Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 27(9): 1545-1555, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29462355

RESUMEN

Huntington's disease (HD) is caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat expansion in the huntingtin (HTT) gene encoding an elongated polyglutamine tract within the N-terminal of the huntingtin protein (Htt) and leads to Htt misfolding, aberrant protein aggregation, and progressive appearance of disease symptoms. Chronic activation of endoplasmic reticulum (ER) stress by mutant Htt (mHtt) results in cellular dysfunction and ultimately cell death. Protein disulfide isomerase (PDI) is a chaperone protein located in the ER. Our previous studies demonstrated that mHtt caused PDI to accumulate at mitochondria-associated ER membranes and triggered cell death, and that modulating PDI activity using small molecules protected cells again mHtt toxicity in cell and brain slice models of HD. In this study, we demonstrated that PDI is upregulated in the HD human brain, in cell and mouse models. Chronic administration of a reversible, brain penetrable small molecule PDI modulator, LOC14 (20 mg/kg/day), significantly improved motor function, attenuated brain atrophy and extended survival in the N171-82Q HD mice. Moreover, LOC14 preserved medium spiny neuronal marker dopamine- and cyclic-AMP-regulated phosphoprotein of molecular weight 32 000 (DARPP32) levels in the striatum of HD mice. Mechanistic study revealed that LOC14 suppressed mHtt-induced ER stress, indicated by repressing the abnormally upregulated ER stress proteins in HD models. These findings suggest that LOC14 is promising to be further optimized for clinical trials of HD, and modulation of signaling pathways coping with ER stress may constitute an attractive approach to reduce mHtt toxicity and identify new therapeutic targets for treatment of HD.


Asunto(s)
Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Atrofia/tratamiento farmacológico , Atrofia/genética , Atrofia/metabolismo , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Femenino , Enfermedad de Huntington/genética , Imagen por Resonancia Magnética , Masculino , Ratones , Mutación/genética , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/genética , Espectrometría de Masas en Tándem
2.
Nat Chem Biol ; 14(5): 507-515, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29610484

RESUMEN

Ferroptosis is a non-apoptotic form of regulated cell death caused by the failure of the glutathione-dependent lipid-peroxide-scavenging network. FINO2 is an endoperoxide-containing 1,2-dioxolane that can initiate ferroptosis selectively in engineered cancer cells. We investigated the mechanism and structural features necessary for ferroptosis initiation by FINO2. We found that FINO2 requires both an endoperoxide moiety and a nearby hydroxyl head group to initiate ferroptosis. In contrast to previously described ferroptosis inducers, FINO2 does not inhibit system xc- or directly target the reducing enzyme GPX4, as do erastin and RSL3, respectively, nor does it deplete GPX4 protein, as does FIN56. Instead, FINO2 both indirectly inhibits GPX4 enzymatic function and directly oxidizes iron, ultimately causing widespread lipid peroxidation. These findings suggest that endoperoxides such as FINO2 can initiate a multipronged mechanism of ferroptosis.


Asunto(s)
Apoptosis , Glutatión Peroxidasa/fisiología , Hierro/química , Animales , Carbolinas/química , Línea Celular Tumoral , Colorimetría , Dioxolanos/química , Retículo Endoplásmico/metabolismo , Glutatión/química , Glutatión Peroxidasa/química , Homeostasis , Humanos , Peroxidación de Lípido , Ratones , Microsomas/metabolismo , NADP/química , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Piperazinas/química , Ingeniería de Proteínas , Relación Estructura-Actividad
3.
Proc Natl Acad Sci U S A ; 113(34): E4966-75, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27506793

RESUMEN

Ferroptosis is form of regulated nonapoptotic cell death that is involved in diverse disease contexts. Small molecules that inhibit glutathione peroxidase 4 (GPX4), a phospholipid peroxidase, cause lethal accumulation of lipid peroxides and induce ferroptotic cell death. Although ferroptosis has been suggested to involve accumulation of reactive oxygen species (ROS) in lipid environments, the mediators and substrates of ROS generation and the pharmacological mechanism of GPX4 inhibition that generates ROS in lipid environments are unknown. We report here the mechanism of lipid peroxidation during ferroptosis, which involves phosphorylase kinase G2 (PHKG2) regulation of iron availability to lipoxygenase enzymes, which in turn drive ferroptosis through peroxidation of polyunsaturated fatty acids (PUFAs) at the bis-allylic position; indeed, pretreating cells with PUFAs containing the heavy hydrogen isotope deuterium at the site of peroxidation (D-PUFA) prevented PUFA oxidation and blocked ferroptosis. We further found that ferroptosis inducers inhibit GPX4 by covalently targeting the active site selenocysteine, leading to accumulation of PUFA hydroperoxides. In summary, we found that PUFA oxidation by lipoxygenases via a PHKG2-dependent iron pool is necessary for ferroptosis and that the covalent inhibition of the catalytic selenocysteine in Gpx4 prevents elimination of PUFA hydroperoxides; these findings suggest new strategies for controlling ferroptosis in diverse contexts.


Asunto(s)
Muerte Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Ácidos Grasos Insaturados/metabolismo , Glutatión Peroxidasa/metabolismo , Lipooxigenasas/metabolismo , Fosforilasa Quinasa/metabolismo , Dominio Catalítico , Muerte Celular/genética , Línea Celular Tumoral , Deuterio , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica , Glutatión Peroxidasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hierro/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Peróxidos Lipídicos/biosíntesis , Lipooxigenasas/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Fosforilasa Quinasa/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Selenocisteína/metabolismo , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 112(17): E2245-52, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25848045

RESUMEN

Protein disulfide isomerase (PDI) is a chaperone protein in the endoplasmic reticulum that is up-regulated in mouse models of, and brains of patients with, neurodegenerative diseases involving protein misfolding. PDI's role in these diseases, however, is not fully understood. Here, we report the discovery of a reversible, neuroprotective lead optimized compound (LOC)14, that acts as a modulator of PDI. LOC14 was identified using a high-throughput screen of ∼10,000 lead-optimized compounds for potent rescue of viability of PC12 cells expressing mutant huntingtin protein, followed by an evaluation of compounds on PDI reductase activity in an in vitro screen. Isothermal titration calorimetry and fluorescence experiments revealed that binding to PDI was reversible with a Kd of 62 nM, suggesting LOC14 to be the most potent PDI inhibitor reported to date. Using 2D heteronuclear single quantum correlation NMR experiments, we were able to map the binding site of LOC14 as being adjacent to the active site and to observe that binding of LOC14 forces PDI to adopt an oxidized conformation. Furthermore, we found that LOC14-induced oxidation of PDI has a neuroprotective effect not only in cell culture, but also in corticostriatal brain slice cultures. LOC14 exhibited high stability in mouse liver microsomes and blood plasma, low intrinsic microsome clearance, and low plasma-protein binding. These results suggest that LOC14 is a promising lead compound to evaluate the potential therapeutic effects of modulating PDI in animal models of disease.


Asunto(s)
Cuerpo Estriado/enzimología , Inhibidores Enzimáticos , Microsomas Hepáticos/enzimología , Fármacos Neuroprotectores , Proteína Disulfuro Isomerasas , Animales , Dominio Catalítico , Cuerpo Estriado/citología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína Huntingtina , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción/efectos de los fármacos , Células PC12 , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Ratas
5.
Biochem Biophys Res Commun ; 482(3): 419-425, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28212725

RESUMEN

Disruption of redox homeostasis is a key phenotype of many pathological conditions. Though multiple oxidizing compounds such as hydrogen peroxide are widely recognized as mediators and inducers of oxidative stress, increasingly, attention is focused on the role of lipid hydroperoxides as critical mediators of death and disease. As the main component of cellular membranes, lipids have an indispensible role in maintaining the structural integrity of cells. Excessive oxidation of lipids alters the physical properties of cellular membranes and can cause covalent modification of proteins and nucleic acids. This review discusses the synthesis, toxicity, degradation, and detection of lipid peroxides in biological systems. Additionally, the role of lipid peroxidation is highlighted in cell death and disease, and strategies to control the accumulation of lipid peroxides are discussed.


Asunto(s)
Muerte Celular/fisiología , Peroxidación de Lípido/fisiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peróxidos Lipídicos/metabolismo , Peróxidos Lipídicos/toxicidad , Inhibidores de la Lipooxigenasa/farmacología , Redes y Vías Metabólicas , Oxidación-Reducción , Sustancias Reductoras/farmacología
6.
Patient Prefer Adherence ; 15: 611-623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776424

RESUMEN

PURPOSE: Several adjuvant phase III trials are evaluating cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) in combination with endocrine therapy (ET) in hormonal receptor positive (HR+)/human epidermal growth factor receptor 2 negative (HER2-) early-stage breast cancer (eBC). This study examines preferences for this combination regimen and ET alone among patients, oncologists, and payers in the United States. METHODS: A web-based questionnaire, including a discrete choice experiment (DCE), was administered to patients, practicing oncologists, and payers. In the DCE, respondents selected between hypothetical treatment profiles with attributes associated with ET monotherapy and CDK4/6i + ET regimens. Each treatment alternative was defined by the following attributes: 5-year invasive disease-free survival (iDFS), nausea, diarrhea, neutropenia, alopecia, dosing schedule, and electrocardiogram (ECG) monitoring. Payers had the additional attribute of annual per-patient treatment cost. Hierarchical Bayesian models were used to estimate relative preference weights for each attribute-level and relative attribute importance. RESULTS: For patients (n=300) and oncologists (n=200), iDFS was most important (2 to 3 times more important than the next most important attribute), followed by neutropenia and diarrhea risks for patients and oncologists, respectively. Patients and oncologists required an improvement in iDFS of 8.0 and 5.6 percentage-points, respectively, to accept an increase in diarrhea risk from 11% to 81%. Payers (n=60) viewed annual per-patient cost as most important for treatment access decision-making, closely followed by iDFS. Payers required an improvement in iDFS of 21.8 percentage-points to accept an increase in cost from $5,100 to $149,400. Across all stakeholder groups, dosing schedule, alopecia risk, and ECG monitoring were perceived as least important. CONCLUSION: Patients, oncologists, and payers expect a large absolute risk reduction in efficacy to offset the potential risks and costs of adding a CDK4/6i to current standard of care. An open discussion between all stakeholders is necessary to ensure that decision-making, whether at patient- or system-level, is informed by preferences for novel treatments, like CDK4/6is.

7.
ACS Chem Biol ; 13(4): 1013-1020, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29512999

RESUMEN

Ferroptosis is a form of nonapoptotic cell death characterized by the unchecked accumulation of lipid peroxides. Ferrostatin-1 and its analogs (ferrostatins) specifically prevent ferroptosis in multiple contexts, but many aspects of their molecular mechanism of action remain poorly described. Here, we employed stimulated Raman scattering (SRS) microscopy coupled with small vibrational tags to image the distribution of ferrostatins in cells and found that they accumulate in lysosomes, mitochondria, and the endoplasmic reticulum. We then evaluated the functional relevance of lysosomes and mitochondria to ferroptosis suppression by ferrostatins and found that neither is required for effective ferroptosis suppression.


Asunto(s)
Muerte Celular/efectos de los fármacos , Ciclohexilaminas/farmacología , Fenilendiaminas/farmacología , Animales , Ciclohexilaminas/análisis , Humanos , Hierro/metabolismo , Peroxidación de Lípido , Lisosomas/metabolismo , Mitocondrias/metabolismo , Fenilendiaminas/análisis
8.
ACS Cent Sci ; 2(9): 653-659, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27725964

RESUMEN

Discovering compounds and mechanisms for inhibiting ferroptosis, a form of regulated, nonapoptotic cell death, has been of great interest in recent years. In this study, we demonstrate the ability of XJB-5-131, JP4-039, and other nitroxide-based lipid peroxidation mitigators to prevent ferroptotic cell death in HT-1080, BJeLR, and panc-1 cells. Several analogues of the reactive oxygen species (ROS) scavengers XJB-5-131 and JP4-039 were synthesized to probe structure-activity relationships and the influence of subcellular localization on the potency of these novel ferroptosis suppressors. Their biological activity correlated well over several orders of magnitude with their structure, relative lipophilicity, and respective enrichment in mitochondria, revealing a critical role of intramitochondrial lipid peroxidation in ferroptosis. These results also suggest that preventing mitochondrial lipid oxidation might offer a viable therapeutic opportunity in ischemia/reperfusion-induced tissue injury, acute kidney injury, and other pathologies that involve ferroptotic cell death pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA