Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 605(7908): 46-50, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508782

RESUMEN

Progress towards the realization of quantum computers requires persistent advances in their constituent building blocks-qubits. Novel qubit platforms that simultaneously embody long coherence, fast operation and large scalability offer compelling advantages in the construction of quantum computers and many other quantum information systems1-3. Electrons, ubiquitous elementary particles of non-zero charge, spin and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits through either motional or spin states depends critically on their material environment3-5. Here we report our experimental realization of a qubit platform based on isolated single electrons trapped on an ultraclean solid neon surface in vacuum6-13. By integrating an electron trap in a circuit quantum electrodynamics architecture14-20, we achieve strong coupling between the motional states of a single electron and a single microwave photon in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are implemented to measure the energy relaxation time T1 of 15 µs and phase coherence time T2 over 200 ns. These results indicate that the electron-on-solid-neon qubit already performs near the state of the art for a charge qubit21.

2.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732977

RESUMEN

Label-free measurement and analysis of single bacterial cells are essential for food safety monitoring and microbial disease diagnosis. We report a microwave flow cytometric sensor with a microstrip sensing device with reduced channel height for bacterial cell measurement. Escherichia coli B and Escherichia coli K-12 were measured with the sensor at frequencies between 500 MHz and 8 GHz. The results show microwave properties of E. coli cells are frequency-dependent. A LightGBM model was developed to classify cell types at a high accuracy of 0.96 at 1 GHz. Thus, the sensor provides a promising label-free method to rapidly detect and differentiate bacterial cells. Nevertheless, the method needs to be further developed by comprehensively measuring different types of cells and demonstrating accurate cell classification with improved machine-learning techniques.


Asunto(s)
Escherichia coli , Citometría de Flujo , Microondas , Citometría de Flujo/métodos , Escherichia coli/aislamiento & purificación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
3.
Phys Rev Lett ; 128(4): 047701, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148146

RESUMEN

We demonstrate microwave-mediated distant magnon-magnon coupling on a superconducting circuit platform, incorporating chip-mounted single-crystal Y_{3}Fe_{5}O_{12} (YIG) spheres. Coherent level repulsion and dissipative level attraction between the magnon modes of the two YIG spheres are demonstrated. The former is mediated by cavity photons of a superconducting resonator, and the latter is mediated by propagating photons of a coplanar waveguide. Our results open new avenues toward exploring integrated hybrid magnonic networks for coherent information processing on a quantum-compatible superconducting platform.

4.
Nanotechnology ; 34(4)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36260979

RESUMEN

High-resolution, x-ray phase contrast microscopy, a key technique with promising potential in biomedical imaging and diagnostics, is based on narrow-slit high-aspect-ratio gold gratings. We present the development, fabrication details, and experimental testing of the freestanding 10µm thick gold membrane masks with an array of 0.9-1.5µm void slit apertures for a novel low-energy x-ray microscope. The overall mask size is 4 mm × 4 mm, with a grating pitch of 7.5µm, 6.0-6.6µm wide gold bars are supported by 3µm wide crosslinks at 400µm intervals. The fabrication process is based on gold electroplating into a silicon mold coated with various thin films to form a voltage barrier, plating base, and sacrificial layer, followed by the mold removal to obtain the freestanding gold membrane with void slit apertures. We discuss key aspects for the materials and processes, including gold structures homogeneity, residual stresses, and prevention of collapsing of the grid elements. We further demonstrate the possibility to obtain high-resolution, high contrast 2D images of biological samples using an incoherent, rotating anode x-ray tube.

5.
Sens Actuators B Chem ; 3372021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35603327

RESUMEN

Glutamate (GLU) and gamma-aminobutyric acid (GABA) are neurotransmitters (NTs) with an essential role in signal transmission in the brain. Brain disorders, such as epilepsy, Alzheimer's and Parkinson's diseases, and traumatic brain injury can be linked to imbalances in the GLU-GABA homeostasis that occurs in sub-second to seconds time frames. Current measurement techniques can detect these two NT concentrations simultaneously only in vitro. The present work reports on the fabrication of a silicon multifunctional biosensor microarray probe for sub-second simultaneous GLU-GABA detection in real-time, with excellent analyte sensitivity and selectivity and in vivo capabilities. The novel Si probes feature four surface-functionalized platinum ultramicroelectrodes (UMEs) for simultaneous amperometric detection of GLU and GABA with a sentinel, and a built-in microfluidic channel for the introduction of neurochemicals in the proximity of the UMEs. The microchannel also allows functioning of an On-Demand In-situ Calibrator that runs in-situ biosensor calibration. The probe exhibited excellent robustness at insertion in agarose-gel brain-tissue-mimicking test, and remarkably high hydrogen peroxide sensitivity (a by-product of GLU-GABA enzyme biosensor) with values on the order of 5000 nA µM -1 cm -2 and maximum sensitivities of 204±15 nA µM -1 cm -2 and 37±7 nA µM -1 cm -2 for GLU and GABA, respectively. Furthermore, the limit of detection of the biosensors reached as low as 7 nM, 165 nM and 750 nM for H 2 O 2, GLU and GABA, respectively and a temporal resolution of hundreds of milliseconds during in vivo studies using freely moving rats.

6.
Nano Lett ; 20(12): 8933-8939, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33252230

RESUMEN

The ability to control the potential landscape in a medium of interacting particles could lead to intriguing collective behavior and innovative functionalities. Here, we utilize spatially reconfigurable magnetic potentials of a pinwheel artificial-spin-ice (ASI) structure to tailor the motion of superconducting vortices. The reconstituted chain structures of the magnetic charges in the pinwheel ASI and the strong interaction between magnetic charges and superconducting vortices allow significant modification of the transport properties of the underlying superconducting thin film, resulting in a reprogrammable resistance state that enables a reversible and switchable vortex Hall effect. Our results highlight an effective and simple method of using ASI as an in situ reconfigurable nanoscale energy landscape to design reprogrammable superconducting electronics, which could also be applied to the in situ control of properties and functionalities in other magnetic particle systems, such as magnetic skyrmions.

7.
Phys Rev Lett ; 124(8): 087204, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167348

RESUMEN

Noncollinear antiferromagnets can have additional spin Hall effects due to the net chirality of their magnetic spin structure, which provides for more complex spin-transport phenomena compared to ordinary nonmagnetic materials. Here we investigated how ferromagnetic resonance of permalloy (Ni_{80}Fe_{20}) is modulated by spin Hall effects in adjacent epitaxial IrMn_{3} films. We observe a large dc modulation of the ferromagnetic resonance linewidth for currents applied along the [001] IrMn_{3} direction. This very strong angular dependence of spin-orbit torques from dc currents through the bilayers can be explained by the magnetic spin Hall effect where IrMn_{3} provides novel pathways for modulating magnetization dynamics electrically.

8.
Nano Lett ; 19(6): 4052-4059, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117759

RESUMEN

Nanomechanical resonators make exquisite force sensors due to their small footprint, low dissipation, and high frequencies. Because the lowest resolvable force is limited by ambient thermal noise, resonators are either operated at cryogenic temperatures or coupled to a high-finesse optical or microwave cavity to reach sub aN Hz-1/2 sensitivity. Here, we show that operating a monolayer WS2 nanoresonator in the strongly nonlinear regime can lead to comparable force sensitivities at room temperature. Cavity interferometry was used to transduce the nonlinear response of the nanoresonator, which was characterized by multiple pairs of 1:1 internal resonance. Some of the modes exhibited exotic line shapes due to the appearance of Hopf bifurcations, where the bifurcation frequency varied linearly with the driving force and forms the basis of the advanced sensing modality. The modality is less sensitive to the measurement bandwidth, limited only by the intrinsic frequency fluctuations, and therefore, advantageous in the detection of weak incoherent forces.

9.
Phys Rev Lett ; 123(10): 107701, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31573284

RESUMEN

We demonstrate strong magnon-photon coupling of a thin-film Permalloy device fabricated on a coplanar superconducting resonator. A coupling strength of 0.152 GHz and a cooperativity of 68 are found for a 30-nm-thick Permalloy stripe. The coupling strength is tunable by rotating the biasing magnetic field or changing the volume of Permalloy. We also observe an enhancement of magnon-photon coupling in the nonlinear regime of the superconducting resonator, which is attributed to the nucleation of dynamic flux vortices. Our results demonstrate a critical step towards future integrated hybrid systems for quantum magnonics and on-chip coherent information transfer.

10.
Sensors (Basel) ; 19(9)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31052609

RESUMEN

This article reports that it is possible to make multifunctional sensing devices with ZnO infiltrated polymers while the sensing interactions could occur throughout the polymer. As such, we find that infiltrated devices with SU-8 polymer can result in highly sensitive UV sensors. Mesh dielectric core devices were found to make sensitive gas sensors with a better than 5 ppm sensitivity for formaldehyde and NO2. A new type of p-n junction device is further demonstrated that is sensitive to UV illumination, thus making it an enhanced UV sensor. Sensing devices relying on volume interactions, such as light absorption, can significantly benefit from the infiltrated polymer. In contrast, devices that rely on surface interactions, such as gas sensors, do not gain performance in any significant way with or without the infiltrated polymer.

11.
J Synchrotron Radiat ; 25(Pt 2): 373-377, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488915

RESUMEN

A novel diced spherical quartz analyzer for use in resonant inelastic X-ray scattering (RIXS) is introduced, achieving an unprecedented energy resolution of 10.53 meV at the Ir L3 absorption edge (11.215 keV). In this work the fabrication process and the characterization of the analyzer are presented, and an example of a RIXS spectrum of magnetic excitations in a Sr3Ir2O7 sample is shown.

13.
IEEE Trans Microw Theory Tech ; 64(4): 1339-1347, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27713585

RESUMEN

Novel techniques that enable reagent free detection and analysis of single cells are of great interest for the development of biological and medical sciences as well as point-of-care health service technologies. Highly sensitive and broadband radio-frequency (RF) sensors are promising candidates for such a technique. In this work, we present a highly sensitive and tunable RF sensor, which is based on interference processes and built with a 100 nm slotline structure. The highly concentrated RF fields, up to ~1.76×107 V/m, enable strong interactions between Giant unilamellar vesicles (GUVs) and fields for high sensitivity operations. We also provide two modeling approaches to extract cell dielectric properties from measured scattering parameters. GUVs of different molecular compositions are synthesized and analyzed with the RF sensor at ~2 GHz, ~2.5 GHz, and ~2.8 GHz with an initial |S21 | min of ~-100 dB. Corresponding GUV dielectric properties are obtained. A one-dimensional scanning of single GUV is also demonstrated.

14.
Opt Express ; 22(12): 14041-53, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24977503

RESUMEN

Transverse coherence of the x-ray beam from a bending magnet source was studied along multiple directions using a 2-D π/2 phase grating by measuring interferogram visibilities at different distances behind the grating. These measurements suggest that the preferred measuring orientation of a 2-D checkerboard grating is along the diagonal directions of the square blocks, where the interferograms have higher visibility and are not sensitive to the deviation of the duty cycle of the grating period. These observations are verified by thorough wavefront propagation simulations. The accuracy of the measured coherence values was also validated by the simulation and analytical results obtained from the source parameters. In addition, capability of the technique in probing spatially resolved local transverse coherence is demonstrated.

15.
Sci Rep ; 13(1): 12601, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537249

RESUMEN

We study the magnetic field response of millimeter scale fractal Sierpinski gaskets (SG) assembled of superconducting equilateral triangular patches. Directly imaged quantitative induction maps reveal hierarchical periodic filling of enclosed void areas with multiquanta magnetic flux, which jumps inside the voids in repeating bundles of individual flux quanta Φ0. The number Ns of entering flux quanta in different triangular voids of the SG is proportional to the linear size s of the void, while the field periodicity of flux jumps varies as 1/s. We explain this behavior by modeling the triangular voids in the SG with effective superconducting rings and by calculating their response following the London analysis of persistent currents, Js, induced by the applied field Ha and by the entering flux. With changing Ha, Js reaches a critical value in the vertex joints that connect the triangular superconducting patches and allows the giant flux jumps into the SG voids through phase slips or multiple Abrikosov vortex transfer across the vertices. The unique flux behavior in superconducting SG patterns, may be used to design tunable low-loss resonators with multi-line high-frequency spectrum for microwave technologies.

16.
Nanoscale ; 15(6): 2667-2673, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36652441

RESUMEN

The metal-to-insulator phase transition (MIT) in low-dimensional materials and particularly two-dimensional layered semiconductors is exciting to explore due to the fact that it challenges the prediction that a two-dimensional system must be insulating at low temperatures. Thus, the exploration of MITs in 2D layered semiconductors expands the understanding of the underlying physics. Here we report the MIT of a few-layered MoSe2 field effect transistor under a gate bias (electric field) applied perpendicular to the MoSe2 layers. With low applied gate voltage, the conductivity as a function of temperature from 150 K to 4 K shows typical semiconducting to insulating character. Above a critical applied gate voltage, Vc, the conductivity becomes metallic (i.e., the conductivity increases continuously as a function of decreasing temperature). Evidence of a metallic state was observed using an applied gate voltage or, equivalently, increasing the density of charge carriers within the 2D channel. We analyzed the nature of the phase transition using percolation theory, where conductivity scales with the density of charge carriers as σ ∝ (n - nc)δ. The critical exponent for a percolative phase transition, δ(T), has values ranging from 1.34 (at T = 150 K) to 2 (T = 20 K), which is close to the theoretical value of 1.33 for percolation to occur. Thus we conclude that the MIT in few-layered MoSe2 is driven by charge carrier percolation. Furthermore, the conductivity does not scale with temperature, which is a hallmark of a quantum critical phase transition.

17.
Lab Chip ; 23(9): 2327-2340, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37083052

RESUMEN

The paper presents fabrication methodologies that integrate silicon components into soft microfluidic devices to perform microbial cell lysis for biological applications. The integration methodology consists of a silicon chip that is fabricated with microstructure arrays and embedded in a microfluidic device, which is driven by piezoelectric actuation to perform cell lysis by physically breaking microbial cell walls via micromechanical impaction. We present different silicon microarray geometries, their fabrication techniques, integration of said micropatterned silicon impactor chips into microfluidic devices, and device operation and testing on synthetic microbeads and two yeast species (S. cerevisiae and C. albicans) to evaluate their efficacy. The generalized strategy developed for integration of the micropatterned silicon impactor chip into soft microfluidic devices can serve as an important process step for a new class of hybrid silicon-polymeric devices for future cellular processing applications. The proposed integration methodology can be scalable and integrated as an in-line cell lysis tool with existing microfluidics assays.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Silicio/química , Saccharomyces cerevisiae , Dispositivos Laboratorio en un Chip
18.
J Synchrotron Radiat ; 19(Pt 5): 814-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22898962

RESUMEN

New aspects of synchrotron Mössbauer microscopy are presented. A 5 µm spatial resolution is achieved, and sub-micrometer resolution is envisioned. Two distinct and unique methods, synchrotron Mössbauer imaging and nuclear resonant incoherent X-ray imaging, are used to resolve spatial distribution of species that are chemically and magnetically distinct from one another. Proof-of-principle experiments were performed on enriched (57)Fe phantoms, and on samples with natural isotopic abundance, such as meteorites.


Asunto(s)
Meteoroides , Espectroscopía de Mossbauer/métodos , Microscopía , Fantasmas de Imagen , Sincrotrones
19.
Nanotechnology ; 23(7): 075301, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22261094

RESUMEN

We report the fabrication of horizontally aligned ultrananocrystalline diamond (UNCD) nanowires (NWs) via two different approaches. First, with the top-down approach by using electron beam lithography (EBL) and reactive ion etching (RIE) with a photo resist layer as an etch mask. Using this approach, we demonstrate fabrication of 50 µm long UNCD NWs with widths as narrow as 40 nm. We further present an alternative approach to grow UNCD NWs at pre-defined positions through a selective seeding process. No RIE was needed either to etch the NWs or to remove the mask. In this case, we achieved UNCD NWs with lengths of 50 µm and smallest width of 90 nm respectively. Characterization of these nanowires by using scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that the UNCD NWs are well defined and fully released, with no indication of residual stress. Characterization using visible and ultraviolet (UV) Raman spectroscopy indicates that in both fabrication approaches, UNCD NWs maintain their intrinsic diamond structure.

20.
Nanoscale ; 14(28): 10082-10090, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35792094

RESUMEN

Protein assemblies that bind and organize ordered arrays of cofactors yield function structures. Multiheme assemblies found in nature yield electronically conductivity 1D nanoscale fibers and are employed in anaerobic respiration. To understand the fundamental characteristics of these organized arrays, the design of peptide amphiphiles that assemble into 1D nanostructures and yield metalloporphyrin binding sites is presented. One challenge with this class of peptide amphiphiles is identifying the correct sequence composition for high affinity binding with high heme density. Here, the peptide c16-AH(Kx)n-CO2H is explored to identify the impact of sequence length (n) and amino acid identity (x = L, I, or F) on binding affinity and midpoint potential. When n = 2, the peptide assembly yields the greatest affinity. The resulting nanoscale assemblies yield ordered arrays of the redox active molecule heme and have potential utility in the development of supramolecular bioelectronic materials useful in sensing as well as the development of enzymatic materials.


Asunto(s)
Nanoestructuras , Péptidos , Hemo , Nanoestructuras/química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA