Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2320859121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412130

RESUMEN

Well-controlled repair mechanisms are involved in the maintenance of genomic stability, and their failure can precipitate DNA abnormalities and elevate tumor risk. In addition, the tumor microenvironment, enriched with factors inducing oxidative stress and affecting cell cycle checkpoints, intensifies DNA damage when repair pathways falter. Recent research has unveiled associations between certain bacteria, including Mycoplasmas, and various cancers, and the causative mechanism(s) are under active investigation. We previously showed that Mycoplasma fermentans DnaK, an HSP70 family chaperone protein, hampers the activity of proteins like PARP1 and p53, crucial for genomic integrity. Moreover, our analysis of its interactome in human cancer cell lines revealed DnaK's engagement with several components of DNA-repair machinery. Finally, in vivo experiments performed in our laboratory using a DnaK knock-in mouse model generated by our group demonstrated that DnaK exposure led to increased DNA copy number variants, indicative of genomic instability. We present here evidence that expression of DnaK is linked to increased i) incidence of tumors in vivo upon exposure to urethane, a DNA damaging agent; ii) spontaneous DNA damage ex vivo; and iii) expression of proinflammatory cytokines ex vivo, variations in reactive oxygen species levels, and increased ß-galactosidase activity across tissues. Moreover, DnaK was associated with increased centromeric instability. Overall, these findings highlight the significance of Mycoplasma DnaK in the etiology of cancer and other genetic disorders providing a promising target for prevention, diagnostics, and therapeutics.


Asunto(s)
Proteínas Bacterianas , Proteínas HSP70 de Choque Térmico , Mycoplasma , Neoplasias , Animales , Humanos , Ratones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN , Daño del ADN , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mycoplasma/fisiología , Neoplasias/metabolismo , Neoplasias/microbiología , Neoplasias/patología , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 120(30): e2219897120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459550

RESUMEN

The human microbiota affects critical cellular functions, although the responsible mechanism(s) is still poorly understood. In this regard, we previously showed that Mycoplasma fermentans DnaK, an HSP70 chaperone protein, hampers the activity of important cellular proteins responsible for DNA integrity. Here, we describe a novel DnaK knock-in mouse model generated in our laboratory to study the effect of M. fermentans DnaK expression in vivo. By using an array-based comparative genomic hybridization assay, we demonstrate that exposure to DnaK was associated with a higher number of DNA copy number variants (CNVs) indicative of unbalanced chromosomal alterations, together with reduced fertility and a high rate of fetal abnormalities. Consistent with their implication in genetic disorders, one of these CNVs caused a homozygous Grid2 deletion, resulting in an aberrant ataxic phenotype that recapitulates the extensive biallelic deletion in the Grid2 gene classified in humans as autosomal recessive spinocerebellar ataxia 18. Our data highlight a connection between components of the human urogenital tract microbiota, namely Mycoplasmas, and genetic abnormalities in the form of DNA CNVs, with obvious relevant medical, diagnostic, and therapeutic implications.


Asunto(s)
Variaciones en el Número de Copia de ADN , Infecciones por Mycoplasma , Mycoplasma fermentans/genética , Homocigoto , Infecciones por Mycoplasma/genética , Infecciones por Mycoplasma/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL
3.
Proc Natl Acad Sci U S A ; 119(27): e2122050119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35763571

RESUMEN

AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)-infected patients. In particular, non-Hodgkin's lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1-infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1-infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.


Asunto(s)
Linfocitos B , Antígenos VIH , VIH-1 , Linfoma Relacionado con SIDA , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Linfocitos B/virología , Variación Genética , Antígenos VIH/genética , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Linfoma Relacionado con SIDA/epidemiología , Linfoma Relacionado con SIDA/virología , Prevalencia , Estudios Retrospectivos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
4.
J Transl Med ; 22(1): 269, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475767

RESUMEN

BACKGROUND: Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS: To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS: Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS: Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Humanos , Cisplatino , Proteína p53 Supresora de Tumor , Fluorouracilo , Bacterias
5.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372148

RESUMEN

The HIV-1 matrix protein p17 (p17) is a pleiotropic molecule impacting on different cell types. Its interaction with many cellular proteins underlines the importance of the viral protein as a major determinant of human specific adaptation. We previously showed the proangiogenic capability of p17. Here, by integrating functional analysis and receptor binding, we identify a functional epitope that displays molecular mimicry with human erythropoietin (EPO) and promotes angiogenesis through common beta chain receptor (ßCR) activation. The functional EPO-like epitope was found to be present in the matrix protein of HIV-1 ancestors SIV originated in chimpanzees (SIVcpz) and gorillas (SIVgor) but not in that of HIV-2 and its ancestor SIVsmm from sooty mangabeys. According to biological data, evolution of the EPO-like epitope showed a clear differentiation between HIV-1/SIVcpz-gor and HIV-2/SIVsmm branches, thus highlighting this epitope on p17 as a divergent signature discriminating HIV-1 and HIV-2 ancestors. P17 is known to enhance HIV-1 replication. Similarly to other ßCR ligands, p17 is capable of attracting and activating HIV-1 target cells and promoting a proinflammatory microenvironment. Thus, it is tempting to speculate that acquisition of an epitope on the matrix proteins of HIV-1 ancestors capable of triggering ßCR may have represented a critical step to enhance viral aggressiveness and early human-to-human SIVcpz/gor dissemination. The hypothesis that the p17/ßCR interaction and ßCR abnormal stimulation may also play a role in sustaining chronic activation and inflammation, thus marking the difference between HIV-1 and HIV-2 in term of pathogenicity, needs further investigation.


Asunto(s)
Eritropoyetina/genética , Antígenos VIH/metabolismo , VIH-1/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Células Cultivadas , Epítopos/inmunología , Eritropoyetina/metabolismo , Evolución Molecular , Antígenos VIH/genética , Seropositividad para VIH , VIH-1/genética , VIH-2 , Humanos , Imitación Molecular , Virus de la Inmunodeficiencia de los Simios , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34006644

RESUMEN

The COVID-19 pandemic triggered an unparalleled pursuit of vaccines to induce specific adaptive immunity, based on virus-neutralizing antibodies and T cell responses. Although several vaccines have been developed just a year after SARS-CoV-2 emerged in late 2019, global deployment will take months or even years. Meanwhile, the virus continues to take a severe toll on human life and exact substantial economic costs. Innate immunity is fundamental to mammalian host defense capacity to combat infections. Innate immune responses, triggered by a family of pattern recognition receptors, induce interferons and other cytokines and activate both myeloid and lymphoid immune cells to provide protection against a wide range of pathogens. Epidemiological and biological evidence suggests that the live-attenuated vaccines (LAV) targeting tuberculosis, measles, and polio induce protective innate immunity by a newly described form of immunological memory termed "trained immunity." An LAV designed to induce adaptive immunity targeting a particular pathogen may also induce innate immunity that mitigates other infectious diseases, including COVID-19, as well as future pandemic threats. Deployment of existing LAVs early in pandemics could complement the development of specific vaccines, bridging the protection gap until specific vaccines arrive. The broad protection induced by LAVs would not be compromised by potential antigenic drift (immune escape) that can render viruses resistant to specific vaccines. LAVs might offer an essential tool to "bend the pandemic curve," averting the exhaustion of public health resources and preventing needless deaths and may also have therapeutic benefits if used for postexposure prophylaxis of disease.


Asunto(s)
COVID-19/prevención & control , Inmunidad Innata , Pandemias/prevención & control , Vacunas/inmunología , Inmunidad Adaptativa , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Inmunidad Heteróloga , Memoria Inmunológica , SARS-CoV-2/inmunología , Vacunas Atenuadas/inmunología
7.
Arthroscopy ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38190947

RESUMEN

PURPOSE: To compare adverse events, postoperative opioid-prescribing patterns, health care use, and secondary anterior cruciate ligament reconstruction (ACLR) surgery rates of patients undergoing primary ACLR with a preoperative antidepressant prescription (ADP) against a propensity-matched group with no preoperative antidepressant prescription (NADP) using the TriNetX Diamond Network. METHODS: Patients undergoing primary ACLR between ages 18 and 35 years of age were queried from the database using International Classification of Diseases, Tenth Revision/Current Procedural Terminology codes. Patients with an ADP were propensity matched in a 1:1 ratio to patients with NADP based on 11 patient characteristics. Postoperative rates of adverse events, emergency department (ED) visits, in-patient hospitalizations, outpatient services, physical therapy evaluations, postoperative opioid prescriptions, and secondary ACLR were compared at various time points. RESULTS: In total, 3,736 patients with an ADP with an average age of 21.4 ± 4.5 years undergoing primary ACLR were propensity matched to patients with NADP. A significantly greater percentage of patients with an ADP received opioid prescriptions at 2 weeks (ADP 21%, NADP 11.3%, odds ratio [OR] 2.08), 6 weeks (ADP 25.5%, NADP 13.9%, OR 2.13), 3 months (ADP 27.6%, NADP 15.6%, OR 2.07), 6 months (ADP 30.5%, NADP 17.2%, OR 2.1), and 1 year (ADP 35.3%, NADP 20.2%, OR 2.16) postoperatively (P <.0001 for each time point). Patients with ADP had greater rates of ED visits (ADP 9.7%, NADP 7.1%, P < .0001, OR 1.39) and outpatient appointments (ADP 28.3%, NADP 21.8%) P < .0001, OR 1.42) at 3 months' postoperatively. Secondary surgery rates at 1 and 2 years were nonsignificant (P = .381 and P = .062, respectively). CONCLUSIONS: Following ACLR, patients with ADP had a significant increase in postoperative opioid prescriptions at all time points and used more ED resources and outpatient services compared with patients with NADP at 3 months' postoperatively. Thirty-day postoperative adverse events and both 1- and 2-year secondary ACL surgery rates demonstrated no significant differences between the groups. LEVEL OF EVIDENCE: Level III, retrospective comparative case series.

8.
Instr Course Lect ; 73: 67-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38090887

RESUMEN

The use of telemedicine services within orthopaedics increased rapidly as a result of the COVID-19 pandemic. Telemedicine may improve access to care and save time and money for patients and clinicians; however, limitations such as technical issues and limited physical examination may reduce its widespread adoption. Virtual visits generally produce equivalent satisfaction and clinical outcomes compared with those performed in person. Although telemedicine has served many different roles within orthopaedic practices, its main utility is for patients who have to travel significant distances and for visits that do not require physical examination to determine a treatment plan. Several regulations govern the use of telemedicine. Most notably, clinicians must be licensed to practice medicine in the state in which the patient is located during the appointment. Although compliance issues remain a potential source of legal issues, experts cite misdiagnosis from limited physical examination as the most likely reason for medical liability. Clinicians should be familiar with techniques for virtual physical examination and should provide instruction to patients before the visit to optimize data obtained.


Asunto(s)
COVID-19 , Ortopedia , Telemedicina , Humanos , COVID-19/epidemiología , Pandemias , Telemedicina/métodos , Examen Físico , Ortopedia/métodos
9.
Instr Course Lect ; 73: 97-107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38090890

RESUMEN

Assessing competency across domains of knowledge, skills, and behavior is critical to ensure that graduating orthopaedic residents possess the requisite skills and attributes to enter independent orthopaedic practice. Of the domains, knowledge is most easily assessed. In addition to the AAOS Orthopaedic In-Training Examination®, which provides a yearly gauge of residents' orthopaedic knowledge relative to their peers, there are several online platforms such as Orthobullets, the American Academy of Orthopaedic Surgeons ResStudy program, and the Journal of Bone and Joint Surgery Clinical Classroom that offer online learning resources and question banks. Clinical skills are best assessed through a combination of observation tools, including live or video assessments, 360° evaluations, and objective structured clinical examinations. Surgical skills can be evaluated in two domains: live surgical cases or simulations. The American Board of Orthopaedic Surgery is attempting to standardize live surgical evaluations through the use of the O-P tool. Although most available models feature only arthroscopic procedures, surgical simulators provide for opportunity to objectively evaluate resident performance. Behavior and professionalism has traditionally been the most challenging domain to assess. The American Board of Orthopaedic Surgery's Behavior Assessment Tool has demonstrated success in pilot testing and is being introduced as the standard for measuring behavior and professionalism in orthopaedic training. Although no single assessment tool can accurately gauge a resident's overall performance, a combination of readily available tools should be used to assess competence across domains.


Asunto(s)
Internado y Residencia , Procedimientos Ortopédicos , Cirujanos Ortopédicos , Ortopedia , Humanos , Estados Unidos , Ortopedia/educación , Competencia Clínica , Evaluación Educacional/métodos
10.
Instr Course Lect ; 73: 765-777, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38090939

RESUMEN

Technical complications are a leading cause of graft failure following anterior cruciate ligament reconstructions. Complications can occur during any phase of the procedure, from graft harvesting to tunnel preparation to graft fixation. Predicting potential causes of technical difficulty and developing strategies to avoid potential pitfalls can limit the number of intraoperative complications. If adverse events do occur intraoperatively, prompt recognition and treatment can lead to favorable outcomes. It is important to discuss strategies to understand potential complications and develop tactics to avoid and correct adverse events that can occur during anterior cruciate ligament reconstruction.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Humanos , Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/efectos adversos , Complicaciones Intraoperatorias/etiología , Complicaciones Intraoperatorias/prevención & control , Complicaciones Intraoperatorias/cirugía , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/cirugía , Tendones/trasplante , Lesiones del Ligamento Cruzado Anterior/cirugía
11.
Proc Natl Acad Sci U S A ; 116(13): 6298-6307, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846549

RESUMEN

Natural regulatory T cells (nTregs) ensure the control of self-tolerance and are currently used in clinical trials to alleviate autoimmune diseases and graft-versus-host disease after hematopoietic stem cell transfer. Based on CD39/CD26 markers, blood nTreg analysis revealed the presence of five different cell subsets, each representing a distinct stage of maturation. Ex vivo added microenvironmental factors, including IL-2, TGFß, and PGE2, direct the conversion from naive precursor to immature memory and finally from immature to mature memory cells, the latest being a no-return stage. Phenotypic and genetic characteristics of the subsets illustrate the structural parental maturation between subsets, which further correlates with the expression of regulatory factors. Regarding nTreg functional plasticity, both maturation stage and microenvironmental cytokines condition nTreg activities, which include blockade of autoreactive immune cells by cell-cell contact, Th17 and IL-10 Tr1-like activities, or activation of TCR-stimulating dendritic cell tolerization. Importantly, blood nTreg CD39/CD26 profile remained constant over a 2-y period in healthy persons but varied from person to person. Preliminary data on patients with autoimmune diseases or acute myelogenous leukemia illustrate the potential use of the nTreg CD39/CD26 profile as a blood biomarker to monitor chronic inflammatory diseases. Finally, we confirmed that naive conventional CD4 T cells, TCR-stimulated under a tolerogenic conditioned medium, could be ex vivo reprogrammed to FOXP3 lineage Tregs, and further found that these cells were exclusively committed to suppressive function under all microenvironmental contexts.


Asunto(s)
Microambiente Celular/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/fisiología , Apirasa/sangre , Enfermedades Autoinmunes/sangre , Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Células Dendríticas/inmunología , Dinoprostona/metabolismo , Dipeptidil Peptidasa 4/sangre , Factores de Transcripción Forkhead/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Leucemia Mieloide , Células Th17/inmunología , Factor de Crecimiento Transformador beta/metabolismo
12.
Pediatr Emerg Care ; 38(1): e316-e320, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065675

RESUMEN

OBJECTIVES: A common strategy for evaluation of extremity fractures is the "joint above and below" (JAB) radiograph approach, which includes dedicated imaging of the joint proximal and distal to a fracture independent of clinical suspicion for an injury involving the joint. The incidence of concomitant ipsilateral lower-extremity fractures or dislocations associated with lower-extremity long bone fractures in children has not been commonly reported and represents an evidential gap for determining a radiograph approach. Our purpose was to determine the frequency of and risk factors for concomitant ipsilateral lower-extremity fractures or dislocations. METHODS: A retrospective study of children aged 1 to 17 years treated at an academic medical center emergency department from 2015 to 2018 with any fracture involving the tibia, fibula, or femur. Children with pathologic fractures, transferred from another facility, and/or designated as a level I trauma were excluded. The primary outcome was the prevalence of a concomitant bony injury (fracture or dislocation) at a distinct site in the same extremity. Differences between the concomitant bony injury group and single injury group were characterized using Fisher exact tests. Regression analysis was used to determine predictors of concomitant bony injuries, including age, sex, and mechanism of injury (with injuries requiring level II or III trauma activation classified as high risk). RESULTS: During the study period, 241 patients with lower-extremity long bone fractures were included. Complete JAB radiographs, defined as dedicated orthogonal radiographs of the joint proximal to and distal to the fracture site, were taken in 85 (35.3%) of 241 patients. Concomitant bony injuries were found in 9 (3.73%) of 241 patients (95% confidence interval, 1.7-7.0%). No additional concomitant bony injuries were identified at follow-up. When comparing patients with and without concomitant bony injuries, there was no significant difference in age (P = 0.34) and sex (P = 0.73). However, patients with a high-risk injury were more likely to have a concomitant bony injury (P < 0.01; odds ratio, 21.9; 95% confidence interval, 3.6-131.5). CONCLUSIONS: Concomitant ipsilateral lower-extremity fractures or dislocations are uncommon in children sustaining tibia, fibula, and/or femur fractures. Although the JAB approach to radiographs may be useful in identifying additional injuries in children with lower-extremity injuries resulting from a "high-risk" mechanisms, its overall yield is low. To provide safe, cost-effective care, providers should continue to value clinical suspicion, history, and physical examination findings to guide selection of radiographs in those with lower-extremity long bone fractures as significant fractures can typically be identified with limited imaging in patients with low-risk injury mechanisms.


Asunto(s)
Fracturas del Fémur , Fracturas Óseas , Niño , Peroné/diagnóstico por imagen , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/epidemiología , Humanos , Extremidad Inferior/diagnóstico por imagen , Radiografía , Estudios Retrospectivos
14.
J Transl Med ; 19(1): 60, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563293

RESUMEN

BACKGROUND: Studies of molecular mechanisms underlying tumor cell signaling highlighted a critical role for kinases in carcinogenesis and cancer progression. To this regard, protein kinases regulates a number of critical cellular pathways by adding phosphate groups to specific substrates. For this reason, their involvement in the complex interactions between the human microbiota and cancer cells to determine therapy and tumor progression outcome is becoming increasingly relevant. Mycoplasmas are components of the normal human microbiota, and several species have also been associated to human diseases, including certain cancers. It is also important to note that Mycoplasmas and their proteins are a component of the common tumor microenvironment. In addition, several epidemiological, in vivo and in vitro studies indicate a close involvement of Mycoplasmas in cellular transformation and cancer progression. METHODS: In this study, we investigate the effect of exogenous Mycoplasma DnaK on kinases activity by treating in vitro four different eukaryotic cancer cell lines, namely lung and prostate cancer, colon adenocarcinoma, and neuroblastoma. Phosphorylation of kinases and specific substrates was measured at 20 and 60 min. RESULTS: Kinome analysis of our data indicates that Mycoplasma DnaK promotes the dysregulation of the activity of specific kinases and their substrates, with a known involvement in carcinogenesis and cancer progression. CONCLUSIONS: Given the similarity in structure and amino acid composition of this protein with other bacterial DnaKs we provide a novel mechanism whereby components of the human microbiota and present in the tumor microenvironment are able to deregulate phosphorylation events occurring during carcinogenesis and cancer progression.


Asunto(s)
Carcinogénesis , Transformación Celular Neoplásica , Línea Celular , Humanos , Masculino , Fosforilación , Proteínas Quinasas/metabolismo , Microambiente Tumoral
15.
Proc Natl Acad Sci U S A ; 115(19): E4453-E4462, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29674449

RESUMEN

Dendritic cell (DC)-based cancer immunotherapy has achieved modest clinical benefits, but several technical hurdles in DC preparation, activation, and cancer/testis antigen (CTA) delivery limit its broad applications. Here, we report the development of immortalized and constitutively activated human primary blood dendritic cell lines (ihv-DCs). The ihv-DCs are a subset of CD11c+/CD205+ DCs that constitutively display costimulatory molecules. The ihv-DCs can be genetically modified to express human telomerase reverse transcriptase (hTERT) or the testis antigen MAGEA3 in generating CTA-specific cytotoxic T lymphocytes (CTLs). In an autologous setting, the HLA-A2+ ihv-DCs that present hTERT antigen prime autologous T cells to generate hTERT-specific CTLs, inducing cytolysis of hTERT-expressing target cells in an HLA-A2-restricted manner. Remarkably, ihv-DCs that carry two allogeneic HLA-DRB1 alleles are able to prime autologous T cells to proliferate robustly in generating HLA-A2-restricted, hTERT-specific CTLs. The ihv-DCs, which are engineered to express MAGEA3 and high levels of 4-1BBL and MICA, induce simultaneous production of both HLA-A2-restricted, MAGEA3-specific CTLs and NK cells from HLA-A2+ donor peripheral blood mononuclear cells. These cytotoxic lymphocytes suppress lung metastasis of A549/A2.1 lung cancer cells in NSG mice. Both CTLs and NK cells are found to infiltrate lung as well as lymphoid tissues, mimicking the in vivo trafficking patterns of cytotoxic lymphocytes. This approach should facilitate the development of cell-based immunotherapy for human lung cancer.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Células Dendríticas/inmunología , Leucocitos Mononucleares/citología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/prevención & control , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Apoptosis , Proliferación Celular , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/trasplante , Humanos , Interferón gamma/metabolismo , Neoplasias Pulmonares/secundario , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Ingeniería de Tejidos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Proc Natl Acad Sci U S A ; 115(51): E12005-E12014, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30509983

RESUMEN

We isolated a strain of human mycoplasma that promotes lymphomagenesis in SCID mice, pointing to a p53-dependent mechanism similar to lymphomagenesis in uninfected p53-/- SCID mice. Additionally, mycoplasma infection in vitro reduces p53 activity. Immunoprecipitation of p53 in mycoplasma-infected cells identified several mycoplasma proteins, including DnaK, a member of the Hsp70 chaperon family. We focused on DnaK because of its ability to interact with proteins. We demonstrate that mycoplasma DnaK interacts with and reduces the activities of human proteins involved in critical cellular pathways, including DNA-PK and PARP1, which are required for efficient DNA repair, and binds to USP10 (a key p53 regulator), impairing p53-dependent anticancer functions. This also reduced the efficacy of anticancer drugs that depend on p53 to exert their effect. mycoplasma was detected early in the infected mice, but only low copy numbers of mycoplasma DnaK DNA sequences were found in some primary and secondary tumors, pointing toward a hit-and-run/hide mechanism of transformation. Uninfected bystander cells took up exogenous DnaK, suggesting a possible paracrine function in promoting malignant transformation, over and above cells infected with the mycoplasma. Phylogenetic amino acid analysis shows that other bacteria associated with human cancers have similar DnaKs, consistent with a common mechanism of cellular transformation mediated through disruption of DNA-repair mechanisms, as well as p53 dysregulation, that also results in cancer-drug resistance. This suggests that the oncogenic properties of certain bacteria are DnaK-mediated.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Chaperonas Moleculares/genética , Mycoplasma/genética , Adenosina Trifosfatasas/clasificación , Animales , Antineoplásicos/uso terapéutico , Proteínas Bacterianas/clasificación , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Reparación del ADN , ADN Bacteriano/genética , Proteína Quinasa Activada por ADN/metabolismo , Modelos Animales de Enfermedad , Genes Bacterianos/genética , Células HCT116 , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Linfoma/genética , Linfoma/microbiología , Linfoma/patología , Ratones , Ratones SCID , Chaperonas Moleculares/clasificación , Mycoplasma/patogenicidad , Infecciones por Mycoplasma/microbiología , Mycoplasma fermentans/genética , Mycoplasma fermentans/patogenicidad , Oncogenes , Filogenia , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Análisis de Secuencia , Análisis de Secuencia de Proteína , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo
17.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918708

RESUMEN

Several species of mycoplasmas, including Mycoplasma fermentans, are associated with certain human cancers. We previously isolated and characterized in our laboratory a strain of human mycoplasma M. fermentans subtype incognitus (MF-I1) able to induce lymphoma in a Severe Combined Immuno-Deficient (SCID) mouse model, and we demonstrated that its chaperone protein, DnaK, binds and reduces functions of human poly-ADP ribose polymerase-1 (PARP1) and ubiquitin carboxyl-terminal hydrolase protein-10 (USP10), which are required for efficient DNA repair and proper p53 activities, respectively. We also showed that other bacteria associated with human cancers (including Mycoplasmapneumoniae, Helicobacterpylori, Fusobacteriumnucleatum, Chlamydiathrachomatis, and Chlamydia pneumoniae) have closely related DnaK proteins, indicating a potential common mechanism of cellular transformation. Here, we quantify dnaK mRNA copy number by RT-qPCR analysis in different cellular compartments following intracellular MF-I1 infection of HCT116 human colon carcinoma cells. DnaK protein expression in infected cells was also detected and quantified by Western blot. The amount of viable intracellular mycoplasma reached a steady state after an initial phase of growth and was mostly localized in the cytoplasm of the invaded cells, while we detected a logarithmically increased number of viable extracellular bacteria. Our data indicate that, after invasion, MF-I1 is able to establish a chronic intracellular infection. Extracellular replication was more efficient while MF-I1 cultured in cell-free axenic medium showed a markedly reduced growth rate. We also identified modifications of important regulatory regions and heterogeneous lengths of dnaK mRNA transcripts isolated from intracellular and extracellular MF-I1. Both characteristics were less evident in dnaK mRNA transcripts isolated from MF-I1 grown in cell-free axenic media. Taken together, our data indicate that MF-I1, after establishing a chronic infection in eukaryotic cells, accumulates different forms of dnaK with efficient RNA turnover.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Mycoplasma fermentans/genética , Células Cultivadas , Células HCT116 , Humanos , Mutación , Infecciones por Mycoplasma/microbiología
18.
J Transl Med ; 18(1): 329, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867854

RESUMEN

BACKGROUND: The new Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which was first detected in Wuhan (China) in December of 2019 is responsible for the current global pandemic. Phylogenetic analysis revealed that it is similar to other betacoronaviruses, such as SARS-CoV and Middle-Eastern Respiratory Syndrome, MERS-CoV. Its genome is ∼ 30 kb in length and contains two large overlapping polyproteins, ORF1a and ORF1ab that encode for several structural and non-structural proteins. The non-structural protein 1 (nsp1) is arguably the most important pathogenic determinant, and previous studies on SARS-CoV indicate that it is both involved in viral replication and hampering the innate immune system response. Detailed experiments of site-specific mutagenesis and in vitro reconstitution studies determined that the mechanisms of action are mediated by (a) the presence of specific amino acid residues of nsp1 and (b) the interaction between the protein and the host's small ribosomal unit. In fact, substitution of certain amino acids resulted in reduction of its negative effects. METHODS: A total of 17,928 genome sequences were obtained from the GISAID database (December 2019 to July 2020) from patients infected by SARS-CoV-2 from different areas around the world. Genomes alignment was performed using MAFFT (REFF) and the nsp1 genomic regions were identified using BioEdit and verified using BLAST. Nsp1 protein of SARS-CoV-2 with and without deletion have been subsequently modelled using I-TASSER. RESULTS: We identified SARS-CoV-2 genome sequences, from several Countries, carrying a previously unknown deletion of 9 nucleotides in position 686-694, corresponding to the AA position 241-243 (KSF). This deletion was found in different geographical areas. Structural prediction modelling suggests an effect on the C-terminal tail structure. CONCLUSIONS: Modelling analysis of a newly identified deletion of 3 amino acids (KSF) of SARS-CoV-2 nsp1 suggests that this deletion could affect the structure of the C-terminal region of the protein, important for regulation of viral replication and negative effect on host's gene expression. In addition, substitution of the two amino acids (KS) from nsp1 of SARS-CoV was previously reported to revert loss of interferon-alpha expression. The deletion that we describe indicates that SARS-CoV-2 is undergoing profound genomic changes. It is important to: (i) confirm the spreading of this particular viral strain, and potentially of strains with other deletions in the nsp1 protein, both in the population of asymptomatic and pauci-symptomatic subjects, and (ii) correlate these changes in nsp1 with potential decreased viral pathogenicity.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Eliminación de Secuencia , Proteínas no Estructurales Virales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Betacoronavirus/patogenicidad , COVID-19 , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/epidemiología , Frecuencia de los Genes , Genoma Viral , Geografía , Humanos , Lisina/genética , Modelos Moleculares , Pandemias/estadística & datos numéricos , Fenilalanina/genética , Neumonía Viral/epidemiología , Dominios Proteicos/genética , SARS-CoV-2 , Serina/genética , Proteínas no Estructurales Virales/química , Virulencia/genética , Replicación Viral/genética
19.
J Transl Med ; 18(1): 251, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576227

RESUMEN

BACKGROUND: With the aim of providing a dynamic evaluation of the effects of basic environmental parameters on COVID-19-related death rate, we assessed the correlation between average monthly high temperatures and population density, with death/rate (monthly number of deaths/1 M people) for the months of March (start of the analysis and beginning of local epidemic in most of the Western World, except in Italy where it started in February) and April 2020 (continuation of the epidemic). Different geographical areas of the Northern Hemisphere in the United States and in Europe were selected in order to provide a wide range among the different parameters. The death rates were gathered from an available dataset. As a further control, we also included latitude, as a proxy for temperature. METHODS: Utilizing a publicly available dataset, we retrieved data for the months of March and April 2020 for 25 areas in Europe and in the US. We computed the monthly number of deaths/1 M people of confirmed COVID-19 cases and calculated the average monthly high temperatures and population density for all these areas. We determined the correlation between number of deaths/1 M people and the average monthly high temperatures, the latitude and the population density. RESULTS: We divided our analysis in two parts: analysis of the correlation among the different variables in the month of March and subsequent analysis in the month of April. The differences were then evaluated. In the month of March there was no statistical correlation between average monthly high temperatures of the considered geographical areas and number of deaths/1 M people. However, a statistically significant inverse correlation became significant in the month of April between average monthly high temperatures (p = 0.0043) and latitude (p = 0.0253) with number of deaths/1 M people. We also observed a statistically significant correlation between population density and number of deaths/1 M people both in the month of March (p = 0.0297) and in the month of April (p = 0.0116), when three areas extremely populated (NYC, Los Angeles and Washington DC) were included in the calculation. Once these three areas were removed, the correlation was not statistically significant (p = 0.1695 in the month of March, and p = 0.7076 in the month of April). CONCLUSIONS: The number of COVID-19-related deaths/1 M people was essentially the same during the month of March for all the geographical areas considered, indicating essentially that the infection was circulating quite uniformly except for Lombardy, Italy, where it started earlier. Lockdown measures were implemented between the end of March and beginning of April, except for Italy which started March 9th. We observed a strong, statistically significant inverse correlation between average monthly high temperatures with the number of deaths/1 M people. We confirmed the data by analyzing the correlation with the latitude, which can be considered a proxy for high temperature. Previous studies indicated a negative effect of high climate temperatures on Sars-COV-2 spreading. Our data indicate that social distancing measure are more successful in the presence of higher average monthly temperatures in reducing COVID-19-related death rate, and a high level of population density seems to negatively impact the effect of lockdown measures.


Asunto(s)
Infecciones por Coronavirus/mortalidad , Ambiente , Mortalidad , Neumonía Viral/mortalidad , Temperatura , Betacoronavirus/fisiología , COVID-19 , Infecciones por Coronavirus/epidemiología , District of Columbia/epidemiología , Monitoreo del Ambiente/métodos , Europa (Continente)/epidemiología , Geografía , Humanos , Italia/epidemiología , Los Angeles/epidemiología , Ciudad de Nueva York/epidemiología , Pandemias , Neumonía Viral/epidemiología , Densidad de Población , SARS-CoV-2 , Conducta Social
20.
J Transl Med ; 18(1): 179, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321524

RESUMEN

BACKGROUND: SARS-CoV-2 is a RNA coronavirus responsible for the pandemic of the Severe Acute Respiratory Syndrome (COVID-19). RNA viruses are characterized by a high mutation rate, up to a million times higher than that of their hosts. Virus mutagenic capability depends upon several factors, including the fidelity of viral enzymes that replicate nucleic acids, as SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Mutation rate drives viral evolution and genome variability, thereby enabling viruses to escape host immunity and to develop drug resistance. METHODS: We analyzed 220 genomic sequences from the GISAID database derived from patients infected by SARS-CoV-2 worldwide from December 2019 to mid-March 2020. SARS-CoV-2 reference genome was obtained from the GenBank database. Genomes alignment was performed using Clustal Omega. Mann-Whitney and Fisher-Exact tests were used to assess statistical significance. RESULTS: We characterized 8 novel recurrent mutations of SARS-CoV-2, located at positions 1397, 2891, 14408, 17746, 17857, 18060, 23403 and 28881. Mutations in 2891, 3036, 14408, 23403 and 28881 positions are predominantly observed in Europe, whereas those located at positions 17746, 17857 and 18060 are exclusively present in North America. We noticed for the first time a silent mutation in RdRp gene in England (UK) on February 9th, 2020 while a different mutation in RdRp changing its amino acid composition emerged on February 20th, 2020 in Italy (Lombardy). Viruses with RdRp mutation have a median of 3 point mutations [range: 2-5], otherwise they have a median of 1 mutation [range: 0-3] (p value < 0.001). CONCLUSIONS: These findings suggest that the virus is evolving and European, North American and Asian strains might coexist, each of them characterized by a different mutation pattern. The contribution of the mutated RdRp to this phenomenon needs to be investigated. To date, several drugs targeting RdRp enzymes are being employed for SARS-CoV-2 infection treatment. Some of them have a predicted binding moiety in a SARS-CoV-2 RdRp hydrophobic cleft, which is adjacent to the 14408 mutation we identified. Consequently, it is important to study and characterize SARS-CoV-2 RdRp mutation in order to assess possible drug-resistance viral phenotypes. It is also important to recognize whether the presence of some mutations might correlate with different SARS-CoV-2 mortality rates.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Evolución Molecular , Genoma Viral/genética , Mutación , Neumonía Viral/epidemiología , Neumonía Viral/virología , ARN Polimerasa Dependiente del ARN/genética , Adulto , Asia/epidemiología , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/mortalidad , Farmacorresistencia Viral/genética , Europa (Continente)/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tasa de Mutación , América del Norte/epidemiología , Oceanía/epidemiología , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/mortalidad , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA