Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445828

RESUMEN

Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of the correction of the GSK3ß-CUGBP1 pathway in DM1 mice (HSALR model) expressing 250 CUG repeats using the GSK3 inhibitor tideglusib (TG). Here, we show that TG treatments corrected the expression of ~17% of genes misregulated in DM1 mice, including genes involved in cell transport, development and differentiation. The expression of chloride channel 1 (Clcn1), the key trigger of myotonia in DM1, was also corrected by TG. We found that correction of the GSK3ß-CUGBP1 pathway in mice expressing long CUG repeats (DMSXL model) is beneficial not only at the prenatal and postnatal stages, but also during adulthood. Using a mouse model with dysregulated CUGBP1, which mimics alterations in DM1, we showed that the dysregulated CUGBP1 contributes to the toxicity of expanded CUG repeats by changing gene expression and causing CNS abnormalities. These data show the critical role of the GSK3ß-CUGBP1 pathway in DM1 muscle and in CNS pathologies, suggesting the benefits of GSK3 inhibitors in patients with different forms of DM1.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3/genética , Músculos/metabolismo , ARN/metabolismo
2.
Gene Ther ; 29(12): 698-709, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35075265

RESUMEN

Myotonic dystrophy, or dystrophia myotonica type 1 (DM1), is a multi-systemic disorder and is the most common adult form of muscular dystrophy. It affects not only muscles but also many organs, including the brain. Cerebral impairments include cognitive deficits, daytime sleepiness, and loss of visuospatial and memory functions. The expression of mutated transcripts with CUG repeats results in a gain of toxic mRNA function. The antisense oligonucleotide (ASO) strategy to treat DM1 brain deficits is limited by the fact that ASOs do not cross the blood-brain barrier after systemic administration, indicating that other methods of delivery should be considered. ASO technology has emerged as a powerful tool for developing potential new therapies for a wide variety of human diseases, and its potential has been proven in a recent clinical trial. Targeting DMPK mRNA in neural cells derived from human induced pluripotent stem cells obtained from a DM1 patient with the IONIS 486178 ASO abolished CUG-expanded foci, enabled nuclear redistribution of MBNL1/2, and corrected aberrant splicing. Intracerebroventricular injection of the IONIS 486178 ASO in DMSXL mice decreased the levels of mutant DMPK mRNAs by up to 70% throughout different brain regions. It also reversed behavioral abnormalities following neonatal administration. The present study indicated that the IONIS 486178 ASO targets mutant DMPK mRNAs in the brain and strongly supports the feasibility of a therapy for DM1 patients based on the intrathecal injection of an ASO.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofia Miotónica , Adulto , Humanos , Animales , Ratones , Distrofia Miotónica/terapia , Distrofia Miotónica/tratamiento farmacológico , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Expansión de Repetición de Trinucleótido , Proteínas de Unión al ARN/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Oligonucleótidos/uso terapéutico , Encéfalo/metabolismo
3.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054778

RESUMEN

Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.


Asunto(s)
Hipocampo/metabolismo , Distrofia Miotónica/fisiopatología , Proteína Quinasa de Distrofia Miotónica/fisiología , Plasticidad Neuronal , Neurotransmisores/metabolismo , Empalme del ARN , Animales , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores , Hipocampo/fisiología , Homeostasis , Ratones , Ratones Transgénicos , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica/genética , Células Piramidales/metabolismo , Células Piramidales/fisiología , ARN/metabolismo , Transmisión Sináptica
4.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807660

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most complex and variable trinucleotide repeat disorder caused by an unstable CTG repeat expansion, reaching up to 4000 CTG in the most severe cases. The genetic and clinical variability of DM1 depend on the sex and age of the transmitting parent, but also on the CTG repeat number, presence of repeat interruptions and/or on the degree of somatic instability. Currently, it is difficult to simultaneously and accurately determine these contributing factors in DM1 patients due to the limitations of gold standard methods used in molecular diagnostics and research laboratories. Our study showed the efficiency of the latest PacBio long-read sequencing technology to sequence large CTG trinucleotides, detect multiple and single repeat interruptions and estimate the levels of somatic mosaicism in DM1 patients carrying complex CTG repeat expansions inaccessible to most methods. Using this innovative approach, we revealed the existence of de novo CCG interruptions associated with CTG stabilization/contraction across generations in a new DM1 family. We also demonstrated that our method is suitable to sequence the DM1 locus and measure somatic mosaicism in DM1 families carrying more than 1000 pure CTG repeats. Better characterization of expanded alleles in DM1 patients can significantly improve prognosis and genetic counseling, not only in DM1 but also for other tandem DNA repeat disorders.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mosaicismo , Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Mol Ther ; 27(8): 1372-1388, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31253581

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion located in the 3' UTR of the DMPK gene. Expanded DMPK transcripts aggregate into nuclear foci and alter the function of RNA-binding proteins, leading to defects in the alternative splicing of numerous pre-mRNAs. To date, there is no curative treatment for DM1. Here we investigated a gene-editing strategy using the CRISPR-Cas9 system from Staphylococcus aureus (Sa) to delete the CTG repeats in the human DMPK locus. Co-expression of SaCas9 and selected pairs of single-guide RNAs (sgRNAs) in cultured DM1 patient-derived muscle line cells carrying 2,600 CTG repeats resulted in targeted DNA deletion, ribonucleoprotein foci disappearance, and correction of splicing abnormalities in various transcripts. Furthermore, a single intramuscular injection of recombinant AAV vectors expressing CRISPR-SaCas9 components in the tibialis anterior muscle of DMSXL (myotonic dystrophy mouse line carrying the human DMPK gene with >1,000 CTG repeats) mice decreased the number of pathological RNA foci in myonuclei. These results establish the proof of concept that genome editing of a large trinucleotide expansion is feasible in muscle and may represent a useful strategy to be further developed for the treatment of myotonic dystrophy.


Asunto(s)
Edición Génica , Proteína Quinasa de Distrofia Miotónica/genética , ARN Nuclear , Expansión de Repetición de Trinucleótido , Empalme Alternativo , Animales , Secuencia de Bases , Sistemas CRISPR-Cas , Núcleo Celular , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica , Marcación de Gen , Vectores Genéticos/genética , Humanos , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Miotónica/genética , Distrofia Miotónica/terapia , ARN Guía de Kinetoplastida , Transducción Genética
6.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936870

RESUMEN

Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disease caused by an unstable cardiotocography (CTG) repeat expansion in the DMPK gene. This disease is characterized by high clinical and genetic variability, leading to some difficulties in the diagnosis and prognosis of DM1. Better understanding the origin of this variability is important for developing new challenging therapies and, in particular, for progressing on the path of personalized treatments. Here, we reviewed CTG triplet repeat instability and its modifiers as an important source of phenotypic variability in patients with DM1.


Asunto(s)
Variación Biológica Poblacional , Distrofia Miotónica/metabolismo , Repeticiones de Trinucleótidos/fisiología , Animales , Cardiotocografía , Humanos , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Fenotipo , Repeticiones de Trinucleótidos/genética
7.
Hum Mutat ; 39(7): 970-982, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29664219

RESUMEN

Myotonic dystrophy type 1 (DM1) is a dominant multisystemic disorder associated with high variability of symptoms and anticipation. DM1 is caused by an unstable CTG repeat expansion that usually increases in successive generations and tissues. DM1 family pedigrees have shown that ∼90% and 10% of transmissions result in expansions and contractions of the CTG repeat, respectively. To date, the mechanisms of CTG repeat contraction remain poorly documented in DM1. In this report, we identified two new DM1 families with apparent contractions and no worsening of DM1 symptoms in two and three successive maternal transmissions. A new and unique CAG interruption was found in 5' of the CTG expansion in one family, whereas multiple 5' CCG interruptions were detected in the second family. We showed that these interruptions are associated with maternal intergenerational contractions and low somatic mosaicism in blood. By specific triplet-prime PCR, we observed that CTG repeat changes (contractions/expansions) occur preferentially in 3' of the interruptions for both families.


Asunto(s)
Predisposición Genética a la Enfermedad , Mosaicismo , Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido/genética , Alelos , Femenino , Humanos , Masculino , Distrofia Miotónica/fisiopatología , Proteína Quinasa de Distrofia Miotónica/genética , Linaje
8.
Mol Ther ; 25(1): 24-43, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28129118

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)n-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5' or 3' unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair. Complete and precise excision of the repeat tract from normal and large expanded DMPK alleles in myoblasts from unaffected individuals, DM1 patients, and a DM1 mouse model could be achieved at high frequency by dual CRISPR/Cas9-cleavage at either side of the (CTG⋅CAG)n sequence. Importantly, removal of the repeat appeared to have no detrimental effects on the expression of genes in the DM1 locus. Moreover, myogenic capacity, nucleocytoplasmic distribution, and abnormal RNP-binding behavior of transcripts from the edited DMPK gene were normalized. Dual sgRNA-guided excision of the (CTG⋅CAG)n tract by CRISPR/Cas9 technology is applicable for developing isogenic cell lines for research and may provide new therapeutic opportunities for patients with DM1.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Inestabilidad Genómica , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido , Repeticiones de Trinucleótidos , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón , Modelos Animales de Enfermedad , Endonucleasas/genética , Fibroblastos/metabolismo , Expresión Génica , Orden Génico , Sitios Genéticos , Humanos , Ratones , ARN Guía de Kinetoplastida , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia
9.
PLoS Genet ; 8(11): e1003043, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209425

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3'UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated transcripts have been described in DM1. It is clear now that this disease may involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro-RNA metabolism. We previously generated transgenic mice with 45-kb of the DM1 locus and >300 CTG repeats (DM300 mice). After successive breeding and a high level of CTG repeat instability, we obtained transgenic mice carrying >1,000 CTG (DMSXL mice). Here we described for the first time the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. Interestingly, we also demonstrate that DMPK antisense transcripts are expressed in various DMSXL and human tissues, and that both sense and antisense transcripts accumulate in independent nuclear foci that do not co-localize together. Molecular features of DM1-associated RNA toxicity in DMSXL mice (such as foci accumulation and mild missplicing), were associated with high mortality, growth retardation, and muscle defects (abnormal histopathology, reduced muscle strength, and lower motor performances). We have found that lower levels of IGFBP-3 may contribute to DMSXL growth retardation, while increased proteasome activity may affect muscle function. These data demonstrate that the human DM1 locus carrying very large expansions induced a variety of molecular and physiological defects in transgenic mice, reflecting DM1 to a certain extent. As a result, DMSXL mice provide an animal tool to decipher various aspects of the disease mechanisms. In addition, these mice can be used to test the preclinical impact of systemic therapeutic strategies on molecular and physiological phenotypes.


Asunto(s)
Músculo Esquelético , Distrofia Miotónica , Proteínas Serina-Treonina Quinasas/genética , Animales , Núcleo Celular/metabolismo , Endopeptidasas/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiopatología , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , Proteína Quinasa de Distrofia Miotónica , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN , Expansión de Repetición de Trinucleótido/genética
10.
Brain ; 136(Pt 3): 957-70, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23404338

RESUMEN

Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.


Asunto(s)
Conducta Animal/fisiología , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Adulto , Anciano , Animales , Western Blotting , Electroforesis en Gel Bidimensional , Electrofisiología , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Distrofia Miotónica/complicaciones , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Expansión de Repetición de Trinucleótido
11.
Proc Natl Acad Sci U S A ; 108(1): 260-5, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173221

RESUMEN

Trinucleotide expansions cause disease by both protein- and RNA-mediated mechanisms. Unexpectedly, we discovered that CAG expansion constructs express homopolymeric polyglutamine, polyalanine, and polyserine proteins in the absence of an ATG start codon. This repeat-associated non-ATG translation (RAN translation) occurs across long, hairpin-forming repeats in transfected cells or when expansion constructs are integrated into the genome in lentiviral-transduced cells and brains. Additionally, we show that RAN translation across human spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1) CAG expansion transcripts results in the accumulation of SCA8 polyalanine and DM1 polyglutamine expansion proteins in previously established SCA8 and DM1 mouse models and human tissue. These results have implications for understanding fundamental mechanisms of gene expression. Moreover, these toxic, unexpected, homopolymeric proteins now should be considered in pathogenic models of microsatellite disorders.


Asunto(s)
Biosíntesis de Proteínas/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Secuencia de Aminoácidos , Northern Blotting , Línea Celular , Clonación Molecular , Codón Iniciador/genética , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Lentivirus , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis , Distrofia Miotónica/genética , Péptidos/genética , Péptidos/metabolismo , Biosíntesis de Proteínas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Hum Mol Genet ; 20(R2): R116-23, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21821673

RESUMEN

Expanded, non-coding RNAs can exhibit a deleterious gain-of-function causing human disease through abnormal interactions with RNA-binding proteins. Myotonic dystrophy (DM), the prototypical example of an RNA-dominant disorder, is mediated by trinucleotide repeat-containing transcripts that deregulate alternative splicing. Spliceopathy has therefore been a major focus of DM research. However, changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. The exciting finding of bidirectional transcription and non-conventional RNA translation of trinucleotide repeat sequences points to a new scenario, in which DM is not mediated by one single expanded RNA transcript, but involves multiple pathogenic elements and pathways. The study of the growing number of human diseases associated with toxic repeat-containing transcripts provides important insight into the understanding of the complex pathways of RNA toxicity. This review describes some of the recent advances in the understanding of the molecular mechanisms behind DM and other RNA-dominant disorders.


Asunto(s)
Distrofia Miotónica/genética , Distrofia Miotónica/patología , Repeticiones de Trinucleótidos , Empalme Alternativo , Animales , Regulación de la Expresión Génica , Humanos , Distrofia Miotónica/metabolismo , Biosíntesis de Proteínas , Expansión de Repetición de Trinucleótido
13.
Hum Mol Genet ; 20(1): 1-15, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21044947

RESUMEN

Myotonic dystrophy (DM1) affects multiple organs, shows age-dependent progression and is caused by CTG expansions at the DM1 locus. We determined the DM1 CpG methylation profile and CTG length in tissues from DM1 foetuses, DM1 adults, non-affected individuals and transgenic DM1 mice. Analysis included CTCF binding sites upstream and downstream of the CTG tract, as methylation-sensitive CTCF binding affects chromatinization and transcription of the DM1 locus. In humans, in a given foetus, expansions were largest in heart and smallest in liver, differing by 40-400 repeats; in adults, the largest expansions were in heart and cerebral cortex and smallest in cerebellum, differing by up to 5770 repeats in the same individual. Abnormal methylation was specific to the mutant allele. In DM1 adults, heart, liver and cortex showed high-to-moderate methylation levels, whereas cerebellum, kidney and skeletal muscle were devoid of methylation. Methylation decreased between foetuses and adults. Contrary to previous findings, methylation was not restricted to individuals with congenital DM1. The expanded repeat demarcates an abrupt boundary of methylation. Upstream sequences, including the CTCF site, were methylated, whereas the repeat itself and downstream sequences were not. In DM1 mice, expansion-, tissue- and age-specific methylation patterns were similar but not identical to those in DM1 individuals; notably in mice, methylation was present up- and downstream of the repeat, but greater upstream. Thus, in humans, the CpG-free expanded CTG repeat appears to maintain a highly polarized pattern of CpG methylation at the DM1 locus, which varies markedly with age and tissues.


Asunto(s)
Distrofia Miotónica/genética , Proteínas Serina-Treonina Quinasas/genética , Expansión de Repetición de Trinucleótido/genética , Adolescente , Adulto , Anciano de 80 o más Años , Alelos , Animales , Secuencia de Bases , Factor de Unión a CCCTC , Metilación de ADN , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Inestabilidad de Microsatélites , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteína Quinasa de Distrofia Miotónica , Especificidad de Órganos/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Represoras/genética , Adulto Joven
14.
Hum Mol Genet ; 20(11): 2131-43, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21378394

RESUMEN

The instability of (CTG)•(CAG) repeats can cause >15 diseases including myotonic dystrophy, DM1. Instability can arise during DNA replication, repair or recombination, where sealing of nicks by DNA ligase I (LIGI) is a final step. The role of LIGI in CTG/CAG instability was determined using in vitro and in vivo approaches. Cell extracts from a human (46BR) harbouring a deficient LIGI (∼3% normal activity) were used to replicate CTG/CAG repeats; and DM1 mice with >300 CTG repeats were crossed with mice harbouring the 46BR LigI. In mice, the defective LigI reduced the frequency of CTG expansions and increased CTG contraction frequencies on female transmissions. Neither male transmissions nor somatic CTG instability was affected by the 46BR LigI - indicating a post-female germline segregation event. Replication-mediated instability was affected by the 46BR LIGI in a manner that depended upon the location of Okazaki fragment initiation relative to the repeat tract; on certain templates, the expansion bias was unaltered by the mutant LIGI, similar to paternal transmissions and somatic tissues; however, a replication fork-shift reduced expansions and increased contractions, similar to maternal transmissions. The presence of contractions in oocytes suggests that the DM1 replication profile specific to pre-meiotic oogenesis replication of maternal alleles is distinct from that occurring in other tissues and, when mediated by the mutant LigI, is predisposed to CTG contractions. Thus, unlike other DNA metabolizing enzymes studied to date, LigI has a highly specific role in CTG repeat maintenance in the maternal germline, involved in mediating CTG expansions and in the avoidance of maternal CTG contractions.


Asunto(s)
ADN Ligasas/metabolismo , Replicación del ADN , Inestabilidad Genómica , Expansión de Repetición de Trinucleótido/genética , Alelos , Animales , Línea Celular , ADN/genética , ADN Ligasa (ATP) , ADN Ligasas/genética , Análisis Mutacional de ADN , Femenino , Homocigoto , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Distrofia Miotónica/genética , Oocitos/metabolismo , Fosforilación
15.
Front Behav Neurosci ; 17: 1130055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935893

RESUMEN

Myotonic dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disease caused by the abnormal expansion of CTG-repeats in the 3'-untranslated region of the Dystrophia Myotonica Protein Kinase (DMPK) gene, characterized by multisystemic symptoms including muscle weakness, myotonia, cardio-respiratory problems, hypersomnia, cognitive dysfunction and behavioral abnormalities. Sleep-related disturbances are among the most reported symptoms that negatively affect the quality of life of patients and that are present in early and adult-onset forms of the disease. DMSXL mice carry a mutated human DMPK transgene containing >1,000 CTGrepeats, modeling an early onset, severe form of DM1. They exhibit a pathologic neuromuscular phenotype and also synaptic dysfunction resulting in neurological and behavioral deficits similar to those observed in patients. Additionally, they are underweight with a very high mortality within the first month after birth presenting several welfare issues. To specifically explore sleep/rest-related behaviors of this frail DM1 mouse model we used an automated home cage-based system that allows 24/7 monitoring of their activity non-invasively. We tested male and female DMSXL mice and their wild-type (WT) littermates in Digital Ventilated Cages (DVCR) assessing activity and rest parameters on day and night for 5 weeks. We demonstrated that DMSXL mice show reduced activity and regularity disruption index (RDI), higher percentage of zero activity per each hour and longer periods of rest during the active phase compared to WT. This novel rest-related phenotype in DMSXL mice, assessed unobtrusively, could be valuable to further explore mechanisms and potential therapeutic interventions to alleviate the very common symptom of excessive daytime sleepiness in DM1 patients.

16.
Front Physiol ; 14: 1257682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811496

RESUMEN

Introduction: Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the increased number of CTG repeats in 3' UTR of Dystrophia Myotonia Protein Kinase (DMPK) gene. DM1 patients experience conduction abnormalities as well as atrial and ventricular arrhythmias with increased susceptibility to sudden cardiac death. The ionic basis of these electrical abnormalities is poorly understood. Methods: We evaluated the surface electrocardiogram (ECG) and key ion currents underlying the action potential (AP) in a mouse model of DM1, DMSXL, which express over 1000 CTG repeats. Sodium current (INa), L-type calcium current (ICaL), transient outward potassium current (Ito), and APs were recorded using the patch-clamp technique. Results: Arrhythmic events on the ECG including sinus bradycardia, conduction defects, and premature ventricular and atrial arrhythmias were observed in DMSXL homozygous mice but not in WT mice. PR interval shortening was observed in homozygous mice while ECG parameters such as QRS duration, and QTc did not change. Further, flecainide prolonged PR, QRS, and QTc visually in DMSXL homozygous mice. At the single ventricular myocyte level, we observed a reduced current density for Ito and ICaL with a positive shift in steady state activation of L-type calcium channels carrying ICaL in DMSXL homozygous mice compared with WT mice. INa densities and action potential duration did not change between DMSXL and WT mice. Conclusion: The reduced current densities of Ito, and ICaL and alterations in gating properties in L-type calcium channels may contribute to the ECG abnormalities in the DMSXL mouse model of DM1. These findings open new avenues for novel targeted therapeutics.

17.
J Neurol ; 270(6): 3138-3158, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36892629

RESUMEN

BACKGROUND AND PURPOSE: Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy and is caused by an repeat expansion [r(CUG)exp] located in the 3' untranslated region of the DMPK gene. Symptoms include skeletal and cardiac muscle dysfunction and fibrosis. In DM1, there is a lack of established biomarkers in routine clinical practice. Thus, we aimed to identify a blood biomarker with relevance for DM1-pathophysiology and clinical presentation. METHODS: We collected fibroblasts from 11, skeletal muscles from 27, and blood samples from 158 DM1 patients. Moreover, serum, cardiac, and skeletal muscle samples from DMSXL mice were included. We employed proteomics, immunostaining, qPCR and ELISA. Periostin level were correlated with CMRI-data available for some patients. RESULTS: Our studies identified Periostin, a modulator of fibrosis, as a novel biomarker candidate for DM1: proteomic profiling of human fibroblasts and murine skeletal muscles showed significant dysregulation of Periostin. Immunostaining on skeletal and cardiac muscles from DM1 patients and DMSXL mice showed an extracellular increase of Periostin, indicating fibrosis. qPCR studies indicated increased POSTN expression in fibroblasts and muscle. Quantification of Periostin in blood samples from DMSXL mice and two large validation cohorts of DM1 patients showed decreased levels in animals and diseased individuals correlating with repeat expansion and disease severity and presence of cardiac symptoms identified by MRI. Analyses of longitudinal blood samples revealed no correlation with disease progression. CONCLUSIONS: Periostin might serve as a novel stratification biomarker for DM1 correlating with disease severity, presence of cardiac malfunction and fibrosis.


Asunto(s)
Cardiomiopatías , Distrofia Miotónica , Adulto , Humanos , Ratones , Animales , Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido , Proteómica , Músculo Esquelético , Células Musculares/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Gravedad del Paciente , Proteína Quinasa de Distrofia Miotónica/genética
18.
Mol Biol Rep ; 39(1): 415-24, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21567201

RESUMEN

To study the effect of DM1-associated CTG repeats on neuronal function, we developed a PC12 cell-based model that constitutively expresses the DMPK gene 3'-untranslated region with 90 CTG repeats (CTG90 cells). As CTG90 cells exhibit impaired neurite outgrowth and as microtubule-associated proteins (MAPs) are crucial for microtubule stability, we analyzed whether MAPs are a target of CTG repeats. NGF induces mRNA expression of Map2, Map1a and Map6 in control cells (PC12 cells transfected with the empty vector), but this induction is abolished for Map2 and Map1a in CTG90 cells. MAP2 and MAP6/STOP proteins decrease in NGF-treated CTG90 cells, whereas MAP1A increases. Data suggest that CTG repeats might alter somehow the expression of MAPs, which appears to be related with CTG90 cell-deficient neurite outgrowth. Decreased MAP2 levels found in the hippocampus of a DM1 mouse model indicates that targeting of MAPs expression by CTG repeats might be relevant to DM1.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Distrofia Miotónica/genética , Proteínas Serina-Treonina Quinasas/genética , Repeticiones de Trinucleótidos/fisiología , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Microtúbulos/patología , Proteína Quinasa de Distrofia Miotónica , Neuritas/patología , Células PC12 , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Repeticiones de Trinucleótidos/genética
19.
Mol Ther ; 19(12): 2222-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21971425

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the gene DMPK. The expansion is highly unstable in somatic cells, a feature that may contribute to disease progression. The RNA expressed from the mutant allele exerts a toxic gain of function, due to the presence of an expanded CUG repeat (CUG(exp)). This RNA dominant mechanism is amenable to therapeutic intervention with antisense oligonucleotides (ASOs). For example, CAG-repeat ASOs that bind CUG(exp) RNA are beneficial in DM1 models by altering the protein interactions or metabolism of the toxic RNA. Because CUG(exp) RNA has been shown to aggravate instability of expanded CTG repeats, we studied whether CAG-repeat ASOs may also affect this aspect of DM1. In human cells the instability of (CTG)(800) was suppressed by addition of CAG-repeat ASOs to the culture media. In mice that carry a DMPK transgene the somatic instability of (CTG)(800) was suppressed by direct injection of CAG-repeat ASOs into muscle tissue. These results raise the possibility that early intervention with ASOs to reduce RNA or protein toxicity may have the additional benefit of stabilizing CTG:CAG repeats at subpathogenic lengths.


Asunto(s)
Neoplasias del Colon/genética , Fibrosarcoma/genética , Distrofia Miotónica/genética , Oligonucleótidos Antisentido/farmacología , Proteínas Serina-Treonina Quinasas/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Neoplasias del Colon/terapia , Fibrosarcoma/terapia , Humanos , Inyecciones Intramusculares , Ratones , Ratones Transgénicos , Distrofia Miotónica/terapia , Proteína Quinasa de Distrofia Miotónica , Oligonucleótidos/química , Oligonucleótidos/genética , ARN Mensajero/genética , Transgenes/genética
20.
PLoS Genet ; 5(5): e1000482, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19436705

RESUMEN

Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG*CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG*CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSbeta complex. It has been proposed that binding of MutSbeta to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSbeta is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)(300) repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base-base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2(G674) mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system.


Asunto(s)
Inestabilidad Genómica , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/genética , Mutación Puntual , Expansión de Repetición de Trinucleótido , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Secuencia de Bases , Encéfalo/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Cartilla de ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína 2 Homóloga a MutS/deficiencia , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica , Ovario/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas/genética , Proteínas/metabolismo , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA