Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(12): 5153-5167, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467479

RESUMEN

Dravet syndrome is a severe epileptic encephalopathy, characterized by (febrile) seizures, behavioural problems and developmental delay. Eighty per cent of patients with Dravet syndrome have a mutation in SCN1A, encoding Nav1.1. Milder clinical phenotypes, such as GEFS+ (generalized epilepsy with febrile seizures plus), can also arise from SCN1A mutations. Predicting the clinical phenotypic outcome based on the type of mutation remains challenging, even when the same mutation is inherited within one family. This clinical and genetic heterogeneity adds to the difficulties of predicting disease progression and tailoring the prescription of anti-seizure medication. Understanding the neuropathology of different SCN1A mutations may help to predict the expected clinical phenotypes and inform the selection of best-fit treatments. Initially, the loss of Na+-current in inhibitory neurons was recognized specifically to result in disinhibition and consequently seizure generation. However, the extent to which excitatory neurons contribute to the pathophysiology is currently debated and might depend on the patient clinical phenotype or the specific SCN1A mutation. To examine the genotype-phenotype correlations of SCN1A mutations in relation to excitatory neurons, we investigated a panel of patient-derived excitatory neuronal networks differentiated on multi-electrode arrays. We included patients with different clinical phenotypes, harbouring various SCN1A mutations, along with a family in which the same mutation led to febrile seizures, GEFS+ or Dravet syndrome. We hitherto describe a previously unidentified functional excitatory neuronal network phenotype in the context of epilepsy, which corresponds to seizurogenic network prediction patterns elicited by proconvulsive compounds. We found that excitatory neuronal networks were affected differently, depending on the type of SCN1A mutation, but did not segregate according to clinical severity. Specifically, loss-of-function mutations could be distinguished from missense mutations, and mutations in the pore domain could be distinguished from mutations in the voltage sensing domain. Furthermore, all patients showed aggravated neuronal network responses at febrile temperatures compared with controls. Finally, retrospective drug screening revealed that anti-seizure medication affected GEFS+ patient- but not Dravet patient-derived neuronal networks in a patient-specific and clinically relevant manner. In conclusion, our results indicate a mutation-specific excitatory neuronal network phenotype, which recapitulates the foremost clinically relevant features, providing future opportunities for precision therapies.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia Generalizada , Convulsiones Febriles , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Estudios Retrospectivos , Mutación/genética , Epilepsia Generalizada/genética , Fenotipo , Convulsiones Febriles/genética , Convulsiones Febriles/diagnóstico , Neuronas
2.
Cell Mol Neurobiol ; 43(7): 3137-3160, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37380886

RESUMEN

Translation of neuroprotective treatment effects from experimental animal models to patients with cerebral ischemia has been challenging. Since pathophysiological processes may vary across species, an experimental model to clarify human-specific neuronal pathomechanisms may help. We conducted a scoping review of the literature on human neuronal in vitro models that have been used to study neuronal responses to ischemia or hypoxia, the parts of the pathophysiological cascade that have been investigated in those models, and evidence on effects of interventions. We included 147 studies on four different human neuronal models. The majority of the studies (132/147) was conducted in SH-SY5Y cells, which is a cancerous cell line derived from a single neuroblastoma patient. Of these, 119/132 used undifferentiated SH-SY5Y cells, that lack many neuronal characteristics. Two studies used healthy human induced pluripotent stem cell derived neuronal networks. Most studies used microscopic measures and established hypoxia induced cell death, oxidative stress, or inflammation. Only one study investigated the effect of hypoxia on neuronal network functionality using micro-electrode arrays. Treatment targets included oxidative stress, inflammation, cell death, and neuronal network stimulation. We discuss (dis)advantages of the various model systems and propose future perspectives for research into human neuronal responses to ischemia or hypoxia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neuroblastoma , Animales , Humanos , Línea Celular Tumoral , Isquemia , Hipoxia
3.
Mol Psychiatry ; 27(1): 1-18, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33972691

RESUMEN

Activity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-ß1 and Integrin-ß3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.


Asunto(s)
Cadherinas , Neuronas GABAérgicas , Parvalbúminas , Cadherinas/metabolismo , Neuronas GABAérgicas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Integrinas/metabolismo , Parvalbúminas/metabolismo , Sinapsis/metabolismo
4.
Neurobiol Dis ; 163: 105587, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34923109

RESUMEN

Monoamine neurotransmitter abundance affects motor control, emotion, and cognitive function and is regulated by monoamine oxidases. Among these, Monoamine oxidase A (MAOA) catalyzes the degradation of dopamine, norepinephrine, and serotonin into their inactive metabolites. Loss-of-function mutations in the X-linked MAOA gene have been associated with Brunner syndrome, which is characterized by various forms of impulsivity, maladaptive externalizing behavior, and mild intellectual disability. Impaired MAOA activity in individuals with Brunner syndrome results in bioamine aberration, but it is currently unknown how this affects neuronal function, specifically in dopaminergic (DA) neurons. Here we generated human induced pluripotent stem cell (hiPSC)-derived DA neurons from three individuals with Brunner syndrome carrying different mutations and characterized neuronal properties at the single cell and neuronal network level in vitro. DA neurons of Brunner syndrome patients showed reduced synaptic density but exhibited hyperactive network activity. Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta/genética , Neuronas Dopaminérgicas/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Monoaminooxidasa/deficiencia , Monoaminooxidasa/genética , Mutación , Polimorfismo de Nucleótido Simple , Receptores de N-Metil-D-Aspartato/metabolismo , Agresión , Trastornos Disruptivos, del Control de Impulso y de la Conducta/metabolismo , Trastornos Disruptivos, del Control de Impulso y de la Conducta/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/fisiopatología , Masculino , Monoaminooxidasa/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Sinapsis/metabolismo , Transmisión Sináptica/genética
5.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269895

RESUMEN

In the penumbra of a brain infarct, neurons initially remain structurally intact, but perfusion is insufficient to maintain neuronal activity at physiological levels. Improving neuronal recovery in the penumbra has large potential to advance recovery of stroke patients, but penumbral pathology is incompletely understood, and treatments are scarce. We hypothesize that low activity in the penumbra is associated with apoptosis and thus contributes to irreversible neuronal damage. We explored the putative relationship between low neuronal activity and apoptosis in cultured neurons exposed to variable durations of hypoxia or TTX. We combined electrophysiology and live apoptosis staining in 42 cultures, and compared effects of hypoxia and TTX silencing in terms of network activity and apoptosis. Hypoxia rapidly reduced network activity, but cultures showed limited apoptosis during the first 12 h. After 24 h, widespread apoptosis had occurred. This was associated with full activity recovery observed upon reoxygenation within 12 h, but not after 24 h. Similarly, TTX exposure strongly reduced activity, with full recovery upon washout within 12 h, but not after 24 h. Mean temporal evolution of apoptosis in TTX-treated cultures was the same as in hypoxic cultures. These results suggest that prolonged low activity may be a common factor in the pathways towards apoptosis.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Apoptosis , Isquemia Encefálica/metabolismo , Humanos , Hipoxia/metabolismo , Neuronas/metabolismo , Accidente Cerebrovascular/metabolismo
6.
Sci Rep ; 14(1): 7973, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575687

RESUMEN

In patients suffering from cerebral ischemic stroke, there is an urgent need for treatments to protect stressed yet viable brain cells. Recently, treatment strategies that induce neuronal activity have been shown to be neuroprotective. Here, we hypothesized that neuronal activation might maintain or trigger the astrocyte-to-neuron lactate shuttle (ANLS), whereby lactate is released from astrocytes to support the energy requirements of ATP-starved hypoxic neurons, and this leads to the observed neuroprotection. We tested this by using a human cell based in vitro model of the ischemic penumbra and investigating whether lactate might be neuroprotective in this setting. We found that lactate transporters are involved in the neuroprotective effect mediated by neuronal activation. Furthermore, we showed that lactate exogenously administered before hypoxia correlated with neuroprotection in our cellular model. In addition, stimulation of astrocyte with consequent endogenous production of lactate resulted in neuroprotection. To conclude, here we presented evidence that lactate transport into neurons contributes to neuroprotection during hypoxia providing a potential basis for therapeutic approaches in ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ácido Láctico , Neuroprotección , Encéfalo , Astrocitos , Hipoxia
7.
Exp Neurol ; : 114874, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914275

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a ubiquitous cellular pathway. mTORopathies, a group of disorders characterized by hyperactivity of the mTORC1 pathway, illustrate the prominent role of the mTOR pathway in disease pathology, often profoundly affecting the central nervous system. One of the most debilitating symptoms of mTORopathies is drug-resistant epilepsy, emphasizing the urgent need for a deeper understanding of disease mechanisms to develop novel anti-epileptic drugs. In this study, we explored the multiwell Multi-electrode array (MEA) system as a tool to identify robust network activity parameters in an approach to model mTORopathy-related epilepsy in vitro. To this extent, we cultured mouse primary hippocampal neurons on the multiwell MEA to identify robust network activity phenotypes in mTORC1-hyperactive neuronal networks. mTOR-hyperactivity was induced either through deletion of Tsc1 or overexpression of a constitutively active RHEB variant identified in patients, RHEBp.P37L. mTORC1 dependency of the phenotypes was assessed using rapamycin, and vigabatrin was applied to treat epilepsy-like phenotypes. We show that hyperactivity of the mTORC1 pathway leads to aberrant network activity. In both the Tsc1-KO and RHEB-p.P37L models, we identified changes in network synchronicity, rhythmicity, and burst characteristics. The presence of these phenotypes is prevented upon early treatment with the mTORC1-inhibitor rapamycin. Application of rapamycin in mature neuronal cultures could only partially rescue the network activity phenotypes. Additionally, treatment with the anti-epileptic drug vigabatrin reduced network activity and restored burst characteristics. Taken together, we showed that mTORC1-hyperactive neuronal cultures on the multiwell MEA system present reliable network activity phenotypes that can be used as an assay to explore the potency of new drug treatments targeting epilepsy in mTORopathy patients and may give more insights into the pathophysiological mechanisms underlying epilepsy in these patients.

8.
Acta Biomater ; 158: 281-291, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563774

RESUMEN

Understanding how the spatial organization of a neural network affects its activity represents a leading issue in neuroscience. Thanks to their accessibility and easy handling, in vitro studies remain an essential tool to investigate the relationship between the structure and function of a neuronal network. Among all the patterning techniques, ink-jet printing acquired great interest thanks to its direct-write approach, which allows the patterned substrate realization without mold, leading to a considerable saving of both cost and time. However, the inks commonly used give the possibility to control only the structure of a neuronal network, leaving aside the functional aspect. In this work, we synthesize a photosensitive ink combining the rheological and bioadhesive properties of chitosan with the plasmonic properties of gold nanorods, obtaining an ink able to control both the spatial organization of a two-dimensional neuronal network and its activity through photothermal effect. After the ink characterization, we demonstrate that it is possible to print, with high precision, different geometries on a microelectrode array. In this way, it is possible obtaining a patterned device to control the structure of a neuronal network, to record its activity and to modulate it via photothermal effect. Finally, to our knowledge, we report the first evidence of photothermal inhibition of human neurons activity. STATEMENT OF SIGNIFICANCE: Patterned cell cultures remain the most efficient and simple tool for linking structural and functional studies, especially in the neuronal field. Ink-jet printing is the technique with which it is possible to realize patterned structures in the fastest, simple, versatile and low-cost way. However, the inks currently used permit the control only of the neuronal network structure but do not allow the control-modulation of the network activity. In this study, we realize and characterize a photosensitive bioink with which it is possible to drive both the structure and the activity of a neuronal network. Moreover, we report the first evidence of activity inhibition by the photothermal effect on human neurons as far as we know.


Asunto(s)
Nanotubos , Impresión , Humanos , Impresión/métodos , Neuronas , Técnicas de Cultivo de Célula , Tinta
9.
Bioengineering (Basel) ; 10(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37106636

RESUMEN

With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.

10.
Stem Cell Reports ; 18(11): 2222-2239, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37863044

RESUMEN

Mechanisms that underlie homeostatic plasticity have been extensively investigated at single-cell levels in animal models, but are less well understood at the network level. Here, we used microelectrode arrays to characterize neuronal networks following induction of homeostatic plasticity in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with rat astrocytes. Chronic suppression of neuronal activity through tetrodotoxin (TTX) elicited a time-dependent network re-arrangement. Increased expression of AMPA receptors and the elongation of axon initial segments were associated with increased network excitability following TTX treatment. Transcriptomic profiling of TTX-treated neurons revealed up-regulated genes related to extracellular matrix organization, while down-regulated genes related to cell communication; also astrocytic gene expression was found altered. Overall, our study shows that hiPSC-derived neuronal networks provide a reliable in vitro platform to measure and characterize homeostatic plasticity at network and single-cell levels; this platform can be extended to investigate altered homeostatic plasticity in brain disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Plasticidad Neuronal , Humanos , Ratas , Animales , Células Cultivadas , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Técnicas de Cocultivo , Tetrodotoxina/farmacología
11.
Stem Cell Reports ; 18(8): 1686-1700, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37419110

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived neuronal networks on multi-electrode arrays (MEAs) provide a unique phenotyping tool to study neurological disorders. However, it is difficult to infer cellular mechanisms underlying these phenotypes. Computational modeling can utilize the rich dataset generated by MEAs, and advance understanding of disease mechanisms. However, existing models lack biophysical detail, or validation and calibration to relevant experimental data. We developed a biophysical in silico model that accurately simulates healthy neuronal networks on MEAs. To demonstrate the potential of our model, we studied neuronal networks derived from a Dravet syndrome (DS) patient with a missense mutation in SCN1A, encoding sodium channel NaV1.1. Our in silico model revealed that sodium channel dysfunctions were insufficient to replicate the in vitro DS phenotype, and predicted decreased slow afterhyperpolarization and synaptic strengths. We verified these changes in DS patient-derived neurons, demonstrating the utility of our in silico model to predict disease mechanisms.


Asunto(s)
Epilepsias Mioclónicas , Células Madre Pluripotentes Inducidas , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsias Mioclónicas/genética , Neuronas/fisiología , Mutación Missense , Mutación
12.
Neuroinformatics ; 20(4): 1077-1092, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35680724

RESUMEN

Functional assessment of in vitro neuronal networks-of relevance for disease modelling and drug testing-can be performed using multi-electrode array (MEA) technology. However, the handling and processing of the large amount of data typically generated in MEA experiments remains a huge hurdle for researchers. Various software packages have been developed to tackle this issue, but to date, most are either not accessible through the links provided by the authors or only tackle parts of the analysis. Here, we present ''MEA-ToolBox'', a free open-source general MEA analytical toolbox that uses a variety of literature-based algorithms to process the data, detect spikes from raw recordings, and extract information at both the single-channel and array-wide network level. MEA-ToolBox extracts information about spike trains, burst-related analysis and connectivity metrics without the need of manual intervention. MEA-ToolBox is tailored for comparing different sets of measurements and will analyze data from multiple recorded files placed in the same folder sequentially, thus considerably streamlining the analysis pipeline. MEA-ToolBox is available with a graphic user interface (GUI) thus eliminating the need for any coding expertise while offering functionality to inspect, explore and post-process the data. As proof-of-concept, MEA-ToolBox was tested on earlier-published MEA recordings from neuronal networks derived from human induced pluripotent stem cells (hiPSCs) obtained from healthy subjects and patients with neurodevelopmental disorders. Neuronal networks derived from patient's hiPSCs showed a clear phenotype compared to those from healthy subjects, demonstrating that the toolbox could extract useful parameters and assess differences between normal and diseased profiles.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Potenciales de Acción/fisiología , Microelectrodos , Neuronas/fisiología , Algoritmos
13.
Carbohydr Polym ; 297: 120049, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184185

RESUMEN

Most in vitro functional and morphological studies for developing nervous system have been performed using traditional monolayer cultures onto supports modified by extracellular matrix components or synthetic biopolymers. These biomolecules act as adhesion factors essential for neuronal growth and differentiation. In this study, the use of chitosan as adhesion factor was investigated. Primary rat neurons and neurons differentiated from human induced pluripotent stem cells were cultured onto chitosan and standard adhesion factors modified supports. The initiation, elongation and branching of neuritic processes, synaptogenesis and electrophysiological behavior were studied. The biopolymers affected neurites outgrowth in a time dependent manner; in particular, chitosan promoted neuronal polarity in both cell cultures. These results indicate chitosan as a valid adhesion factor alternative to the standard ones, with the advantage that it can be used both in 2D and 3D cultures, acting as a bridge between these in vitro models.


Asunto(s)
Quitosano , Células Madre Pluripotentes Inducidas , Animales , Células Cultivadas , Quitosano/metabolismo , Quitosano/farmacología , Humanos , Neuritas/metabolismo , Neuronas/metabolismo , Ratas
14.
Autophagy ; 18(2): 423-442, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34286667

RESUMEN

Macroautophagy (hereafter referred to as autophagy) is a finely tuned process of programmed degradation and recycling of proteins and cellular components, which is crucial in neuronal function and synaptic integrity. Mounting evidence implicates chromatin remodeling in fine-tuning autophagy pathways. However, this epigenetic regulation is poorly understood in neurons. Here, we investigate the role in autophagy of KANSL1, a member of the nonspecific lethal complex, which acetylates histone H4 on lysine 16 (H4K16ac) to facilitate transcriptional activation. Loss-of-function of KANSL1 is strongly associated with the neurodevelopmental disorder Koolen-de Vries Syndrome (KdVS). Starting from KANSL1-deficient human induced-pluripotent stem cells, both from KdVS patients and genome-edited lines, we identified SOD1 (superoxide dismutase 1), an antioxidant enzyme, to be significantly decreased, leading to a subsequent increase in oxidative stress and autophagosome accumulation. In KANSL1-deficient neurons, autophagosome accumulation at excitatory synapses resulted in reduced synaptic density, reduced GRIA/AMPA receptor-mediated transmission and impaired neuronal network activity. Furthermore, we found that increased oxidative stress-mediated autophagosome accumulation leads to increased MTOR activation and decreased lysosome function, further preventing the clearing of autophagosomes. Finally, by pharmacologically reducing oxidative stress, we could rescue the aberrant autophagosome formation as well as synaptic and neuronal network activity in KANSL1-deficient neurons. Our findings thus point toward an important relation between oxidative stress-induced autophagy and synapse function, and demonstrate the importance of H4K16ac-mediated changes in chromatin structure to balance reactive oxygen species- and MTOR-dependent autophagy.Abbreviations: APO: apocynin; ATG: autophagy related; BAF: bafilomycin A1; BSO: buthionine sulfoximine; CV: coefficient of variation; DIV: days in vitro; H4K16ac: histone 4 lysine 16 acetylation; iPSC: induced-pluripotent stem cell; KANSL1: KAT8 regulatory NSL complex subunit 1; KdVS: Koolen-de Vries Syndrome; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEA: micro-electrode array; MTOR: mechanistic target of rapamycin kinase; NSL complex: nonspecific lethal complex; 8-oxo-dG: 8-hydroxydesoxyguanosine; RAP: rapamycin; ROS: reactive oxygen species; sEPSCs: spontaneous excitatory postsynaptic currents; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SYN: synapsin; WRT: wortmannin.


Asunto(s)
Autofagia , Discapacidad Intelectual , Anomalías Múltiples , Autofagosomas/metabolismo , Autofagia/fisiología , Deleción Cromosómica , Cromosomas Humanos Par 17 , Epigénesis Genética , Humanos , Discapacidad Intelectual/metabolismo , Lisina/metabolismo , Lisosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirolimus/farmacología , Superóxido Dismutasa-1 , Serina-Treonina Quinasas TOR/metabolismo
15.
J Neural Eng ; 18(3): 036016, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724235

RESUMEN

OBJECTIVE: In ischemic stroke, treatments to protect neurons from irreversible damage are urgently needed. Studies in animal models have shown that neuroprotective treatments targeting neuronal silencing improve brain recovery, but in clinical trials none of these were effective in patients. This failure of translation poses doubts on the real efficacy of treatments tested and on the validity of animal models for human stroke. Here, we established a human neuronal model of the ischemic penumbra by using human induced pluripotent stem cells and we provided an in-depth characterization of neuronal responses to hypoxia and treatment strategies at the network level. APPROACH: We generated neurons from induced pluripotent stem cells derived from healthy donor and we cultured them on micro-electrode arrays. We measured the electrophysiological activity of human neuronal networks under controlled hypoxic conditions. We tested the effect of different treatment strategies on neuronal network functionality. MAIN RESULTS: Human neuronal networks are vulnerable to hypoxia reflected by a decrease in activity and synchronicity under low oxygen conditions. We observe that full, partial or absent recovery depend on the timing of re-oxygenation and we provide a critical time threshold that, if crossed, is associated with irreversible impairments. We found that hypoxic preconditioning improves resistance to a second hypoxic insult. Finally, in contrast to previously tested, ineffective treatments, we show that stimulatory treatments counteracting neuronal silencing during hypoxia, such as optogenetic stimulation, are neuroprotective. SIGNIFICANCE: We presented a human neuronal model of the ischemic penumbra and we provided insights that may offer the basis for novel therapeutic approaches for patients after stroke. The use of human neurons might improve drug discovery and translation of findings to patients and might open new perspectives for personalized investigations.


Asunto(s)
Isquemia Encefálica , Células Madre Pluripotentes Inducidas , Fármacos Neuroprotectores , Animales , Isquemia Encefálica/terapia , Humanos , Hipoxia , Neuronas
16.
Stem Cell Reports ; 16(9): 2182-2196, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34329594

RESUMEN

Micro-electrode arrays (MEAs) are increasingly used to characterize neuronal network activity of human induced pluripotent stem cell (hiPSC)-derived neurons. Despite their gain in popularity, MEA recordings from hiPSC-derived neuronal networks are not always used to their full potential in respect to experimental design, execution, and data analysis. Therefore, we benchmarked the robustness of MEA-derived neuronal activity patterns from ten healthy individual control lines, and uncover comparable network phenotypes. To achieve standardization, we provide recommendations on experimental design and analysis. With such standardization, MEAs can be used as a reliable platform to distinguish (disease-specific) network phenotypes. In conclusion, we show that MEAs are a powerful and robust tool to uncover functional neuronal network phenotypes from hiPSC-derived neuronal networks, and provide an important resource to advance the hiPSC field toward the use of MEAs for disease phenotyping and drug discovery.


Asunto(s)
Técnicas de Cultivo de Célula , Electrodos , Estudios de Asociación Genética/métodos , Dispositivos Laboratorio en un Chip , Análisis por Micromatrices/métodos , Neuronas/citología , Neuronas/metabolismo , Potenciales de Acción , Animales , Diferenciación Celular , Células Cultivadas , Estudios de Asociación Genética/instrumentación , Humanos , Ratones , Análisis por Micromatrices/instrumentación , Red Nerviosa
17.
Cell Rep ; 30(1): 173-186.e6, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914384

RESUMEN

Pathogenic mutations in either one of the epigenetic modifiers EHMT1, MBD5, MLL3, or SMARCB1 have been identified to be causative for Kleefstra syndrome spectrum (KSS), a neurodevelopmental disorder with clinical features of both intellectual disability (ID) and autism spectrum disorder (ASD). To understand how these variants lead to the phenotypic convergence in KSS, we employ a loss-of-function approach to assess neuronal network development at the molecular, single-cell, and network activity level. KSS-gene-deficient neuronal networks all develop into hyperactive networks with altered network organization and excitatory-inhibitory balance. Interestingly, even though transcriptional data reveal distinct regulatory mechanisms, KSS target genes share similar functions in regulating neuronal excitability and synaptic function, several of which are associated with ID and ASD. Our results show that KSS genes mainly converge at the level of neuronal network communication, providing insights into the pathophysiology of KSS and phenotypically congruent disorders.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Red Nerviosa/metabolismo , Animales , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Anomalías Craneofaciales/genética , Desarrollo Embrionario/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Cardiopatías Congénitas/genética , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Inhibición Neural , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Ratas Wistar , Sinapsis/metabolismo
18.
Cell Rep ; 31(3): 107538, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32320658

RESUMEN

Epilepsy, intellectual and cortical sensory deficits, and psychiatric manifestations are the most frequent manifestations of mitochondrial diseases. How mitochondrial dysfunction affects neural structure and function remains elusive, mostly because of a lack of proper in vitro neuronal model systems with mitochondrial dysfunction. Leveraging induced pluripotent stem cell technology, we differentiated excitatory cortical neurons (iNeurons) with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function on an isogenic nuclear DNA background from patients with the common pathogenic m.3243A > G variant of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). iNeurons with high heteroplasmy exhibited mitochondrial dysfunction, delayed neural maturation, reduced dendritic complexity, and fewer excitatory synapses. Micro-electrode array recordings of neuronal networks displayed reduced network activity and decreased synchronous network bursting. Impaired neuronal energy metabolism and compromised structural and functional integrity of neurons and neural networks could be the primary drivers of increased susceptibility to neuropsychiatric manifestations of mitochondrial disease.


Asunto(s)
Mitocondrias/metabolismo , Neuronas/metabolismo , Animales , Diferenciación Celular , Humanos , Ratas , Ratas Wistar
19.
Adv Neurobiol ; 22: 3-17, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31073930

RESUMEN

Over the past century, robust methods were developed that enable the isolation, culture, and dynamic observation of mammalian neuronal networks in vitro. But even if neuronal culture cannot yet fully recapitulate the normal brain, the knowledge that has been acquired from these surrogate in vitro models is invaluable. Indeed, neuronal culture has continued to propel basic neuroscience research, proving that in vitro systems have legitimacy when it comes to studying either the healthy or diseased human brain. Furthermore, scientific advancement typically parallels technical refinements in the field. A pertinent example is that a collective drive in the field of neuroscience to better understand the development, organization, and emergent properties of neuronal networks is being facilitated by progressive advances in micro-electrode array (MEA) technology. In this chapter, we briefly review the emergence of neuronal cell culture as a technique, the current trends in human stem cell-based modeling, and the technologies used to monitor neuronal communication. We conclude by highlighting future prospects that are evolving specifically out of the combination of human neuronal models and MEA technology.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Técnicas In Vitro/métodos , Modelos Neurológicos , Neuronas/citología , Animales , Encéfalo/citología , Humanos , Microelectrodos , Red Nerviosa/citología
20.
Stud Health Technol Inform ; 261: 274-279, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156129

RESUMEN

The main goal of this research is to design, develop and implement an efficient protocol to generate 3D neural cultures derived from human induced Pluripotent Stem Cells (hiPSCs) coupled to Micro Electrode Arrays (MEA) in order to obtain an engineered and controlled brain-on-a-chip model. The use of patient specific iPSCs may offer novel insights into the pathophysiology of a large variety of disorders, including numerous neurodevelopmental and late-onset neurodegenerative conditions. With these in vitro patient specific models, we may have the possibility to test drugs and find ad hoc therapies in the direction of precision medicine.


Asunto(s)
Encéfalo , Células Madre Pluripotentes Inducidas , Dispositivos Laboratorio en un Chip , Técnicas de Cultivo de Órganos , Encéfalo/fisiología , Humanos , Enfermedades Neurodegenerativas , Trastornos del Neurodesarrollo , Organoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA