Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 92(1): 1205-1210, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31774659

RESUMEN

Trapped ion mobility spectrometry (TIMS) is presented as a new and rapid method to distinguish between electrochemically generated isomeric oxidation products. Separation was performed online directly after generation and ionization of the analytes, thus providing the opportunity to detect even short-lived and reactive transformation products. The same setup enables structure elucidation based on TIMS aligned fragmentation experiments. Due to the high resolution, TIMS was able to distinguish between two isomeric transformation products of the model compound metoprolol, which only differ in the position of the hydroxylation taking place in the benzylic and aromatic positions, respectively. Using this method, the analysis time is at least five times shorter compared to conventional chromatography approaches. Consequently, TIMS may arise as a powerful tool in electrochemical metabolism studies.

2.
Angew Chem Int Ed Engl ; 59(46): 20428-20433, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33448566

RESUMEN

Electrochemical side reactions, often referred to as "electrode fouling", are known to be a major challenge in electro-organic synthesis and the functionality of modern batteries. Often, polymerization of one or more components is observed. When reaching their limit of solubility, those polymers tend to adsorb on the surface of the electrode, resulting in a passivation of the respective electrode area, which may impact electrochemical performance. Here, matrix-assisted laser-desorption/ionization mass spectrometry (MALDI-MS) is presented as valuable imaging technique to visualize polymer deposition on electrode surfaces. Oligomer size distribution and its dependency on the contact time were imaged on a boron-doped diamond (BDD) anode of an electrochemical flow-through cell. The approach allows to detect weak spots, where electrode fouling may take place and provides insight into the identity of side-product pathways.

3.
Drug Test Anal ; 14(2): 262-268, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34634186

RESUMEN

In drug development, metabolite standards of new chemical entities are required for a comprehensive safety evaluation. Stable isotope-labeled internal metabolite standards at the milligram scale, which are difficult and expensive to synthesize in common bottom-up approaches, are necessary for metabolite quantification using liquid chromatography/mass spectrometry. A preparative electrochemical flow-through cell is presented here as a powerful tool for the cheap and straightforward synthesis of milligram amounts of isotopically labeled metabolite standards. The developed cell scales up established, so-called "coulometric" electrochemical cells. Problems like electrode fouling and cross contamination between syntheses are addressed by the use of exchangeable working electrodes. The applicability of the developed cell for the synthesis of metabolite standards is demonstrated using isotopically labeled acetaminophen as a model system for the generation of a biologically relevant phase II metabolite.


Asunto(s)
Acetaminofén , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Estándares de Referencia
4.
J Air Waste Manag Assoc ; 72(3): 235-255, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34738882

RESUMEN

This project investigated passive adsorbent sampling of light (C2-C5) hydrocarbons which are sensitive tracers of fugitive emissions from oil and natural gas (O&NG) sources. Stronger adsorbent materials, i.e. Carboxen 1000 and Carboxen 1016, than those typically used in adsorbent sampling were considered. Experiments were conducted in laboratory and field settings using thermal desorption - gas chromatography analysis. Uptake of water vapor and system blanks were challenges inherent to the increased affinity of these adsorbents. Carboxen 1000 exhibited the best signal-to-noise ratio for the target compounds after optimizing conditioning parameters to reduce blanks, and by reducing the adsorbent mass loaded in the cartridge. This strategy reduced blanks to equivalent ambient air mole fractions of <0.05 nmol mol-1 (ppb), and allowed determination of these O&NG tracers over three-day sampling intervals with a lower detection limit of ≥0.5-1 ppb. Linear VOCs uptake was observed in dry air. Water uptake was as high as 0.65 gH2O g-1adsorbent at relative humidity (RH) above ≈ 75%. The water collection passivates adsorbent sites and competes with the uptake rates of VOCs; under the worst case relative humidity level of 95% RH, VOCs uptake rates dropped to 27-39% of those in dry air. This effect potentially causes results to be biased low when cartridges are deployed at high relative humidity (RH), including overnight, when RH is often elevated over daytime levels. Nonetheless, representative sampling results were obtained under ambient conditions during three field studies where cartridges were evaluated alongside whole air sample collection in canisters. Agreement varied by compound: Ethane and alkenes correlated poorly and could not be analyzed with satisfactory results; results for C3-C5 alkanes were much better: i-butane correlated with R2 > 0.5, and propane, n-butane, i-pentane, and n-pentane with R2 > 0.75, which demonstrates the feasibility of the passive sampling of these latter O&NG tracers. Implications: Oil and natural gas development has been associated with emissions of petroleum hydrocarbons that impact air quality and human health. This research characterizes and defines the application possibilities of solid adsorbent sampling for atmospheric passive sampling monitoring of low molecular weight volatile organic compounds (i.e. ethane through pentane isomers) that are most commonly emitted from natural gas drilling and well sites. The passive sampling of these pollutants offers a simple, low cost, and readily applicable monitoring method for assessing emissions and air quality impacts in the surroundings of oil and gas operations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Etano , Humanos , Hidrocarburos/análisis , Gas Natural , Pentanos , Compuestos Orgánicos Volátiles/análisis
5.
J Pharm Anal ; 11(5): 661-666, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34765280

RESUMEN

Considering the frequent use of netupitant in polytherapy, the elucidation of its oxidative metabolization pattern is of major importance. However, there is a lack of published research on the redox behavior of this novel neurokinin-1 receptor antagonist. Therefore, this study was performed to simulate the intensive hepatic biotransformation of netupitant using an electrochemically driven method. Most of the known enzyme-mediated reactions occurring in the liver (i.e., N-dealkylation, hydroxylation, and N-oxidation) were successfully mimicked by the electrolytic cell using a boron-doped diamond working electrode. The products were separated by reversed-phase high-performance liquid chromatography and identified by high-resolution mass spectrometry. Aside from its ability to pinpoint formerly unknown metabolites that could be responsible for the known side effects of netupitant or connected with any new perspective concerning future therapeutic indications, this electrochemical process also represents a facile alternative for the synthesis of oxidation products for further in vitro and in vivo studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA