Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 189: 83-89, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484473

RESUMEN

Diabetic heart disease morbidity and mortality is escalating. No specific therapeutics exist and mechanistic understanding of diabetic cardiomyopathy etiology is lacking. While lipid accumulation is a recognized cardiomyocyte phenotype of diabetes, less is known about glycolytic fuel handling and storage. Based on in vitro studies, we postulated the operation of an autophagy pathway in the myocardium specific for glycogen homeostasis - glycophagy. Here we visualize occurrence of cardiac glycophagy and show that the diabetic myocardium is characterized by marked glycogen elevation and altered cardiomyocyte glycogen localization. We establish that cardiac glycophagy flux is disturbed in diabetes. Glycophagy may represent a potential therapeutic target for alleviating the myocardial impacts of metabolic disruption in diabetic heart disease.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Humanos , Cardiomiopatías Diabéticas/tratamiento farmacológico , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Glucógeno/metabolismo , Autofagia , Diabetes Mellitus/metabolismo
2.
PLoS Pathog ; 18(8): e1010350, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36044516

RESUMEN

Host-pathogen dynamics are constantly at play during enteroviral infection. Coxsackievirus B (CVB) is a common juvenile enterovirus that infects multiple organs and drives inflammatory diseases including acute pancreatitis and myocarditis. Much like other enteroviruses, CVB is capable of manipulating host machinery to hijack and subvert autophagy for its benefit. We have previously reported that CVB triggers the release of infectious extracellular vesicles (EVs) which originate from autophagosomes. These EVs facilitate efficient dissemination of infectious virus. Here, we report that TBK1 (Tank-binding kinase 1) suppresses release of CVB-induced EVs. TBK1 is a multimeric kinase that directly activates autophagy adaptors for efficient cargo recruitment and induces type-1 interferons during viral-mediated STING recruitment. Positioning itself at the nexus of pathogen elimination, we hypothesized that loss of TBK1 could exacerbate CVB infection due to its specific role in autophagosome trafficking. Here we report that infection with CVB during genetic TBK1 knockdown significantly increases viral load and potentiates the bulk release of viral EVs. Similarly, suppressing TBK1 with small interfering RNA (siRNA) caused a marked increase in intracellular virus and EV release, while treatment in vivo with the TBK1-inhibitor Amlexanox exacerbated viral pancreatitis and EV spread. We further demonstrated that viral EV release is mediated by the autophagy modifier proteins GABARAPL1 and GABARAPL2 which facilitate autophagic flux. We observe that CVB infection stimulates autophagy and increases the release of GABARAPL1/2-positive EVs. We conclude that TBK1 plays additional antiviral roles by inducing autophagic flux during CVB infection independent of interferon signaling, and the loss of TBK1 better allows CVB-laden autophagosomes to circumvent lysosomal degradation, increasing the release of virus-laden EVs. This discovery sheds new light on the mechanisms involved in viral spread and EV propagation during acute enteroviral infection and highlights novel intracellular trafficking protein targets for antiviral therapy.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus , Vesículas Extracelulares , Pancreatitis , Enfermedad Aguda , Proteínas Reguladoras de la Apoptosis/genética , Autofagia , Enterovirus/genética , Enterovirus Humano B/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Bicatenario , ARN Interferente Pequeño , Replicación Viral/genética
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33361152

RESUMEN

The balance between NLRP3 inflammasome activation and mitophagy is essential for homeostasis and cellular health, but this relationship remains poorly understood. Here we found that interleukin-1α (IL-1α)-deficient macrophages have reduced caspase-1 activity and diminished IL-1ß release, concurrent with reduced mitochondrial damage, suggesting a role for IL-1α in regulating this balance. LPS priming of macrophages induced pro-IL-1α translocation to mitochondria, where it directly interacted with mitochondrial cardiolipin (CL). Computational modeling revealed a likely CL binding motif in pro-IL-1α, similar to that found in LC3b. Thus, binding of pro-IL-1α to CL in activated macrophages may interrupt CL-LC3b-dependent mitophagy, leading to enhanced Nlrp3 inflammasome activation and more robust IL-1ß production. Mutation of pro-IL-1α residues predicted to be involved in CL binding resulted in reduced pro-IL-1α-CL interaction, a reduction in NLRP3 inflammasome activity, and increased mitophagy. These data identify a function for pro-IL-1α in regulating mitophagy and the potency of NLRP3 inflammasome activation.


Asunto(s)
Cardiolipinas/metabolismo , Interleucina-1alfa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Autofagia , Cardiolipinas/fisiología , Caspasa 1/metabolismo , Femenino , Células HEK293 , Humanos , Inflamasomas/metabolismo , Interleucina-1alfa/fisiología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Unión Proteica/fisiología , Dominios Proteicos/fisiología , Especies Reactivas de Oxígeno/metabolismo
4.
J Biol Chem ; 298(7): 102050, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598827

RESUMEN

The double-stranded RNA-dependent protein kinase activating protein (PACT), an RNA-binding protein that is part of the RNA-induced silencing complex, plays a key role in miR-mediated translational repression. Previous studies showed that PACT regulates the expression of various miRs, selects the miR strand to be loaded onto RNA-induced silencing complex, and determines proper miR length. Apart from PACT's role in mediating the antiviral response in immune cells, what PACT does in other cell types is unknown. Strikingly, it has also been shown that cold exposure leads to marked downregulation of PACT protein in mouse brown adipose tissue (BAT), where mitochondrial biogenesis and metabolism play a central role. Here, we show that PACT establishes a posttranscriptional brake on mitochondrial biogenesis (mitobiogenesis) by promoting the maturation of miR-181c, a key suppressor of mitobiogenesis that has been shown to target mitochondrial complex IV subunit I (Mtco1) and sirtuin 1 (Sirt1). Consistently, we found that a partial reduction in PACT expression is sufficient to enhance mitobiogenesis in brown adipocytes in culture as well as during BAT activation in mice. In conclusion, we demonstrate an unexpected role for PACT in the regulation of mitochondrial biogenesis and energetics in cells and BAT.


Asunto(s)
Tejido Adiposo Pardo , MicroARNs , Mitocondrias , Biogénesis de Organelos , Proteínas de Unión al ARN , Tejido Adiposo Pardo/metabolismo , Animales , Complejo I de Transporte de Electrón/metabolismo , Ratones , MicroARNs/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo
5.
Pancreatology ; 22(7): 838-845, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35941013

RESUMEN

Acute pancreatitis is characterized by necrosis of its parenchymal cells and influx and activation of inflammatory cells that further promote injury and necrosis. This review is intended to discuss the central role of disorders of calcium metabolism and mitochondrial dysfunction in the mechanism of pancreatitis development. The disorders are placed in context of calcium and mitochondria in physiologic function of the pancreas. Moreover, we discuss potential therapeutics for preventing pathologic calcium signals that injure mitochondria and interventions that promote the removal of injured mitochondria and regenerate new and heathy populations of mitochondria.


Asunto(s)
Pancreatitis , Humanos , Pancreatitis/patología , Calcio/metabolismo , Enfermedad Aguda , Autofagia , Mitocondrias/metabolismo , Necrosis/patología
6.
Cell Mol Life Sci ; 78(8): 3791-3801, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33544154

RESUMEN

Mitochondrial quality control depends upon selective elimination of damaged mitochondria, replacement by mitochondrial biogenesis, redistribution of mitochondrial components across the network by fusion, and segregation of damaged mitochondria by fission prior to mitophagy. In this review, we focus on mitochondrial dynamics (fusion/fission), mitophagy, and other mechanisms supporting mitochondrial quality control including maintenance of mtDNA and the mitochondrial unfolded protein response, particularly in the context of the heart.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales , Mitofagia , Animales , ADN Mitocondrial/metabolismo , Humanos , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Respuesta de Proteína Desplegada
7.
FASEB J ; 34(4): 5628-5641, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32112488

RESUMEN

ß2 -adrenoceptor agonists improve autophagy and re-establish proteostasis in cardiac cells; therefore, suggesting autophagy as a downstream effector of ß2 -adrenoceptor signaling pathway. Here, we used the pharmacological and genetic tools to determine the autophagy effect of sustained ß2 -adrenoceptor activation in rodents with neurogenic myopathy, which display impaired skeletal muscle autophagic flux. Sustained ß2 -adrenoceptor activation using Formoterol (10 µg kg-1  day-1 ), starting at the onset of neurogenic myopathy, prevents disruption of autophagic flux in skeletal muscle 14 days after sciatic nerve constriction. These changes are followed by reduction of the cytotoxic protein levels and increased skeletal muscle cross-sectional area and contractility properties. Of interest, sustained administration of Formoterol at lower concentration (1 µg kg-1  day-1 ) induces similar improvements in skeletal muscle autophagic flux and contractility properties in neurogenic myopathy, without affecting the cross-sectional area. Sustained pharmacological inhibition of autophagy using Chloroquine (50 mg kg-1  day-1 ) abolishes the beneficial effects of ß2 -adrenoceptor activation on the skeletal muscle proteostasis and contractility properties in neurogenic myopathy. Further supporting an autophagy mechanism for ß2 -adrenoceptor activation, skeletal muscle-specific deletion of ATG7 blunts the beneficial effects of ß2 -adrenoceptor on skeletal muscle proteostasis and contractility properties in neurogenic myopathy in mice. These findings suggest autophagy as a critical downstream effector of ß2 -adrenoceptor signaling pathway in skeletal muscle.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Autofagia , Músculo Esquelético/patología , Enfermedades Musculares/prevención & control , Proteostasis , Receptores Adrenérgicos beta 2/metabolismo , Animales , Fumarato de Formoterol , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular , Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta 2/química , Transducción de Señal
8.
Cryobiology ; 102: 42-55, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34331901

RESUMEN

Hypothermia is a valuable clinical tool in mitigating against the consequences of ischemia in surgery, stroke, cardiac arrest and organ preservation. Protection is afforded principally by a reduction of metabolism, manifesting as reduced rates of oxygen uptake, preservation of ATP levels, and a curtailing of ischemic calcium overload. The effects of non-ischemic hypothermic stress are relatively unknown. We sought to investigate the effects of clinically mild-to-severe hypothermia on mitochondrial morphology, oxygen consumption and protein expression in normoxic hearts and cardiac cells. Normoxic perfusion of rat hearts at 28-32 °C was associated with inhibition of mitochondrial fission, evidenced by a reduced abundance of the active phosphorylated form of the fission receptor Drp1 (pDrp1S616). Abundance of the same residue was reduced in H9c2 cells subjected to hypothermic culture (25-32 °C), in addition to a reduced abundance of the Drp1 receptor MFF. Hypothermia-treated H9c2 cardiomyocytes exhibited elongated mitochondria and depressed rates of mitochondrial-associated oxygen consumption, which persisted upon rewarming. Hypothermia also promoted a reduction in mRNA expression of the capsaicin receptor TRPV1 in H9c2 cells. When normothermic H9c2 cells were transfected with TRPV1 siRNA we observed reduced pDrp1S616 and MFF abundance, elongated mitochondria, and reduced rates of mitochondrial-associated oxygen consumption, mimicking the effects of hypothermic culture. In conclusion hypothermia promoted elongation of cardiac mitochondria via reduced pDrp1S616 abundance which was also associated with suppression of cellular oxygen consumption. Silencing of TRPV1 in H9c2 cardiomyocytes reproduced the morphological and respirometric phenotype of hypothermia. This report demonstrates a novel mechanism of cold-induced inhibition of mitochondrial fission.


Asunto(s)
Dinaminas , Hipotermia , Animales , Criopreservación/métodos , Dinaminas/genética , Dinaminas/metabolismo , Hipotermia/metabolismo , Mitocondrias , Miocitos Cardíacos/metabolismo , Ratas
9.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445425

RESUMEN

Cardiovascular disease is the main cause of death worldwide, making it crucial to search for new therapies to mitigate major adverse cardiac events (MACEs) after a cardiac ischemic episode. Drugs in the class of the glucagon-like peptide-1 receptor agonists (GLP1Ra) have demonstrated benefits for heart function and reduced the incidence of MACE in patients with diabetes. Previously, we demonstrated that a short-acting GLP1Ra known as DMB (2-quinoxalinamine, 6,7-dichloro-N-[1,1-dimethylethyl]-3-[methylsulfonyl]-,6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline or compound 2, Sigma) also mitigates adverse postinfarction left ventricular remodeling and cardiac dysfunction in lean mice through activation of parkin-mediated mitophagy following infarction. Here, we combined proteomics with in silico analysis to characterize the range of effects of DMB in vivo throughout the course of early postinfarction remodeling. We demonstrate that the mitochondrion is a key target of DMB and mitochondrial respiration, oxidative phosphorylation and metabolic processes such as glycolysis and fatty acid beta-oxidation are the main biological processes being regulated by this compound in the heart. Moreover, the overexpression of proteins with hub properties identified by protein-protein interaction networks, such as Atp2a2, may also be important to the mechanism of action of DMB. Data are available via ProteomeXchange with identifier PXD027867.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteómica/métodos , Quinoxalinas/administración & dosificación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Remodelación Ventricular/efectos de los fármacos , Animales , Biología Computacional , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón/agonistas , Glucólisis , Masculino , Ratones , Fosforilación Oxidativa , Mapas de Interacción de Proteínas , Quinoxalinas/farmacología
10.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008865

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitors such as empagliflozin are known to reduce the risk of hospitalizations related to heart failure irrespective of diabetic state. Meanwhile, adverse cardiac remodeling remains the leading cause of heart failure and death in the USA. Thus, understanding the mechanisms that are responsible for the beneficial effects of SGLT2 inhibitors is of the utmost relevance and importance. Our previous work illustrated a connection between adverse cardiac remodeling and the regulation of mitochondrial turnover and cellular energetics using a short-acting glucagon-like peptide-1 receptor agonist (GLP1Ra). Here, we sought to determine if the mechanism of the SGLT2 inhibitor empagliflozin (EMPA) in ameliorating adverse remodeling was similar and/or to identify what differences exist, if any. To this end, we administered permanent coronary artery ligation to induce adverse remodeling in wild-type and Parkin knockout mice and examined the progression of adverse cardiac remodeling with or without EMPA treatment over time. Like GLP1Ra, we found that EMPA affords a robust attenuation of PCAL-induced adverse remodeling. Interestingly, unlike the GLP1Ra, EMPA does not require Parkin to improve/maintain mitochondria-related cellular energetics and afford its benefits against developing adverse remodeling. These findings suggests that further investigation of EMPA is warranted as a potential path for developing therapy against adverse cardiac remodeling for patients that may have Parkin and/or mitophagy-related deficiencies.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Metabolismo Energético , Glucósidos/uso terapéutico , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Biogénesis de Organelos , Remodelación Ventricular , Animales , Compuestos de Bencidrilo/farmacología , Electrocardiografía , Metabolismo Energético/efectos de los fármacos , Glucósidos/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitofagia/efectos de los fármacos , Infarto del Miocardio/diagnóstico por imagen , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo , Remodelación Ventricular/efectos de los fármacos
11.
J Mol Cell Cardiol ; 142: 1-13, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32234390

RESUMEN

Mitochondria are the major source of cellular energy (ATP), as well as critical mediators of widespread functions such as cellular redox balance, apoptosis, and metabolic flux. The organelles play an especially important role in the maintenance of cardiac homeostasis; their inability to generate ATP following impairment due to ischemic damage has been directly linked to organ failure. Methods to quantify mitochondrial content are limited to low throughput immunoassays, measurement of mitochondrial DNA, or relative quantification by untargeted mass spectrometry. Here, we present a high throughput, reproducible and quantitative mass spectrometry multiple reaction monitoring based assay of 37 proteins critical to central carbon chain metabolism and overall mitochondrial function termed 'MitoPlex'. We coupled this protein multiplex with a parallel analysis of the central carbon chain metabolites (219 metabolite assay) extracted in tandem from the same sample, be it cells or tissue. In tests of its biological applicability in cells and tissues, "MitoPlex plus metabolites" indicated profound effects of HMG-CoA Reductase inhibition (e.g., statin treatment) on mitochondria of i) differentiating C2C12 skeletal myoblasts, as well as a clear opposite trend of statins to promote mitochondrial protein expression and metabolism in heart and liver, while suppressing mitochondrial protein and ii) aspects of metabolism in the skeletal muscle obtained from C57Bl6 mice. Our results not only reveal new insights into the metabolic effect of statins in skeletal muscle, but present a new high throughput, reliable MS-based tool to study mitochondrial dynamics in both cell culture and in vivo models.


Asunto(s)
Espectrometría de Masas , Metabolómica/métodos , Proteínas Mitocondriales/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Cromatografía Liquida/métodos , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas/métodos , Espectrometría de Masas/normas , Metabolómica/normas , Ratones , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Reproducibilidad de los Resultados , Simvastatina/farmacología , Ubiquinona/farmacología
12.
J Biol Chem ; 294(33): 12359-12369, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31235522

RESUMEN

Excessive alcohol consumption induces intestinal dysbiosis of the gut microbiome and reduces gut epithelial integrity. This often leads to portal circulation-mediated translocation of gut-derived microbial products, such as lipopolysaccharide (LPS), to the liver, where these products engage Toll-like receptor 4 (TLR4) and initiate hepatic inflammation, which promotes alcoholic liver disease (ALD). Although the key self-destructive process of autophagy has been well-studied in hepatocytes, its role in macrophages during ALD pathogenesis remains elusive. Using WT and myeloid cell-specific autophagy-related 7 (Atg7) knockout (Atg7ΔMye) mice, we found that chronic ethanol feeding for 6 weeks plus LPS injection enhances serum alanine aminotransferase and IL-1ß levels and augments hepatic C-C motif chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10) expression in WT mice, a phenotype that was further exacerbated in Atg7ΔMye mice. Atg7ΔMye macrophages exhibited defective mitochondrial respiration and displayed elevated mitochondrial reactive oxygen species production and inflammasome activation relative to WT cells. Interestingly, compared with WT cells, Atg7ΔMye macrophages also had a drastically increased abundance and nuclear translocation of interferon regulatory factor 1 (IRF1) after LPS stimulation. Mechanistically, LPS induced co-localization of IRF1 with the autophagy adaptor p62 and the autophagosome, resulting in subsequent IRF1 degradation. However, upon p62 silencing or Atg7 deletion, IRF1 started to accumulate in autophagy-deficient macrophages and translocated into the nucleus, where it induced CCL5 and CXCL10 expression. In conclusion, macrophage autophagy protects against ALD by promoting IRF1 degradation and removal of damaged mitochondria, limiting macrophage activation and inflammation.


Asunto(s)
Muerte Celular Autofágica , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Etanol/efectos adversos , Factor 1 Regulador del Interferón/metabolismo , Macrófagos/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteolisis , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Etanol/farmacología , Factor 1 Regulador del Interferón/genética , Lipopolisacáridos/toxicidad , Hígado/metabolismo , Hígado/patología , Macrófagos/patología , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/patología
13.
Circulation ; 140(14): 1205-1216, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769940

RESUMEN

Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.


Asunto(s)
Sistema Cardiovascular , Educación/métodos , Insuficiencia Cardíaca/terapia , Mitocondrias/fisiología , National Heart, Lung, and Blood Institute (U.S.) , Informe de Investigación , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Sistema Cardiovascular/patología , Educación/tendencias , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Humanos , National Heart, Lung, and Blood Institute (U.S.)/tendencias , Informe de Investigación/tendencias , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/tendencias , Estados Unidos/epidemiología
14.
Thorax ; 75(9): 717-724, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32499407

RESUMEN

INTRODUCTION: Parkin (Park2), an E3 ubiquitin ligase, is critical to maintain mitochondrial function by regulating mitochondrial biogenesis and degradation (mitophagy), but recent evidence suggests the involvement of Parkin in promoting inflammation. In the present study, we determined if Parkin regulates airway mitochondrial DNA (mtDNA) release and inflammatory responses to type 2 cytokine interleukin (IL)-13 and allergens. METHODS: We measured Parkin mRNA expression in brushed bronchial epithelial cells and mtDNA release in the paired bronchoalveolar lavage fluid (BALF) from normal subjects and asthmatics. Parkin-deficient primary human tracheobronchial epithelial (HTBE) cells generated using the CRISPR-Cas9 system were stimulated with IL-13. To determine the in vivo function of Parkin, Parkin knockout (PKO) and wild-type (WT) mice were treated with IL-13 or allergen (house dust mite, HDM) in the presence or absence of mtDNA isolated from normal mouse lungs. RESULTS: Parkin mRNA expression in asthmatic airway epithelium was upregulated, which positively correlated with the levels of released mtDNA in BALF. IL-13-stimulated HTBE cells increased Parkin expression. Moreover, IL-13 induced mtDNA release in Parkin-sufficient, but not in Parkin-deficient HTBE cells. PKO (vs WT) mice attenuated airway mtDNA release and inflammation following IL-13 or HDM treatments. mtDNA amplified airway inflammation in mice treated with IL-13 or HDM. Notably, Parkin also mediated mtDNA-induced exacerbation of airway inflammation. CONCLUSION: Our research findings suggest that Parkin promotes mtDNA release and inflammation in airways, thus improving our understanding of the complex role of Parkin and mitochondrial dysfunction in asthma pathogenesis.


Asunto(s)
Asma/metabolismo , ADN Mitocondrial/metabolismo , Inflamación/metabolismo , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Alérgenos/farmacología , Animales , Líquido del Lavado Bronquioalveolar , Estudios de Casos y Controles , Células Cultivadas , Eosinófilos , Células Epiteliales/metabolismo , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Interleucina-13/farmacología , Recuento de Leucocitos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neutrófilos , Cultivo Primario de Células , Mucosa Respiratoria/metabolismo , Ubiquitina-Proteína Ligasas/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Adulto Joven
15.
Hepatology ; 70(6): 2018-2034, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31077594

RESUMEN

Methionine adenosyltransferase α1 (MATα1, encoded by MAT1A) is responsible for hepatic biosynthesis of S-adenosyl methionine, the principal methyl donor. MATα1 also act as a transcriptional cofactor by interacting and influencing the activity of several transcription factors. Mat1a knockout (KO) mice have increased levels of cytochrome P450 2E1 (CYP2E1), but the underlying mechanisms are unknown. The aims of the current study were to identify binding partners of MATα1 and elucidate how MATα1 regulates CYP2E1 expression. We identified binding partners of MATα1 by coimmunoprecipitation (co-IP) and mass spectrometry. Interacting proteins were confirmed using co-IP using recombinant proteins, liver lysates, and mitochondria. Alcoholic liver disease (ALD) samples were used to confirm relevance of our findings. We found that MATα1 negatively regulates CYP2E1 at mRNA and protein levels, with the latter being the dominant mechanism. MATα1 interacts with many proteins but with a predominance of mitochondrial proteins including CYP2E1. We found that MATα1 is present in the mitochondrial matrix of hepatocytes using immunogold electron microscopy. Mat1a KO hepatocytes had reduced mitochondrial membrane potential and higher mitochondrial reactive oxygen species, both of which were normalized when MAT1A was overexpressed. In addition, KO hepatocytes were sensitized to ethanol and tumor necrosis factor α-induced mitochondrial dysfunction. Interaction of MATα1 with CYP2E1 was direct, and this facilitated CYP2E1 methylation at R379, leading to its degradation through the proteasomal pathway. Mat1a KO livers have a reduced methylated/total CYP2E1 ratio. MATα1's influence on mitochondrial function is largely mediated by its effect on CYP2E1 expression. Patients with ALD have reduced MATα1 levels and a decrease in methylated/total CYP2E1 ratio. Conclusion: Our findings highlight a critical role of MATα1 in regulating mitochondrial function by suppressing CYP2E1 expression at multiple levels.


Asunto(s)
Citocromo P-450 CYP2E1/genética , Metionina Adenosiltransferasa/fisiología , Mitocondrias Hepáticas/fisiología , Animales , Femenino , Proteínas HSP70 de Choque Térmico/fisiología , Humanos , Hepatopatías Alcohólicas/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Metilación , Ratones , Proteínas Mitocondriales/fisiología , Especies Reactivas de Oxígeno/metabolismo
16.
Circ Res ; 122(2): 282-295, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29233845

RESUMEN

RATIONALE: Mitochondria play a dual role in the heart, responsible for meeting energetic demands and regulating cell death. Paradigms have held that mitochondrial fission and fragmentation are the result of pathological stresses, such as ischemia, are an indicator of poor mitochondrial health, and lead to mitophagy and cell death. However, recent studies demonstrate that inhibiting fission also results in decreased mitochondrial function and cardiac impairment, suggesting that fission is important for maintaining cardiac and mitochondrial bioenergetic homeostasis. OBJECTIVE: The purpose of this study is to determine whether mitochondrial fission and fragmentation can be an adaptive mechanism used by the heart to augment mitochondrial and cardiac function during a normal physiological stress, such as exercise. METHODS AND RESULTS: We demonstrate a novel role for cardiac mitochondrial fission as a normal adaptation to increased energetic demand. During submaximal exercise, physiological mitochondrial fragmentation results in enhanced, rather than impaired, mitochondrial function and is mediated, in part, by ß1-adrenergic receptor signaling. Similar to pathological fragmentation, physiological fragmentation is induced by activation of dynamin-related protein 1; however, unlike pathological fragmentation, membrane potential is maintained and regulators of mitophagy are downregulated. Inhibition of fission with P110, Mdivi-1 (mitochondrial division inhibitor), or in mice with cardiac-specific dynamin-related protein 1 ablation significantly decreases exercise capacity. CONCLUSIONS: These findings demonstrate the requirement for physiological mitochondrial fragmentation to meet the energetic demands of exercise, as well as providing additional support for the evolving conceptual framework, where mitochondrial fission and fragmentation play a role in the balance between mitochondrial maintenance of normal physiology and response to disease.


Asunto(s)
Adaptación Fisiológica/fisiología , Metabolismo Energético/fisiología , Dinámicas Mitocondriales/fisiología , Condicionamiento Físico Animal/fisiología , Adaptación Fisiológica/efectos de los fármacos , Animales , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Dinámicas Mitocondriales/efectos de los fármacos , Condicionamiento Físico Animal/métodos , Quinazolinonas/farmacología
17.
J Immunol ; 200(9): 3047-3052, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29602772

RESUMEN

The NLRP3 inflammasome is activated in response to microbial and danger signals, resulting in caspase-1-dependent secretion of the proinflammatory cytokines IL-1ß and IL-18. Canonical NLRP3 inflammasome activation is a two-step process requiring both priming and activation signals. During inflammasome activation, NLRP3 associates with mitochondria; however, the role for this interaction is unclear. In this article, we show that mouse NLRP3 and caspase-1 independently interact with the mitochondrial lipid cardiolipin, which is externalized to the outer mitochondrial membrane at priming in response to reactive oxygen species. An NLRP3 activation signal is then required for the calcium-dependent association of the adaptor molecule ASC with NLRP3 on the mitochondrial surface, resulting in inflammasome complex assembly and activation. These findings demonstrate a novel lipid interaction for caspase-1 and identify a role for mitochondria as supramolecular organizing centers in the assembly and activation of the NLRP3 inflammasome.


Asunto(s)
Cardiolipinas/metabolismo , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Cardiolipinas/inmunología , Caspasa 1/inmunología , Inflamasomas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología
18.
Genes Dev ; 26(10): 1041-54, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22588718

RESUMEN

Autophagy is a lysosomal degradation pathway that converts macromolecules into substrates for energy production during nutrient-scarce conditions such as those encountered in tumor microenvironments. Constitutive mitochondrial uptake of endoplasmic reticulum (ER) Ca²âº mediated by inositol triphosphate receptors (IP3Rs) maintains cellular bioenergetics, thus suppressing autophagy. We show that the ER membrane protein Bax inhibitor-1 (BI-1) promotes autophagy in an IP3R-dependent manner. By reducing steady-state levels of ER Ca²âº via IP3Rs, BI-1 influences mitochondrial bioenergetics, reducing oxygen consumption, impacting cellular ATP levels, and stimulating autophagy. Furthermore, BI-1-deficient mice show reduced basal autophagy, and experimentally reducing BI-1 expression impairs tumor xenograft growth in vivo. BI-1's ability to promote autophagy could be dissociated from its known function as a modulator of IRE1 signaling in the context of ER stress. The results reveal BI-1 as a novel autophagy regulator that bridges Ca²âº signaling between ER and mitochondria, reducing cellular oxygen consumption and contributing to cellular resilience in the face of metabolic stress.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/inmunología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo Energético , Proteínas de la Membrana/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Línea Celular Tumoral , Endorribonucleasas/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Consumo de Oxígeno , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Infecciones Estreptocócicas/inmunología , Streptococcus/inmunología , Estrés Fisiológico , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Am J Physiol Heart Circ Physiol ; 315(5): H1112-H1126, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30004239

RESUMEN

The objective of the present study was to 1) analyze the ascending aortic proteome within a mouse model of Marfan syndrome (MFS; Fbn1C1041G/+) at early and late stages of aneurysm and 2) subsequently test a novel hypothesis formulated on the basis of this unbiased proteomic screen that links changes in integrin composition to transforming growth factor (TGF)-ß-dependent activation of the rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling pathway. Ingenuity Pathway Analysis of over 1,000 proteins quantified from the in vivo MFS mouse aorta by data-independent acquisition mass spectrometry revealed a predicted upstream regulator, Rictor, that was selectively activated in aged MFS mice. We validated this pattern of Rictor activation in vivo by Western blot analysis for phosphorylation on Thr1135 in a separate cohort of mice and showed in vitro that TGF-ß activates Rictor in an integrin-linked kinase-dependent manner in cultured aortic vascular smooth muscle cells. Expression of ß3-integrin was upregulated in the aged MFS aorta relative to young MFS mice and wild-type mice. We showed that ß3-integrin expression and activation modulated TGF-ß-induced Rictor phosphorylation in vitro, and this signaling effect was associated with an altered vascular smooth muscle cell proliferative-migratory and metabolic in vitro phenotype that parallels the in vivo aneurysm phenotype in MFS. These results reveal that Rictor is a novel, context-dependent, noncanonical TGF-ß signaling effector with potential pathogenic implications in aortic aneurysm. NEW & NOTEWORTHY We present the most comprehensive quantitative analysis of the ascending aortic aneurysm proteome in Marfan syndrome to date resulting in novel and potentially wide-reaching findings that expression and signaling by ß3-integrin constitute a modulator of transforming growth factor-ß-induced rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling and physiology in aortic vascular smooth muscle cells.


Asunto(s)
Aneurisma de la Aorta/metabolismo , Síndrome de Marfan/complicaciones , Músculo Liso Vascular/metabolismo , Proteómica/métodos , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Aneurisma de la Aorta/etiología , Aneurisma de la Aorta/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Cromatografía Líquida de Alta Presión , Dilatación Patológica , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrilina-1/genética , Predisposición Genética a la Enfermedad , Integrina beta3/metabolismo , Masculino , Síndrome de Marfan/genética , Espectrometría de Masas , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/patología , Mutación , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Tiempo
20.
J Virol ; 91(24)2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978702

RESUMEN

Coxsackievirus B (CVB) is a common enterovirus that can cause various systemic inflammatory diseases. Because CVB lacks an envelope, it has been thought to be inherently cytolytic, wherein CVB can escape from the infected host cell only by causing it to rupture. In recent years, however, we and others have observed that various naked viruses, such as CVB, can trigger the release of infectious extracellular microvesicles (EMVs) that contain viral material. This mode of cellular escape has been suggested to allow the virus to be masked from the adaptive immune system. Additionally, we have previously reported that these viral EMVs have LC3, suggesting that they originated from autophagosomes. We now report that CVB-infected cells trigger DRP1-mediated fragmentation of mitochondria, which is a precursor to autophagic mitochondrial elimination (mitophagy). However, rather than being degraded by lysosomes, mitochondrion-containing autophagosomes are released from the cell. We believe that CVB localizes to mitochondria, induces mitophagy, and subsequently disseminates from the cell in an autophagosome-bound mitochondrion-virus complex. Suppressing the mitophagy pathway in HL-1 cardiomyocytes with either small interfering RNA (siRNA) or Mdivi-1 caused marked reduction in virus production. The findings in this study suggest that CVB subverts mitophagy machinery to support viral dissemination in released EMVs.IMPORTANCE Coxsackievirus B (CVB) can cause a number of life-threatening inflammatory diseases. Though CVB is well known to disseminate via cytolysis, recent reports have revealed a second pathway in which CVB can become encapsulated in host membrane components to escape the cell in an exosome-like particle. Here we report that these membrane-bound structures derive from mitophagosomes. Blocking various steps in the mitophagy pathway reduced levels of intracellular and extracellular virus. Not only does this study reveal a novel mechanism of picornaviral dissemination, but also it sheds light on new therapeutic targets to treat CVB and potentially other picornaviral infections.


Asunto(s)
Autofagosomas/virología , Enterovirus Humano B/fisiología , Interacciones Huésped-Patógeno , Mitofagia , Miocitos Cardíacos/virología , Autofagia , Células Cultivadas , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Humanos , Mitocondrias/virología , Miocitos Cardíacos/patología , ARN Interferente Pequeño , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA