionally used for papyrus samples was repeated and compared to other lignin determination approaches (Klason-lignin and acetyl bromide-soluble lignin). TGA can lead to a large overestimation of the lignin content of commercial papyrus sheets (~27%) compared to the other methods (~5%). A similar overestimation of the lignin content was found for the pith and rind of the native papyrus plant. We concluded that the TGA method should, therefore, not be used for lignin quantification.


Asunto(s)
Lignina/análisis , Extractos Vegetales
4.
Plant Physiol ; 180(3): 1310-1321, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023874

RESUMEN

Recent investigations have revealed that, in addition to monolignols, some phenolic compounds derived from the flavonoid and hydroxystilbene biosynthetic pathways can also function as true lignin monomers in some plants. In this study, we found that the hydroxystilbene glucosides isorhapontin (isorhapontigenin-O-glucoside) and, at lower levels, astringin (piceatannol-O-glucoside) and piceid (resveratrol-O-glucoside) are incorporated into the lignin polymer in Norway spruce (Picea abies) bark. The corresponding aglycones isorhapontigenin, piceatannol, and resveratrol, along with glucose, were released by derivatization followed by reductive cleavage, a chemical degradative method that cleaves ß-ether bonds in lignin, indicating that the hydroxystilbene glucosides are (partially) incorporated into the lignin structure through ß-ether bonds. Two-dimensional NMR analysis confirmed the occurrence of hydroxystilbene glucosides in this lignin, and provided additional information regarding their modes of incorporation into the polymer. The hydroxystilbene glucosides, particularly isorhapontin and astringin, can therefore be considered genuine lignin monomers that participate in coupling and cross-coupling reactions during lignification in Norway spruce bark.


Asunto(s)
Glucósidos/metabolismo , Picea/metabolismo , Corteza de la Planta/metabolismo , Estilbenos/metabolismo , Glucósidos/química , Lignina/síntesis química , Lignina/química , Lignina/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Químicos , Estructura Molecular , Noruega , Picea/química , Corteza de la Planta/química , Resveratrol/química , Resveratrol/metabolismo , Estilbenos/química
5.
Plant Cell Environ ; 43(9): 2172-2191, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32441772

RESUMEN

Although cell wall polymers play important roles in the tolerance of plants to abiotic stress, the effects of salinity on cell wall composition and metabolism in grasses remain largely unexplored. Here, we conducted an in-depth study of changes in cell wall composition and phenolic metabolism induced upon salinity in maize seedlings and plants. Cell wall characterization revealed that salt stress modulated the deposition of cellulose, matrix polysaccharides and lignin in seedling roots, plant roots and stems. The extraction and analysis of arabinoxylans by size-exclusion chromatography, 2D-NMR spectroscopy and carbohydrate gel electrophoresis showed a reduction of arabinoxylan content in salt-stressed roots. Saponification and mild acid hydrolysis revealed that salinity also reduced the feruloylation of arabinoxylans in roots of seedlings and plants. Determination of lignin content and composition by nitrobenzene oxidation and 2D-NMR confirmed the increased incorporation of syringyl units in lignin of maize roots. Salt stress also induced the expression of genes and the activity of enzymes enrolled in phenylpropanoid biosynthesis. The UHPLC-MS-based metabolite profiling confirmed the modulation of phenolic profiling by salinity and the accumulation of ferulate and its derivatives 3- and 4-O-feruloyl quinate. In conclusion, we present a model for explaining cell wall remodeling in response to salinity.


Asunto(s)
Pared Celular/química , Fenoles/metabolismo , Polisacáridos/metabolismo , Zea mays/citología , Zea mays/metabolismo , Pared Celular/metabolismo , Celulosa/análisis , Celulosa/química , Ácidos Cumáricos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Monosacáridos/análisis , Células Vegetales/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/química , Estrés Salino/fisiología , Plantones/citología , Plantones/metabolismo , Xilanos/análisis , Xilanos/química , Xilanos/metabolismo , Zea mays/crecimiento & desarrollo
6.
Biomacromolecules ; 18(4): 1322-1332, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28287708

RESUMEN

Lignins were isolated from spruce, wheat straw, and eucalyptus by using the milled wood lignin (MWL) method. Functional groups and compositional analyses were assessed via 2D NMR and 31P NMR to realize their effect on enzyme binding. Films of the lignins were fabricated and ellipsometry, atomic force microscopy, and water contact angle measurements were used for their characterization and to reveal the changes upon enzyme adsorption. Moreover, lignin thin films were deposited on quartz crystal microgravimetry (QCM) and surface plasmon (SPR) resonance sensors and used to gain further insights into the lignin-cellulase interactions. For this purpose, a commercial multicomponent enzyme system and a monocomponent Trichoderma reesei exoglucanase (CBH-I) were considered. Strong enzyme adsorption was observed on the various lignins but compared to the multicomponent cellulases, CBH-I displayed lower surface affinity and higher binding reversibility. This resolved prevalent questions related to the affinity of this enzyme with lignin. Remarkably, a strong correlation between enzyme binding and the syringyl/guaiacyl (S/G) ratio was found for the lignins, which presented a similar hydroxyl group content (31P NMR): higher protein affinity was determined on isolated spruce lignin (99% G units), while the lowest adsorption occurred on isolated eucalyptus lignin (70% S units). The effect of electrostatic interactions in enzyme adsorption was investigated by SPR, which clearly indicated that the screening of charges allowed more extensive protein adsorption. Overall, this work furthers our understanding of lignin-cellulase interactions relevant to biomass that has been subjected to no or little pretreatment and highlights the widely contrasting effects of the nature of lignin, which gives guidance to improve lignocellulosic saccharification and related processes.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/química , Eucalyptus/química , Lignina/química , Picea/química , Triticum/química , Adsorción , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Lignina/aislamiento & purificación , Microscopía de Fuerza Atómica , Tallos de la Planta/química , Unión Proteica , Tecnicas de Microbalanza del Cristal de Cuarzo , Electricidad Estática , Resonancia por Plasmón de Superficie , Propiedades de Superficie , Trichoderma/enzimología , Madera/química
7.
Planta ; 243(5): 1143-58, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26848983

RESUMEN

MAIN CONCLUSION: Two types of lignins occurred in different lignin-carbohydrate fractions, a lignin enriched in syringyl units, less condensed, preferentially associated with xylans, and a lignin with more guaiacyl units, more condensed, associated with glucans. Lignin-carbohydrate complexes (LCC) were isolated from the fibers of sisal (Agave sisalana) and abaca (Musa textilis) according to a plant biomass fractionation procedure recently developed and which was termed as "universally" applicable to any type of lignocellulosic material. Two LCC fractions, namely glucan-lignin (GL) and xylan-lignin (XL), were isolated and differed in the content and composition of carbohydrates and lignin. In both cases, GL fractions were enriched in glucans and comparatively depleted in lignin, whereas XL fractions were depleted in glucans, but enriched in xylans and lignin. Analysis by two-dimensional Nuclear Magnetic Resonance (2D-NMR) and Derivatization Followed by Reductive Cleavage (DFRC) indicated that the XL fractions were enriched in syringyl (S)-lignin units and ß-O-4' alkyl-aryl ether linkages, whereas GL fractions have more guaiacyl (G)-lignin units and less ß-O-4' alkyl-aryl ether linkages per lignin unit. The data suggest that the structural characteristics of the lignin polymers are not homogeneously distributed within the same plant and that two different lignin polymers with different composition and structure might be present. The analyses also suggested that acetates from hemicelluloses and the acyl groups (acetates and p-coumarates) attached to the γ-OH of the lignin side chains were extensively hydrolyzed and removed during the LCC fractionation process. Therefore, caution must be paid when using this fractionation approach for the structural characterization of plants with acylated hemicelluloses and lignins. Finally, several chemical linkages (phenylglycosides and benzyl ethers) could be observed to occur between lignin and xylans in these plants.


Asunto(s)
Agave/química , Carbohidratos/química , Lignina/química , Musa/química , Conformación de Carbohidratos , Carbohidratos/aislamiento & purificación , Fraccionamiento Químico , Glucanos/química , Glucanos/aislamiento & purificación , Lignina/aislamiento & purificación , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Madera/química , Xilanos/química , Xilanos/aislamiento & purificación
8.
Angew Chem Int Ed Engl ; 55(40): 12248-51, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27573441

RESUMEN

A new heme-thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position-a challenging reaction in organic chemistry-with H2 O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC-MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation. Simultaneously, oxygenation was observed at other hydrocarbon chain positions (preferentially C2 and C11). Similar results were observed in reactions of tetradecane. The pattern of products formed, together with data on the incorporation of (18) O from the cosubstrate H2 (18) O2 , demonstrate that the enzyme acts as a peroxygenase that is able to catalyze a cascade of mono- and diterminal oxidation reactions of long-chain n-alkanes to give carboxylic acids.


Asunto(s)
Alcanos/metabolismo , Ácidos Carboxílicos/metabolismo , Hongos/enzimología , Oxigenasas de Función Mixta/metabolismo , Alcanos/química , Biocatálisis , Ácidos Carboxílicos/química , Ácidos Dicarboxílicos/análisis , Dodecanol/análisis , Cromatografía de Gases y Espectrometría de Masas , Peróxido de Hidrógeno/química , Hidroxilación , Oxidación-Reducción
9.
Appl Environ Microbiol ; 81(12): 4130-42, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25862224

RESUMEN

The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106-118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed.


Asunto(s)
Agaricales/metabolismo , Marasmius/metabolismo , Oxigenasas de Función Mixta/metabolismo , Esteroides/química , Esteroides/metabolismo , Agaricales/enzimología , Cromatografía de Gases , Simulación por Computador , Peróxido de Hidrógeno/metabolismo , Hidroxilación , Cetonas/metabolismo , Marasmius/enzimología , Espectrometría de Masas , Estereoisomerismo
10.
Planta ; 239(5): 1079-90, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24531838

RESUMEN

Xylan-lignin (XL), glucomannan-lignin (GML) and glucan-lignin (GL) complexes were isolated from spruce wood, hydrolyzed with xylanase or endoglucanase/ß-glucosidase, and analyzed by analytical pyrolysis and 2D-NMR. The enzymatic hydrolysis removed most of the polysaccharide moieties in the complexes, and the lignin content and relative abundance of lignin-carbohydrate linkages increased. Analytical pyrolysis confirmed the action of the enzymatic hydrolysis, with strong decreases of levoglucosane and other carbohydrate-derived products. Unexpectedly it also revealed that the hydrolase treatment alters the pattern of lignin breakdown products, resulting in higher amounts of coniferyl alcohol. From the anomeric carbohydrate signals in the 2D-NMR spectra, phenyl glycoside linkages (undetectable in the original complexes) could be identified in the hydrolyzed GML complex. Lower amounts of glucuronosyl and benzyl ether linkages were also observed after the hydrolysis. From the 2D-NMR spectra of the hydrolyzed complexes, it was concluded that the lignin in GML is less condensed than in XL due to its higher content in ß-O-4' ether substructures (62 % of side chains in GML vs 53 % in XL) accompanied by more coniferyl alcohol end units (16 vs 13 %). In contrast, the XL lignin has more pinoresinols (11 vs 6 %) and dibenzodioxocins (9 vs 2 %) than the GML (and both have ~13 % phenylcoumarans and 1 % spirodienones). Direct 2D-NMR analysis of the hydrolyzed GL complex was not possible due to its low solubility. However, after sample acetylation, an even less condensed lignin than in the GML complex was found (with up to 72 % ß-O-4' substructures and only 1 % pinoresinols). The study provides evidence for the existence of structurally different lignins associated to hemicelluloses (xylan and glucomannan) and cellulose in spruce wood and, at the same time, offers information on some of the chemical linkages between the above polymers.


Asunto(s)
Glucanos/química , Hidrolasas/metabolismo , Lignina/química , Mananos/química , Picea/química , Madera/química , Xilanos/química , Conformación de Carbohidratos , Celulasa/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Hidrólisis , Lignina/metabolismo , Espectroscopía de Resonancia Magnética , Mananos/metabolismo , Madera/metabolismo , Xilanos/metabolismo
11.
Int J Biol Macromol ; 261(Pt 2): 129694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281525

RESUMEN

The lignin from tritordeum straw, a hybrid cereal from crossbreeding of durum wheat and wild barley, was isolated and chemically characterized. Its composition and structure were studied by analytical pyrolysis (Py-GC/MS), nuclear magnetic resonance spectroscopy (NMR), Derivatization Followed by Reductive Cleavage (DFRC) method, and gel permeation chromatography (GPC). The data revealed an enrichment of guaiacyl (G) units (H:G:S of 3:61:36), which had a significant impact on the distribution of inter-unit linkages. The predominant linkages were the ß-O-4' alkyl-aryl ethers (78 % of all linkages), with substantial proportions of condensed linkages such as phenylcoumarans (11 %), resinols (4 %), spirodienones (4 %), and dibenzodioxocins (2 %). Moreover, DFRC revealed that tridordeum straw lignin was partly acylated at the γ-OH with both acetates and p-coumarates. Acetates were principally attached to G-units, whereas p-coumarates were predominantly attached to S-units. Furthermore, and more importantly, tritordeum lignin incorporates remarkable amounts of a valuable flavone, tricin, exceeding 30 g per kilogram of straw. Given the diverse industrial applications associated with this high-value molecule, tritordeum straw emerges as a promising and sustainable resource for its extraction.


Asunto(s)
Grano Comestible , Flavonoides , Lignina , Lignina/química , Grano Comestible/química , Estructura Molecular , Acetatos/análisis
12.
Biotechnol Bioeng ; 110(9): 2323-32, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23519689

RESUMEN

The goal of this study is the selective oxyfunctionalization of aliphatic compounds under mild and environmentally friendly conditions using a low-cost enzymatic biocatalyst. This could be possible taking advantage from a new peroxidase type that catalyzes monooxygenase reactions with H2 O2 as the only cosubstrate (peroxygenase). With this purpose, recombinant peroxygenase, from gene mining in the sequenced genome of Coprinopsis cinerea and heterologous expression using an industrial fungal host, is tested for the first time on aliphatic substrates. The reaction on free and esterified fatty acids and alcohols, and long-chain alkanes was followed by gas chromatography, and the different reaction products were identified by mass spectrometry. Regioselective hydroxylation of saturated/unsaturated fatty acids was observed at the ω-1 and ω-2 positions (only at the ω-2 position in myristoleic acid). Alkyl esters of fatty acids and monoglycerides were also ω-1 or ω-2 hydroxylated, but di- and tri-glycerides were not modified. Fatty alcohols yielded hydroxy derivatives at the ω-1 or ω-2 positions (diols) but also fatty acids and their hydroxy derivatives. Interestingly, the peroxygenase was able to oxyfunctionalize alkanes giving, in addition to alcohols at positions 2 or 3, dihydroxylated derivatives at both sides of the molecule. The predominance of mono- or di-hydroxylated derivatives seems related to the higher or lower proportion of acetone, respectively, in the reaction medium. The recombinant C. cinerea peroxygenase appears as a promising biocatalyst for alkane activation and production of aliphatic oxygenated derivatives, with better properties than the previously reported peroxygenase from Agrocybe aegerita, and advantages related to its recombinant nature for enzyme engineering and industrial production.


Asunto(s)
Agaricales/enzimología , Alcanos/metabolismo , Ácidos Grasos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Recombinantes/metabolismo , Agaricales/genética , Alcanos/química , Ácidos Grasos/química , Alcoholes Grasos/química , Alcoholes Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Hidroxilación , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
Biomacromolecules ; 14(9): 3073-80, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-23841747

RESUMEN

The effects and mechanism of pulp delignification by laccases in the presence of redox mediators have been investigated on unbleached eucalyptus kraft pulp treated with laccases from Pycnoporus cinnabarinus (PcL) and Myceliophthora thermophila (MtL) and 1-hydroxybenzotriazole (HBT) and methyl syringate (MeS) as mediators, respectively. Determination of the corrected κ number in eucalyptus pulps after the enzymatic treatments revealed that the PcL-HBT system exhibited a more remarkable delignification effect than the MtL-MeS system. To obtain further insight, lignin-carbohydrate complexes were fractionated and subsequently characterized by nuclear magnetic resonance, thioacidolysis (followed by gas chromatography and size exclusion chromatography), and pyrolysis-gas chromatography-mass spectrometry (pyrolysis-GC-MS) analyses before and after the enzymatic treatments and their controls. We can conclude that the laccase-mediator treatments altered the lignin structures in such a way that more lignin was recovered in the xylan-lignin fractions, as shown by Klason lignin estimation, with smaller amounts of both syringyl (S) and guaiacyl (G) uncondensed units, as shown by thioacidolysis and gas chromatography, especially after the PcL-HBT treatment. The laccase-mediator treatment produced oxidation at Cα and cleavage of Cα and Cß bonds in pulp lignin, as shown by pyrolysis-GC-MS. The general mechanism of residual lignin degradation in the pulp by laccase-mediator treatments is discussed in light of the results obtained.


Asunto(s)
Lacasa/química , Lignina/química , Xilanos/química , Ascomicetos/enzimología , Biocatálisis , Conformación de Carbohidratos , Eucalyptus/química , Proteínas Fúngicas/química , Lignina/aislamiento & purificación , Preparaciones de Plantas/química , Pycnoporus/enzimología , Xilanos/aislamiento & purificación
14.
Polymers (Basel) ; 15(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37111987

RESUMEN

The pruning of sweet orange trees (Citrus sinensis) generates large amounts of lignocellulosic residue. Orange tree pruning (OTP) residue presents a significant lignin content (21.2%). However, there are no previous studies describing the structure of the native lignin in OTPs. In the present work, the "milled-wood lignin" (MWL) was extracted from OTPs and examined in detail via gel permeation chromatography (GPC), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and two-dimensional nuclear magnetic resonance (2D-NMR). The results indicated that the OTP-MWL was mainly composed of guaiacyl (G) units, followed by syringyl (S) units and minor amounts of p-hydroxyphenyl (H) units (H:G:S composition of 1:62:37). The predominance of G-units had a strong influence on the abundance of the different linkages; therefore, although the most abundant linkages were ß-O-4' alkyl-aryl ethers (70% of total lignin linkages), the lignin also contained significant amounts of phenylcoumarans (15%) and resinols (9%), as well as other condensed linkages such as dibenzodioxocins (3%) and spirodienones (3%). The significant content of condensed linkages will make this lignocellulosic residue more recalcitrant to delignification than other hardwoods with lower content of these linkages.

15.
Sci Adv ; 9(10): eade5519, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36888720

RESUMEN

Hydroxystilbenes are a class of polyphenolic compounds that behave as lignin monomers participating in radical coupling reactions during the lignification. Here, we report the synthesis and characterization of various artificial copolymers of monolignols and hydroxystilbenes, as well as low-molecular-mass compounds, to obtain the mechanistic insights into their incorporation into the lignin polymer. Integrating the hydroxystilbenes, resveratrol and piceatannol, into monolignol polymerization in vitro, using horseradish peroxidase to generate phenolic radicals, produced synthetic lignins [dehydrogenation polymers (DHPs)]. Copolymerization of hydroxystilbenes with monolignols, especially sinapyl alcohol, by in vitro peroxidases notably improved the reactivity of monolignols and resulted in substantial yields of synthetic lignin polymers. The resulting DHPs were analyzed using two-dimensional NMR and 19 synthesized model compounds to confirm the presence of hydroxystilbene structures in the lignin polymer. The cross-coupled DHPs confirmed both resveratrol and piceatannol as authentic monomers participating in the oxidative radical coupling reactions during polymerization.


Asunto(s)
Biomimética , Lignina , Resveratrol , Lignina/metabolismo , Polimerizacion , Estrés Oxidativo
16.
Int J Biol Macromol ; 242(Pt 2): 124811, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37187416

RESUMEN

The differences in the composition and structure of the lignins from straws of different oat (Avena sativa L.) varieties, planted in two seasons (winter and spring), were studied in detail by different analytical techniques such as pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance (2D-NMR), derivatization followed by reductive cleavage (DFRC), and gel permeation chromatography (GPC). Overall, the analyses revealed that oat straw lignins were enriched in guaiacyl (G; 50-56 %) and syringyl (S; 39-44 %) units, with relatively lower amounts of p-hydroxyphenyl (H; 4-6 %) units. The lignins also incorporated significant quantities of p-coumarates (8-14 % of total lignin units), which are acylating the γ-OH of the lignin side chains, and predominantly over the S units. Furthermore, oat straw lignins also incorporated considerable amounts of the flavone tricin (5-12 % of total lignin units). Interestingly, this study revealed that the lignin content and composition of the oat straws vary with genotype and planting season. Since p-coumarates and tricin are high-value aromatic compounds especially attractive from a biorefinery point of view, the information disclosed here is highly relevant to plant breeding programs aimed at developing functional foods and lignin modifications for improved biorefinery applications.


Asunto(s)
Avena , Lignina , Lignina/química , Estaciones del Año , Fitomejoramiento , Espectroscopía de Resonancia Magnética
17.
Plant Physiol ; 155(2): 667-82, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21098672

RESUMEN

Lignin changes during plant growth were investigated in a selected Eucalyptus globulus clone. The lignin composition and structure were studied in situ by a new procedure enabling the acquisition of two-dimensional nuclear magnetic resonance (2D-NMR) spectra on wood gels formed in the NMR tube as well as by analytical pyrolysis-gas chromatography-mass spectrometry. In addition, milled-wood lignins were isolated and analyzed by 2D-NMR, pyrolysis-gas chromatography-mass spectrometry, and thioacidolysis. The data indicated that p-hydroxyphenyl and guaiacyl units are deposited at the earlier stages, whereas the woods are enriched in syringyl (S) lignin during late lignification. Wood 2D-NMR showed that ß-O-4' and resinol linkages were predominant in the eucalypt lignin, whereas other substructures were present in much lower amounts. Interestingly, open ß-1' structures could be detected in the isolated lignins. Phenylcoumarans and cinnamyl end groups were depleted with age, spirodienone abundance increased, and the main substructures (ß-O-4' and resinols) were scarcely modified. Thioacidolysis revealed a higher predominance of S units in the ether-linked lignin than in the total lignin and, in agreement with NMR, also indicated that resinols are the most important nonether linkages. Dimer analysis showed that most of the resinol-type structures comprised two S units (syringaresinol), the crossed guaiacyl-S resinol appearing as a minor substructure and pinoresinol being totally absent. Changes in hemicelluloses were also shown by the 2D-NMR spectra of the wood gels without polysaccharide isolation. These include decreases of methyl galacturonosyl, arabinosyl, and galactosyl (anomeric) signals, assigned to pectin and related neutral polysaccharides, and increases of xylosyl (which are approximately 50% acetylated) and 4-O-methylglucuronosyl signals.


Asunto(s)
Eucalyptus/química , Lignina/química , Cromatografía de Gases y Espectrometría de Masas , Lignina/análisis , Espectroscopía de Resonancia Magnética , Madera/química
18.
Antioxidants (Basel) ; 11(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35453429

RESUMEN

Unspecific peroxygenases (UPOs), the extracellular enzymes capable of oxygenating a potpourri of aliphatic and aromatic substrates with a peroxide as co-substrate, come out with a new reaction: carbon-chain shortening during the conversion of fatty acids with the well-known UPOs from Coprinopsis cinerea (rCciUPO) and Cyclocybe (Agrocybe) aegerita (AaeUPO). Although a pathway (Cα-oxidation) for shortening the hydrocarbon chain of saturated fatty acids has already been reported for the UPO from Marasmius rotula (MroUPO), it turned out that rCciUPO and AaeUPO shorten the chain length of both saturated and unsaturated fatty acids in a different way. Thus, the reaction sequence does not necessarily start at the Cα-carbon (adjacent to the carboxyl group), as in the case of MroUPO, but proceeds through the subterminal (ω-1 and ω-2) carbons of the chain via several oxygenations. This new type of shortening leads to the formation of a dicarboxylic fatty acid reduced in size by two carbon atoms in the first step, which can subsequently be further shortened, carbon by carbon, by the UPO Cα-oxidation mechanism.

19.
Phytochemistry ; 197: 113122, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35131641

RESUMEN

Diferuloylputrescine has been found in a variety of plant species, and recent work has provided evidence of its covalent bonding into lignin. Results from nuclear magnetic resonance spectroscopy revealed the presence of bonding patterns consistent with homo-coupling of diferuloylputrescine and the possibility of cross-coupling with lignin. In the present work, density functional theory calculations have been applied to assess the energetics associated with radical coupling, rearomatization, and dehydrogenation for possible homo-coupled dimers of diferuloylputrescine and cross-coupled dimers of diferuloylputrescine and coniferyl alcohol. The values obtained for these reaction energetics are consistent with those reported for monolignols and other novel lignin monomers. As such, this study shows that there would be no thermodynamic impediment to the incorporation of diferuloylputrescine into the lignin polymer and its addition to the growing list of non-canonical lignin monomers.


Asunto(s)
Lignina , Putrescina , Teoría Funcional de la Densidad , Lignina/química , Espectroscopía de Resonancia Magnética , Putrescina/análogos & derivados
20.
Front Plant Sci ; 13: 868319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392522

RESUMEN

Rice (Oryza sativa L.) straw is a highly abundant, widely available, and low cost agricultural waste that can be used as a source to extract valuable phytochemicals of industrial interest. Hence, in the present work, the chemical composition of the lipophilic compounds present in rice straw was thoroughly characterized by gas chromatography and mass spectrometry using medium-length high-temperature capillary columns, which allowed the identification of a wide range of lipophilic compounds, from low molecular weight fatty acids to high molecular weight sterols esters, sterol glucosides, or triglycerides in the same chromatogram. The most abundant lipophilic compounds in rice straw were fatty acids, which accounted for up to 6,400 mg/kg (41.0% of all identified compounds), followed by free sterols (1,600 mg/kg; 10.2%), sterol glucosides (1,380 mg/kg; 8.8%), fatty alcohols (1,150 mg/kg; 7.4%), and triglycerides (1,140 mg/kg; 7.3%), along with lower amounts of high molecular weight wax esters (900 mg/kg; 5.8%), steroid ketones (900 mg/kg; 5.8%), monoglycerides (600 mg/kg; 3.8%), alkanes (400 mg/kg; 2.6%), diglycerides (380 mg/kg; 2.4%), sterol esters (380 mg/kg; 2.4%), tocopherols (340 mg/kg; 2.2%), and steroid hydrocarbons (60 mg/kg; 0.4%). This information is of great use for the valorization of rice straw to obtain valuable lipophilic compounds of interest for the nutraceutical, pharmaceutical, cosmetic, and chemical industries. Moreover, this knowledge is also useful for other industrial uses of rice straw, as in pulp and papermaking, since some lipophilic compounds are at the origin of the so-called pitch deposits during pulping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA