Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 151(2): 320-32, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23039994

RESUMEN

How cells form global, self-organized structures using genetically encoded molecular rules remains elusive. Here, we take a synthetic biology approach to investigate the design principles governing cell polarization. First, using a coarse-grained computational model, we searched for all possible simple networks that can achieve polarization. All solutions contained one of three minimal motifs: positive feedback, mutual inhibition, or inhibitor with positive feedback. These minimal motifs alone could achieve polarization under limited conditions; circuits that combined two or more of these motifs were significantly more robust. With these design principles as a blueprint, we experimentally constructed artificial polarization networks in yeast, using a toolkit of chimeric signaling proteins that spatially direct the synthesis and degradation of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)). Circuits with combinatorial motifs yielded clear foci of synthetic PIP(3) that can persist for nearly an hour. Thus, by harnessing localization-regulated signaling molecules, we can engineer simple molecular circuits that reliably execute spatial self-organized programs.


Asunto(s)
Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/citología , Algoritmos , Polaridad Celular , Citosol/metabolismo , Retroalimentación Fisiológica , Fosfatos de Fosfatidilinositol/biosíntesis , Biología Sintética
2.
Nature ; 589(7840): 82-87, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171481

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic markedly changed human mobility patterns, necessitating epidemiological models that can capture the effects of these changes in mobility on the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. Here we introduce a metapopulation susceptible-exposed-infectious-removed (SEIR) model that integrates fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in ten of the largest US metropolitan areas. Our mobility networks are derived from mobile phone data and map the hourly movements of 98 million people from neighbourhoods (or census block groups) to points of interest such as restaurants and religious establishments, connecting 56,945 census block groups to 552,758 points of interest with 5.4 billion hourly edges. We show that by integrating these networks, a relatively simple SEIR model can accurately fit the real case trajectory, despite substantial changes in the behaviour of the population over time. Our model predicts that a small minority of 'superspreader' points of interest account for a large majority of the infections, and that restricting the maximum occupancy at each point of interest is more effective than uniformly reducing mobility. Our model also correctly predicts higher infection rates among disadvantaged racial and socioeconomic groups2-8 solely as the result of differences in mobility: we find that disadvantaged groups have not been able to reduce their mobility as sharply, and that the points of interest that they visit are more crowded and are therefore associated with higher risk. By capturing who is infected at which locations, our model supports detailed analyses that can inform more-effective and equitable policy responses to COVID-19.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Simulación por Computador , Locomoción , Distanciamiento Físico , Grupos Raciales/estadística & datos numéricos , Factores Socioeconómicos , COVID-19/transmisión , Teléfono Celular/estadística & datos numéricos , Análisis de Datos , Humanos , Aplicaciones Móviles/estadística & datos numéricos , Religión , Restaurantes/organización & administración , Medición de Riesgo , Factores de Tiempo
3.
Malar J ; 22(1): 29, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703147

RESUMEN

BACKGROUND: Malaria is a leading cause of outpatient visits and deaths among children in Guinea. Despite several mass distribution campaigns of insecticide-treated nets (ITNs) in Guinea, ITN ownership and use remain low. Identifying the underlying factors affecting household ITN ownership and ITN usage among those with access will allow the Guinea National Malaria Control Programme to develop targeted initiatives to improve bed net ownership and usage. METHODS: To understand national and regional drivers of ITN ownership and use, multivariable binary logistic regression models were applied to data from the 2018 Demographic and Health Survey to identify risk factors of household ITN ownership and risk factors of ITN use among individuals with access. Akaike Information Criterion (AIC) was used for model parameter selection. Odds ratios were estimated with corresponding 95% confidence intervals. RESULTS: The proportion of households in Guinea with at least one ITN was 44%, ranging from a low of 25% in Conakry to a high of 54% in Labé. Use of ITNs among those with access was 66.1% nationally, ranging from 35.2% in Labé to 89.7% in N'zérékoré. Risk factors for household ITN ownership were household size, marital status of the household head, education level of the household head, and region. For ITN use among those with access, risk factors were age, wealth quintile, marital status, and region. In the seven regions of Guinea and capital of Conakry, risk factors for household ITN ownership were household size in Boké, Faranah, and Kankan; education level of the household head in Boké, Faranah, and N'zérékoré; age of the household head in Conakry and Labé; children under five in the household in Kankan; and wealth quintile in Mamou. For ITN use among those with access, risk factors were marital status in Conakry, Faranah, Kindia, Labé, Mamou, and N'zérékoré; place of residence in Labé; children under five in the household in Labé; wealth quintile in Mamou; and age in Faranah and N'zérékoré. CONCLUSIONS: This analysis identified national and region-specific factors that affect ownership and use among those with access in Guinea. Future ITN and social-behavioural change campaigns in Guinea may particularly want to target larger households, households without children, and areas with lower perceived risk of malaria if universal coverage and usage are to be achieved for optimal malaria prevention.


Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Niño , Humanos , Propiedad , Guinea , Control de Mosquitos , Composición Familiar , Malaria/prevención & control
4.
Malar J ; 22(1): 138, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101269

RESUMEN

BACKGROUND: As both mechanistic and geospatial malaria modeling methods become more integrated into malaria policy decisions, there is increasing demand for strategies that combine these two methods. This paper introduces a novel archetypes-based methodology for generating high-resolution intervention impact maps based on mechanistic model simulations. An example configuration of the framework is described and explored. METHODS: First, dimensionality reduction and clustering techniques were applied to rasterized geospatial environmental and mosquito covariates to find archetypal malaria transmission patterns. Next, mechanistic models were run on a representative site from each archetype to assess intervention impact. Finally, these mechanistic results were reprojected onto each pixel to generate full maps of intervention impact. The example configuration used ERA5 and Malaria Atlas Project covariates, singular value decomposition, k-means clustering, and the Institute for Disease Modeling's EMOD model to explore a range of three-year malaria interventions primarily focused on vector control and case management. RESULTS: Rainfall, temperature, and mosquito abundance layers were clustered into ten transmission archetypes with distinct properties. Example intervention impact curves and maps highlighted archetype-specific variation in efficacy of vector control interventions. A sensitivity analysis showed that the procedure for selecting representative sites to simulate worked well in all but one archetype. CONCLUSION: This paper introduces a novel methodology which combines the richness of spatiotemporal mapping with the rigor of mechanistic modeling to create a multi-purpose infrastructure for answering a broad range of important questions in the malaria policy space. It is flexible and adaptable to a range of input covariates, mechanistic models, and mapping strategies and can be adapted to the modelers' setting of choice.


Asunto(s)
Malaria , Animales , Humanos , Malaria/prevención & control , Control de Mosquitos/métodos
5.
Malar J ; 22(1): 133, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095480

RESUMEN

BACKGROUND: A recent WHO recommendation for perennial malaria chemoprevention (PMC) encourages countries to adapt dose timing and number to local conditions. However, knowledge gaps on the epidemiological impact of PMC and possible combination with the malaria vaccine RTS,S hinder informed policy decisions in countries where malaria burden in young children remains high. METHODS: The EMOD malaria model was used to predict the impact of PMC with and without RTS,S on clinical and severe malaria cases in children under the age of two years (U2). PMC and RTS,S effect sizes were fit to trial data. PMC was simulated with three to seven doses (PMC-3-7) before the age of eighteen months and RTS,S with three doses, shown to be effective at nine months. Simulations were run for transmission intensities of one to 128 infectious bites per person per year, corresponding to incidences of < 1 to 5500 cases per 1000 population U2. Intervention coverage was either set to 80% or based on 2018 household survey data for Southern Nigeria as a sample use case. The protective efficacy (PE) for clinical and severe cases in children U2 was calculated in comparison to no PMC and no RTS,S. RESULTS: The projected impact of PMC or RTS,S was greater at moderate to high transmission than at low or very high transmission. Across the simulated transmission levels, PE estimates of PMC-3 at 80% coverage ranged from 5.7 to 8.8% for clinical, and from 6.1 to 13.6% for severe malaria (PE of RTS,S 10-32% and 24.6-27.5% for clinical and severe malaria, respectively. In children U2, PMC with seven doses nearly averted as many cases as RTS,S, while the combination of both was more impactful than either intervention alone. When operational coverage, as seen in Southern Nigeria, increased to a hypothetical target of 80%, cases were reduced beyond the relative increase in coverage. CONCLUSIONS: PMC can substantially reduce clinical and severe cases in the first two years of life in areas with high malaria burden and perennial transmission. A better understanding of the malaria risk profile by age in early childhood and on feasible coverage by age, is needed for selecting an appropriate PMC schedule in a given setting.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Humanos , Niño , Preescolar , Lactante , Malaria/prevención & control , Nigeria , Quimioprevención , Vacunación , Malaria Falciparum/epidemiología
6.
Malar J ; 22(1): 137, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101146

RESUMEN

BACKGROUND: For their 2021-2025 National Malaria Strategic Plan (NMSP), Nigeria's National Malaria Elimination Programme (NMEP), in partnership with the World Health Organization (WHO), developed a targeted approach to intervention deployment at the local government area (LGA) level as part of the High Burden to High Impact response. Mathematical models of malaria transmission were used to predict the impact of proposed intervention strategies on malaria burden. METHODS: An agent-based model of Plasmodium falciparum transmission was used to simulate malaria morbidity and mortality in Nigeria's 774 LGAs under four possible intervention strategies from 2020 to 2030. The scenarios represented the previously implemented plan (business-as-usual), the NMSP at an 80% or higher coverage level and two prioritized plans according to the resources available to Nigeria. LGAs were clustered into 22 epidemiological archetypes using monthly rainfall, temperature suitability index, vector abundance, pre-2010 parasite prevalence, and pre-2010 vector control coverage. Routine incidence data were used to parameterize seasonality in each archetype. Each LGA's baseline malaria transmission intensity was calibrated to parasite prevalence in children under the age of five years measured in the 2010 Malaria Indicator Survey (MIS). Intervention coverage in the 2010-2019 period was obtained from the Demographic and Health Survey, MIS, the NMEP, and post-campaign surveys. RESULTS: Pursuing a business-as-usual strategy was projected to result in a 5% and 9% increase in malaria incidence in 2025 and 2030 compared with 2020, while deaths were projected to remain unchanged by 2030. The greatest intervention impact was associated with the NMSP scenario with 80% or greater coverage of standard interventions coupled with intermittent preventive treatment in infants and extension of seasonal malaria chemoprevention (SMC) to 404 LGAs, compared to 80 LGAs in 2019. The budget-prioritized scenario with SMC expansion to 310 LGAs, high bed net coverage with new formulations, and increase in effective case management rate at the same pace as historical levels was adopted as an adequate alternative for the resources available. CONCLUSIONS: Dynamical models can be applied for relative assessment of the impact of intervention scenarios but improved subnational data collection systems are required to allow increased confidence in predictions at sub-national level.


Asunto(s)
Malaria , Niño , Lactante , Humanos , Preescolar , Nigeria/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Modelos Teóricos , Incidencia , Gobierno Local
7.
BMC Infect Dis ; 23(1): 287, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142984

RESUMEN

BACKGROUND: Decision-makers impose COVID-19 mitigations based on public health indicators such as reported cases, which are sensitive to fluctuations in supply and demand for diagnostic testing, and hospital admissions, which lag infections by up to two weeks. Imposing mitigations too early has unnecessary economic costs while imposing too late leads to uncontrolled epidemics with unnecessary cases and deaths. Sentinel surveillance of recently-symptomatic individuals in outpatient testing sites may overcome biases and lags in conventional indicators, but the minimal outpatient sentinel surveillance system needed for reliable trend estimation remains unknown. METHODS: We used a stochastic, compartmental transmission model to evaluate the performance of various surveillance indicators at reliably triggering an alarm in response to, but not before, a step increase in transmission of SARS-CoV-2. The surveillance indicators included hospital admissions, hospital occupancy, and sentinel cases with varying levels of sampling effort capturing 5, 10, 20, 50, or 100% of incident mild cases. We tested 3 levels of transmission increase, 3 population sizes, and conditions of either simultaneous transmission increase or lagged increase in the older population. We compared the indicators' performance at triggering alarm soon after, but not prior, to the transmission increase. RESULTS: Compared to surveillance based on hospital admissions, outpatient sentinel surveillance that captured at least 20% of incident mild cases could trigger an alarm 2 to 5 days earlier for a mild increase in transmission and 6 days earlier for a moderate or strong increase. Sentinel surveillance triggered fewer false alarms and averted more deaths per day spent in mitigation. When transmission increase in older populations lagged the increase in younger populations by 14 days, sentinel surveillance extended its lead time over hospital admissions by an additional 2 days. CONCLUSIONS: Sentinel surveillance of mild symptomatic cases can provide more timely and reliable information on changes in transmission to inform decision-makers in an epidemic like COVID-19.


Asunto(s)
COVID-19 , Humanos , Anciano , COVID-19/epidemiología , SARS-CoV-2 , Vigilancia de Guardia , Pacientes Ambulatorios , Salud Pública
8.
BMC Public Health ; 22(1): 312, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168585

RESUMEN

BACKGROUND: Structural racism has driven and continues to drive policies that create the social, economic, and community factors resulting in residential segregation, lack of access to adequate healthcare, and lack of employment opportunities that would allow economic mobility. This results in overall poorer population health for minoritized people. In 2020, Black and Hispanic/Latinx communities throughout the United States, including the state of Illinois, experienced disproportionately high rates of COVID-19 cases and deaths. Public health officials in Illinois implemented targeted programs at state and local levels to increase intervention access and reduce disparities. METHODS: To quantify how disparities in COVID outcomes evolved through the epidemic, data on SARS-CoV-2 diagnostic tests, COVID-19 cases, and COVID-19 deaths were obtained from the Illinois National Electronic Disease Surveillance System for the period from March 1 to December 31, 2020. Relative risks of COVID-19 cases and deaths were calculated for Black and Hispanic/Latinx vs. White residents, stratified by age group and epidemic interval. Deaths attributable to racial/ethnic disparities in incidence and case fatality were estimated with counterfactual simulations. RESULTS: Disparities in case and death rates became less drastic after May 2020, but did not disappear, and were more pronounced at younger ages. From March to May of 2020, the risk of a COVID-19 case for Black and Hispanic/Latinx populations was more than twice that of Whites across all age groups. The relative risk of COVID-19 death reached above 10 for Black and Hispanic/Latinx individuals under 50 years of age compared to age-matched Whites in the early epidemic. In all Illinois counties, relative risk of a COVID-19 case was the same or significantly increased for minoritized populations compared to the White population. 79.3 and 86.7% of disparities in deaths among Black and Hispanic/Latinx populations, respectively, were attributable to differences in age-adjusted incidence compared to White populations rather than differences in case fatality ratios. CONCLUSIONS: Racial and ethnic disparities in the COVID-19 pandemic are products of society, not biology. Considering age and geography in addition to race/ethnicity can help to identify the structural factors driving poorer outcomes for certain groups. Studies and policies aimed at reducing inequalities in disease exposure may reduce disparities in mortality more than those focused on drivers of case fatality.


Asunto(s)
COVID-19 , Disparidades en el Estado de Salud , Hispánicos o Latinos , Humanos , Illinois/epidemiología , Pandemias , SARS-CoV-2 , Racismo Sistemático , Estados Unidos/epidemiología
9.
PLoS Comput Biol ; 16(8): e1008121, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32797077

RESUMEN

Vector control has been a key component in the fight against malaria for decades, and chemical insecticides are critical to the success of vector control programs worldwide. However, increasing resistance to insecticides threatens to undermine these efforts. Understanding the evolution and propagation of resistance is thus imperative to mitigating loss of intervention effectiveness. Additionally, accelerated research and development of new tools that can be deployed alongside existing vector control strategies is key to eradicating malaria in the near future. Methods such as gene drives that aim to genetically modify large mosquito populations in the wild to either render them refractory to malaria or impair their reproduction may prove invaluable tools. Mathematical models of gene flow in populations, which is the transfer of genetic information from one population to another through migration, can offer invaluable insight into the behavior and potential impact of gene drives as well as the spread of insecticide resistance in the wild. Here, we present the first multi-locus, agent-based model of vector genetics that accounts for mutations and a many-to-many mapping cardinality of genotypes to phenotypes to investigate gene flow, and the propagation of gene drives in Anopheline populations. This model is embedded within a large scale individual-based model of malaria transmission representative of a high burden, high transmission setting characteristic of the Sahel. Results are presented for the selection of insecticide-resistant vectors and the spread of resistance through repeated deployment of insecticide treated nets (ITNs), in addition to scenarios where gene drives act in concert with existing vector control tools such as ITNs. The roles of seasonality, spatial distribution of vector habitat and feed sites, and existing vector control in propagating alleles that confer phenotypic traits via gene drives that result in reduced transmission are explored. The ability to model a spectrum of vector species with different genotypes and phenotypes in the context of malaria transmission allows us to test deployment strategies for existing interventions that reduce the deleterious effects of resistance and allows exploration of the impact of new tools being proposed or developed.


Asunto(s)
Anopheles/genética , Tecnología de Genética Dirigida/métodos , Resistencia a los Insecticidas/genética , Malaria , Mosquitos Vectores/genética , Animales , Aptitud Genética , Humanos , Malaria/prevención & control , Malaria/transmisión , Análisis de Sistemas
10.
Malar J ; 20(1): 309, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246274

RESUMEN

BACKGROUND: Malaria blood-stage infection length and intensity are important drivers of disease and transmission; however, the underlying mechanisms of parasite growth and the host's immune response during infection remain largely unknown. Over the last 30 years, several mechanistic mathematical models of malaria parasite within-host dynamics have been published and used in malaria transmission models. METHODS: Mechanistic within-host models of parasite dynamics were identified through a review of published literature. For a subset of these, model code was reproduced and descriptive statistics compared between the models using fitted data. Through simulation and model analysis, key features of the models were compared, including assumptions on growth, immune response components, variant switching mechanisms, and inter-individual variability. RESULTS: The assessed within-host malaria models generally replicate infection dynamics in malaria-naïve individuals. However, there are substantial differences between the model dynamics after disease onset, and models do not always reproduce late infection parasitaemia data used for calibration of the within host infections. Models have attempted to capture the considerable variability in parasite dynamics between individuals by including stochastic parasite multiplication rates; variant switching dynamics leading to immune escape; variable effects of the host immune responses; or via probabilistic events. For models that capture realistic length of infections, model representations of innate immunity explain early peaks in infection density that cause clinical symptoms, and model representations of antibody immune responses control the length of infection. Models differed in their assumptions concerning variant switching dynamics, reflecting uncertainty in the underlying mechanisms of variant switching revealed by recent clinical data during early infection. Overall, given the scarce availability of the biological evidence there is limited support for complex models. CONCLUSIONS: This study suggests that much of the inter-individual variability observed in clinical malaria infections has traditionally been attributed in models to random variability, rather than mechanistic disease dynamics. Thus, it is proposed that newly developed models should assume simple immune dynamics that minimally capture mechanistic understandings and avoid over-parameterization and large stochasticity which inaccurately represent unknown disease mechanisms.


Asunto(s)
Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Simulación por Computador , Interacciones Huésped-Parásitos , Humanos , Parasitemia/parasitología
11.
Malar J ; 20(1): 122, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648499

RESUMEN

In malaria-endemic countries, prioritizing intervention deployment to areas that need the most attention is crucial to ensure continued progress. Global and national policy makers increasingly rely on epidemiological data and mathematical modelling to help optimize health decisions at the sub-national level. The Demographic and Health Surveys (DHS) Program is a critical data source for understanding subnational malaria prevalence and intervention coverage, which are used for parameterizing country-specific models of malaria transmission. However, data to estimate indicators at finer resolutions are limited, and surveys questions have a narrow scope. Examples from the Nigeria DHS are used to highlight gaps in the current survey design. Proposals are then made for additional questions and expansions to the DHS and Malaria Indicator Survey sampling strategy that would advance the data analyses and modelled estimates that inform national policy recommendations. Collaboration between the DHS Program, national malaria control programmes, the malaria modelling community, and funders is needed to address the highlighted data challenges.


Asunto(s)
Control de Enfermedades Transmisibles/organización & administración , Política de Salud , Malaria/prevención & control , Nigeria , Encuestas y Cuestionarios
12.
BMC Public Health ; 21(1): 1105, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34107947

RESUMEN

BACKGROUND: Availability of SARS-CoV-2 testing in the United States (U.S.) has fluctuated through the course of the COVID-19 pandemic, including in the U.S. state of Illinois. Despite substantial ramp-up in test volume, access to SARS-CoV-2 testing remains limited, heterogeneous, and insufficient to control spread. METHODS: We compared SARS-CoV-2 testing rates across geographic regions, over time, and by demographic characteristics (i.e., age and racial/ethnic groups) in Illinois during March through December 2020. We compared age-matched case fatality ratios and infection fatality ratios through time to estimate the fraction of SARS-CoV-2 infections that have been detected through diagnostic testing. RESULTS: By the end of 2020, initial geographic differences in testing rates had closed substantially. Case fatality ratios were higher in non-Hispanic Black and Hispanic/Latino populations in Illinois relative to non-Hispanic White populations, suggesting that tests were insufficient to accurately capture the true burden of COVID-19 disease in the minority populations during the initial epidemic wave. While testing disparities decreased during 2020, Hispanic/Latino populations consistently remained the least tested at 1.87 tests per 1000 population per day compared with 2.58 and 2.87 for non-Hispanic Black and non-Hispanic White populations, respectively, at the end of 2020. Despite a large expansion in testing since the beginning of the first wave of the epidemic, we estimated that over half (50-80%) of all SARS-CoV-2 infections were not detected by diagnostic testing and continued to evade surveillance. CONCLUSIONS: Systematic methods for identifying relatively under-tested geographic regions and demographic groups may enable policymakers to regularly monitor and evaluate the shifting landscape of diagnostic testing, allowing officials to prioritize allocation of testing resources to reduce disparities in COVID-19 burden and eventually reduce SARS-CoV-2 transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Humanos , Illinois/epidemiología , Pandemias , Estados Unidos/epidemiología
13.
Malar J ; 18(1): 307, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488139

RESUMEN

BACKGROUND: While bed nets and insecticide spraying have had significant impact on malaria burden in many endemic regions, outdoor vector feeding and insecticide resistance may ultimately limit their contribution to elimination and control campaigns. Complementary vector control methods such as endectocides or systemic insecticides, where humans or animals are treated with drugs that kill mosquitoes upon ingestion via blood meal, are therefore generating much interest. This work explores the conditions under which long-lasting systemic insecticides would have a substantial impact on transmission and burden. METHODS: Hypothetical long-lasting systemic insecticides with effective durations ranging from 14 to 90 days are simulated using an individual-based mathematical model of malaria transmission. The impact of systemic insecticides when used to complement existing vector control and drug campaigns is evaluated in three settings-a highly seasonal high-transmission setting, a near-elimination setting with seasonal travel to a high-risk area, and a near-elimination setting in southern Africa. RESULTS: At 60% coverage, a single round of long-lasting systemic insecticide with effective duration of at least 60 days, distributed at the start of the season alongside a seasonal malaria chemoprevention campaign in a high-transmission setting, results in further burden reduction of 30-90% depending on the sub-populations targeted. In a near-elimination setting where transmission is sustained by seasonal travel to a high-risk area, targeting high-risk travellers with systemic insecticide with effective duration of at least 30 days can result in likely elimination even if intervention coverage is as low as 50%. In near-elimination settings with robust vector control, the addition of a 14-day systemic insecticide alongside an anti-malarial in mass drug administration (MDA) campaigns can decrease the necessary MDA coverage from about 85% to the more easily achievable 65%. CONCLUSIONS: While further research into the safety profile of systemic insecticides is necessary before deployment, models predict that long-lasting systemic insecticides can play a critical role in reducing burden or eliminating malaria in a range of contexts with different target populations, existing malaria control methods, and transmission intensities. Continued investment in lengthening the duration of systemic insecticides and improving their safety profile is needed for this intervention to achieve its fullest potential.


Asunto(s)
Antimaláricos/uso terapéutico , Control de Enfermedades Transmisibles/métodos , Insecticidas/uso terapéutico , Malaria/prevención & control , Control de Mosquitos/métodos , Humanos , Modelos Teóricos , Nigeria , Zambia
14.
BMC Infect Dis ; 18(1): 413, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134861

RESUMEN

BACKGROUND: Malaria transmission is both seasonal and heterogeneous, and mathematical models that seek to predict the effects of possible intervention strategies should accurately capture realistic seasonality of vector abundance, seasonal dynamics of within-host effects, and heterogeneity of exposure, which may also vary seasonally. METHODS: Prevalence, incidence, asexual parasite and gametocyte densities, and infectiousness measurements from eight study sites in sub-Saharan Africa were used to calibrate an individual-based model with innate and adaptive immunity. Data from the Garki Project was used to fit exposure rates and parasite densities with month-resolution. A model capturing Garki seasonality and seasonal heterogeneity of exposure was used as a framework for characterizing the infectious reservoir of malaria, testing optimal timing of indoor residual spraying, and comparing four possible mass drug campaign implementations for malaria control. RESULTS: Seasonality as observed in Garki sites is neither sinusoidal nor box-like, and substantial heterogeneity in exposure arises from dry-season biting. Individuals with dry-season exposure likely account for the bulk of the infectious reservoir during the dry season even when they are a minority in the overall population. Spray campaigns offer the most benefit in prevalence reduction when implemented just prior to peak vector abundance, which may occur as late as a couple months into the wet season, and targeting spraying to homes of individuals with dry-season exposure can be particularly effective. Expanding seasonal malaria chemoprevention programs to cover older children is predicted to increase the number of cases averted per treatment and is therefore recommended for settings of seasonal and intense transmission. CONCLUSIONS: Accounting for heterogeneity and seasonality in malaria transmission is critical for understanding transmission dynamics and predicting optimal timing and targeting of control and elimination interventions.


Asunto(s)
Control de Enfermedades Transmisibles/normas , Enfermedades Transmisibles/transmisión , Malaria/prevención & control , Malaria/transmisión , Modelos Teóricos , Estaciones del Año , África del Sur del Sahara/epidemiología , Animales , Quimioprevención , Niño , Preescolar , Vectores de Enfermedades , Humanos , Incidencia , Malaria/epidemiología , Prevalencia , Factores de Tiempo
15.
PLoS Comput Biol ; 12(1): e1004707, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26764905

RESUMEN

Mass campaigns with antimalarial drugs are potentially a powerful tool for local elimination of malaria, yet current diagnostic technologies are insufficiently sensitive to identify all individuals who harbor infections. At the same time, overtreatment of uninfected individuals increases the risk of accelerating emergence of drug resistance and losing community acceptance. Local heterogeneity in transmission intensity may allow campaign strategies that respond to index cases to successfully target subpatent infections while simultaneously limiting overtreatment. While selective targeting of hotspots of transmission has been proposed as a strategy for malaria control, such targeting has not been tested in the context of malaria elimination. Using household locations, demographics, and prevalence data from a survey of four health facility catchment areas in southern Zambia and an agent-based model of malaria transmission and immunity acquisition, a transmission intensity was fit to each household based on neighborhood age-dependent malaria prevalence. A set of individual infection trajectories was constructed for every household in each catchment area, accounting for heterogeneous exposure and immunity. Various campaign strategies-mass drug administration, mass screen and treat, focal mass drug administration, snowball reactive case detection, pooled sampling, and a hypothetical serological diagnostic-were simulated and evaluated for performance at finding infections, minimizing overtreatment, reducing clinical case counts, and interrupting transmission. For malaria control, presumptive treatment leads to substantial overtreatment without additional morbidity reduction under all but the highest transmission conditions. Compared with untargeted approaches, selective targeting of hotspots with drug campaigns is an ineffective tool for elimination due to limited sensitivity of available field diagnostics. Serological diagnosis is potentially an effective tool for malaria elimination but requires higher coverage to achieve similar results to mass distribution of presumptive treatment.


Asunto(s)
Malaria/prevención & control , Malaria/transmisión , Antimaláricos/uso terapéutico , Biología Computacional , Erradicación de la Enfermedad , Humanos , Malaria/tratamiento farmacológico , Malaria/epidemiología , Vigilancia de la Población/métodos
16.
PLoS Comput Biol ; 12(11): e1005192, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27880764

RESUMEN

As more regions approach malaria elimination, understanding how different interventions interact to reduce transmission becomes critical. The Lake Kariba area of Southern Province, Zambia, is part of a multi-country elimination effort and presents a particular challenge as it is an interconnected region of variable transmission intensities. In 2012-13, six rounds of mass test-and-treat drug campaigns were carried out in the Lake Kariba region. A spatial dynamical model of malaria transmission in the Lake Kariba area, with transmission and climate modeled at the village scale, was calibrated to the 2012-13 prevalence survey data, with case management rates, insecticide-treated net usage, and drug campaign coverage informed by surveillance. The model captured the spatio-temporal trends of decline and rebound in malaria prevalence in 2012-13 at the village scale. Various interventions implemented between 2016-22 were simulated to compare their effects on reducing regional transmission and achieving and maintaining elimination through 2030. Simulations predict that elimination requires sustaining high coverage with vector control over several years. When vector control measures are well-implemented, targeted mass drug campaigns in high-burden areas further increase the likelihood of elimination, although drug campaigns cannot compensate for insufficient vector control. If infections are regularly imported from outside the region into highly receptive areas, vector control must be maintained within the region until importations cease. Elimination in the Lake Kariba region is possible, although human movement both within and from outside the region risk damaging the success of elimination programs.


Asunto(s)
Antimaláricos/uso terapéutico , Erradicación de la Enfermedad/estadística & datos numéricos , Promoción de la Salud/estadística & datos numéricos , Malaria/epidemiología , Malaria/prevención & control , Modelos Estadísticos , Simulación por Computador , Erradicación de la Enfermedad/métodos , Femenino , Humanos , Masculino , Control de Mosquitos/estadística & datos numéricos , Evaluación de Resultado en la Atención de Salud/métodos , Vigilancia de la Población/métodos , Prevalencia , Factores de Riesgo , Análisis Espacio-Temporal , Zambia/epidemiología
17.
Malar J ; 16(1): 248, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28606143

RESUMEN

BACKGROUND: Reactive case detection could be a powerful tool in malaria elimination, as it selectively targets transmission pockets. However, field operations have yet to demonstrate under which conditions, if any, reactive case detection is best poised to push a region to elimination. This study uses mathematical modelling to assess how baseline transmission intensity and local interconnectedness affect the impact of reactive activities in the context of other possible intervention packages. METHODS: Communities in Southern Province, Zambia, where elimination operations are currently underway, were used as representatives of three archetypes of malaria transmission: low-transmission, high household density; high-transmission, low household density; and high-transmission, high household density. Transmission at the spatially-connected household level was simulated with a dynamical model of malaria transmission, and local variation in vectorial capacity and intervention coverage were parameterized according to data collected from the area. Various potential intervention packages were imposed on each of the archetypical settings and the resulting likelihoods of elimination by the end of 2020 were compared. RESULTS: Simulations predict that success of elimination campaigns in both low- and high-transmission areas is strongly dependent on stemming the flow of imported infections, underscoring the need for regional-scale strategies capable of reducing transmission concurrently across many connected areas. In historically low-transmission areas, treatment of clinical malaria should form the cornerstone of elimination operations, as most malaria infections in these areas are symptomatic and onward transmission would be mitigated through health system strengthening; reactive case detection has minimal impact in these settings. In historically high-transmission areas, vector control and case management are crucial for limiting outbreak size, and the asymptomatic reservoir must be addressed through reactive case detection or mass drug campaigns. CONCLUSIONS: Reactive case detection is recommended only for settings where transmission has recently been reduced rather than all low-transmission settings. This is demonstrated in a modelling framework with strong out-of-sample accuracy across a range of transmission settings while including methodologies for understanding the most resource-effective allocations of health workers. This approach generalizes to providing a platform for planning rational scale-up of health systems based on locally-optimized impact according to simplified stratification.


Asunto(s)
Malaria/prevención & control , Modelos Biológicos , Adolescente , Adulto , Animales , Niño , Preescolar , Simulación por Computador , Composición Familiar , Femenino , Humanos , Lactante , Malaria/epidemiología , Malaria/transmisión , Aceptación de la Atención de Salud/estadística & datos numéricos , Prevalencia , Adulto Joven , Zambia/epidemiología
18.
J Infect Dis ; 213(1): 90-9, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26142435

RESUMEN

BACKGROUND: Plasmodium falciparum gametocytes are essential for malaria transmission. Malaria control measures that aim at reducing transmission require an accurate characterization of the human infectious reservoir. METHODS: We longitudinally determined human infectiousness to mosquitoes and P. falciparum carriage by an ultrasensitive RNA-based diagnostics in 130 randomly selected inhabitants of an endemic area. RESULTS: At least 1 mosquito was infected by 32.6% (100 of 307) of the blood samples; in total, 7.6% of mosquitoes (916 of 12 079) were infected. The proportion of infectious individuals and infected mosquitoes were negatively associated with age and positively with asexual parasites (P < .001). Human infectiousness was higher at the start of the wet season and subsequently declined at the peak of the wet season (adjusted odds ratio, 0.52; P = .06) and in the dry season (0.23; P < .001). Overall, microscopy-negative individuals were responsible for 28.7% of infectious individuals (25 of 87) and 17.0% of mosquito infections (145 of 855). CONCLUSIONS: Our study reveals that the infectious reservoir peaks at the start of the wet season, with prominent roles for infections in children and submicroscopic infections. These findings have important consequences for strategies and the timing of interventions, which need to include submicroscopic infections and be implemented in the dry season.


Asunto(s)
Anopheles , Portador Sano , Insectos Vectores , Malaria Falciparum , Adolescente , Adulto , Animales , Anopheles/parasitología , Anopheles/fisiología , Burkina Faso/epidemiología , Portador Sano/epidemiología , Portador Sano/parasitología , Portador Sano/transmisión , Niño , Reservorios de Enfermedades/parasitología , Conducta Alimentaria , Femenino , Humanos , Insectos Vectores/parasitología , Insectos Vectores/fisiología , Estudios Longitudinales , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Masculino , Plasmodium falciparum , Adulto Joven
19.
Malar J ; 14: 231, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26037226

RESUMEN

BACKGROUND: Elimination of malaria can only be achieved through removal of all vectors or complete depletion of the infectious reservoir in humans. Mechanistic models can be built to synthesize diverse observations from the field collected under a variety of conditions and subsequently used to query the infectious reservoir in great detail. METHODS: The EMOD model of malaria transmission was calibrated to prevalence, incidence, asexual parasite density, gametocyte density, infection duration, and infectiousness data from nine study sites. The infectious reservoir was characterized by age and parasite detectability with diagnostics of varying sensitivity over a range of transmission intensities with and without case management and vector control. Mass screen-and-treat drug campaigns were tested for likelihood of achieving elimination. RESULTS: The composition of the infectious reservoir is similar over a range of transmission intensities, and higher intensity settings are biased towards infections in children. Recent ramp-ups in case management and use of insecticide-treated bed nets (ITNs) reduce the infectious reservoir and shift the composition towards sub-microscopic infections. Mass campaigns with anti-malarial drugs are highly effective at interrupting transmission if deployed shortly after ITN campaigns. CONCLUSIONS: Low-density infections comprise a substantial portion of the infectious reservoir. Proper timing of vector control, seasonal variation in transmission intensity and mass drug campaigns allows lingering population immunity to help drive a region towards elimination.


Asunto(s)
Antimaláricos/uso terapéutico , Mosquiteros Tratados con Insecticida , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Tamizaje Masivo , Adolescente , Adulto , África Occidental , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Culicidae/parasitología , Reservorios de Enfermedades/parasitología , Humanos , Incidencia , Lactante , Recién Nacido , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Persona de Mediana Edad , Modelos Biológicos , Plasmodium falciparum/fisiología , Prevalencia , Tanzanía
20.
BMC Infect Dis ; 15: 144, 2015 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-25887935

RESUMEN

BACKGROUND: Antimalarial drugs are a powerful tool for malaria control and elimination. Artemisinin-based combination therapies (ACTs) can reduce transmission when widely distributed in a campaign setting. Modelling mass antimalarial campaigns can elucidate how to most effectively deploy drug-based interventions and quantitatively compare the effects of cure, prophylaxis, and transmission-blocking in suppressing parasite prevalence. METHODS: A previously established agent-based model that includes innate and adaptive immunity was used to simulate malaria infections and transmission. Pharmacokinetics of artemether, lumefantrine, dihydroartemisinin, piperaquine, and primaquine were modelled with a double-exponential distribution-elimination model including weight-dependent parameters and age-dependent dosing. Drug killing of asexual parasites and gametocytes was calibrated to clinical data. Mass distribution of ACTs and primaquine was simulated with seasonal mosquito dynamics at a range of transmission intensities. RESULTS: A single mass campaign with antimalarial drugs is insufficient to permanently reduce malaria prevalence when transmission is high. Current diagnostics are insufficiently sensitive to accurately identify asymptomatic infections, and mass-screen-and-treat campaigns are much less efficacious than mass drug administrations. Improving campaign coverage leads to decreased prevalence one month after the end of the campaign, while increasing compliance lengthens the duration of protection against reinfection. Use of a long-lasting prophylactic as part of a mass drug administration regimen confers the most benefit under conditions of high transmission and moderately high coverage. Addition of primaquine can reduce prevalence but exerts its largest effect when coupled with a long-lasting prophylactic. CONCLUSIONS: Mass administration of antimalarial drugs can be a powerful tool to reduce prevalence for a few months post-campaign. A slow-decaying prophylactic administered with a parasite-clearing drug offers strong protection against reinfection, especially in highly endemic areas. Transmission-blocking drugs have only limited effects unless administered with a prophylactic under very high coverage.


Asunto(s)
Antimaláricos/administración & dosificación , Malaria Falciparum/prevención & control , Modelos Biológicos , Profilaxis Posexposición/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina , Artemisininas/administración & dosificación , Artemisininas/farmacocinética , Artemisininas/uso terapéutico , Niño , Preescolar , Combinación de Medicamentos , Quimioterapia Combinada , Etanolaminas/administración & dosificación , Etanolaminas/farmacocinética , Etanolaminas/uso terapéutico , Femenino , Fluorenos/administración & dosificación , Fluorenos/farmacocinética , Fluorenos/uso terapéutico , Humanos , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Masculino , Persona de Mediana Edad , Prevalencia , Primaquina/administración & dosificación , Primaquina/farmacocinética , Primaquina/uso terapéutico , Quinolinas/administración & dosificación , Quinolinas/farmacocinética , Quinolinas/uso terapéutico , Adulto Joven , Zambia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA