RESUMEN
Although HIV-1 Gag is known to drive viral assembly and budding, the precise mechanisms by which the lipid composition of the plasma membrane is remodeled during assembly are incompletely understood. Here, we provide evidence that the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) interacts with HIV-1 Gag and through the hydrolysis of sphingomyelin creates ceramide that is necessary for proper formation of the viral envelope and viral maturation. Inhibition or depletion of nSMase2 resulted in the production of noninfectious HIV-1 virions with incomplete Gag lattices lacking condensed conical cores. Inhibition of nSMase2 in HIV-1-infected humanized mouse models with a potent and selective inhibitor of nSMase2 termed PDDC [phenyl(R)-(1-(3-(3,4-dimethoxyphenyl)-2, 6-dimethylimidazo[1,2-b]pyridazin-8-yl) pyrrolidin-3-yl)-carbamate] produced a linear reduction in levels of HIV-1 in plasma. If undetectable plasma levels of HIV-1 were achieved with PDDC treatment, viral rebound did not occur for up to 4 wk when PDDC was discontinued. In vivo and tissue culture results suggest that PDDC selectively kills cells with actively replicating HIV-1. Collectively, this work demonstrates that nSMase2 is a critical regulator of HIV-1 replication and suggests that nSMase2 could be an important therapeutic target with the potential to kill HIV-1-infected cells.
Asunto(s)
VIH-1 , Esfingomielina Fosfodiesterasa , Ratones , Animales , Esfingomielina Fosfodiesterasa/metabolismo , VIH-1/metabolismo , Esfingomielinas/metabolismo , Membrana Celular/metabolismoRESUMEN
HIV-1 assembly occurs at the inner leaflet of the plasma membrane (PM) in highly ordered membrane microdomains. The size and stability of membrane microdomains is regulated by activity of the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) that is localized primarily to the inner leaflet of the PM. In this study, we demonstrate that pharmacological inhibition or depletion of nSMase2 in HIV-1-producer cells results in a block in the processing of the major viral structural polyprotein Gag and the production of morphologically aberrant, immature HIV-1 particles with severely impaired infectivity. We find that disruption of nSMase2 also severely inhibits the maturation and infectivity of other primate lentiviruses HIV-2 and simian immunodeficiency virus, has a modest or no effect on nonprimate lentiviruses equine infectious anemia virus and feline immunodeficiency virus, and has no effect on the gammaretrovirus murine leukemia virus. These studies demonstrate a key role for nSMase2 in HIV-1 particle morphogenesis and maturation.
Asunto(s)
VIH-1 , Virus de la Anemia Infecciosa Equina , Animales , Gatos , Caballos , Ratones , VIH-1/fisiología , Esfingomielina Fosfodiesterasa/metabolismo , Ensamble de Virus , LentivirusRESUMEN
Connexin 43 (Cx43) gap junctions and hemichannels mediate astrocyte intercellular communication in the central nervous system under normal conditions and contribute to astrocyte-mediated neurotoxicity in amyotrophic lateral sclerosis (ALS). Here, we show that astrocyte-specific knockout of Cx43 in a mouse model of ALS slows disease progression both spatially and temporally, provides motor neuron (MN) protection, and improves survival. In addition, Cx43 expression is up-regulated in human postmortem tissue and cerebrospinal fluid from ALS patients. Using human induced pluripotent stem cellderived astrocytes (hiPSC-A) from both familial and sporadic ALS, we establish that Cx43 is up-regulated and that Cx43-hemichannels are enriched at the astrocyte membrane. We also demonstrate that the pharmacological blockade of Cx43-hemichannels in ALS astrocytes using GAP 19, a mimetic peptide blocker, and tonabersat, a clinically tested small molecule, provides neuroprotection of hiPSC-MN and reduces ALS astrocyte-mediated neuronal hyperexcitability. Extending the in vitro application of tonabersat with chronic administration to SOD1G93A mice results in MN protection with a reduction in reactive astrocytosis and microgliosis. Taking these data together, our studies identify Cx43 hemichannels as conduits of astrocyte-mediated disease progression and a pharmacological target for disease-modifying ALS therapies.
Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Astrocitos , Conexina 43/genética , Humanos , Neuronas MotorasRESUMEN
Ceramide C16 is a sphingolipid detected at high levels in several neurodegenerative disorders, including multiple sclerosis (MS). It can be generated de novo or from the hydrolysis of other sphingolipids, such as sphingomyelin or through the recycling of sphingosine, in what is known as the salvage pathway. While the myelin damage occurring in MS suggests the importance of the hydrolytic and salvage pathways, the growing interest on the importance of diet in demyelinating disorders, prompted us to investigate the involvement of de novo ceramide C16 synthesis on disease severity. A diet rich in saturated fats such as palmitic acid, as found in many highly processed foods, provides substrates for the ceramide C16 synthetic enzymes ceramide synthase 6 (CERS6) and 5 (CERS5), which are expressed in the central nervous system. Using the experimental autoimmune encephalomyelitis (EAE) model of inflammatory demyelination, we show here that mice with CamK2a+ neuronal specific deletion of both CerS6 and CerS5 show a milder course of EAE than wild type mice, even when fed a diet enriched in palmitic acid. At a cellular level, neurons lacking both CerS6 and CerS5 are protected from the mitochondrial dysfunction arising from exposure to oxidative stress and palmitic acid in the medium. These data underscore the importance of a healthy diet avoiding processed foods for demyelinating disorders and identifies endogenous neuronal synthesis of ceramide C16 as an important determinant of disease severity.
RESUMEN
BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and leads to the poorest patient outcomes despite surgery and chemotherapy treatment. Exploring new molecular mechanisms of TNBC that could lead to the development of novel molecular targets are critically important for improving therapeutic options for treating TNBC. METHODS: We sought to identify novel therapeutic targets in TNBC by combining genomic and functional studies with lipidomic analysis, which included mechanistic studies to elucidate the pathways that tie lipid profile to critical cancer cell properties. Our studies were performed in a large panel of human breast cancer cell lines and patient samples. RESULTS: Comprehensive lipid profiling revealed that phospholipid metabolism is reprogrammed in TNBC cells. We discovered that patatin-like phospholipase domain-containing lipase 8 (PNPLA8) is overexpressed in TNBC cell lines and tissues from breast cancer patients. Silencing of PNPLA8 disrupted phospholipid metabolic reprogramming in TNBC, particularly affecting the levels of phosphatidylglycerol (PG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and glycerophosphocholine (GPC). We showed that PNPLA8 is essential in regulating cell viability, migration and antioxidation in TNBC cells and promoted arachidonic acid and eicosanoid production, which in turn activated PI3K/Akt/Gsk3ß and MAPK signaling. CONCLUSIONS: Our study highlights PNPLA8 as key regulator of phospholipid metabolic reprogramming and malignant phenotypes in TNBC, which could be further developed as a novel molecular treatment target.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Fosfolípidos/uso terapéutico , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Extracellular vesicles (EVs) have been proposed to regulate the deposition of Aß. Multiple publications have shown that APP, amyloid processing enzymes and Aß peptides are associated with EVs. However, very little Aß is associated with EVs compared with the total amount Aß present in human plasma, CSF, or supernatants from cultured neurons. The involvement of EVs has largely been inferred by pharmacological inhibition or whole body deletion of the sphingomyelin hydrolase neutral sphingomyelinase-2 (nSMase2) that is a key regulator for the biogenesis of at-least one population of EVs. Here we used a Cre-Lox system to selectively delete nSMase2 from pyramidal neurons in APP/PS1 mice (APP/PS1-SMPD3-Nex1) and found a â¼ 70% reduction in Aß deposition at 6 months of age and â¼ 35% reduction at 12 months of age in both cortex and hippocampus. Brain ceramides were increased in APP/PS1 compared with Wt mice, but were similar to Wt in APP/PS1-SMPD3-Nex1 mice suggesting that elevated brain ceramides in this model involves neuronally expressed nSMase2. Reduced levels of PSD95 and deficits of long-term potentiation in APP/PS1 mice were normalized in APP/PS1-SMPD3-Nex1 mice. In contrast, elevated levels of IL-1ß, IL-8 and TNFα in APP/PS1 mice were not normalized in APP/PS1-SMPD3-Nex1 mice compared with APP/PS1 mice. Mechanistic studies showed that the size of liquid ordered membrane microdomains was increased in APP/PS1 mice, as were the amounts of APP and BACE1 localized to these microdomains. Pharmacological inhibition of nSMase2 activity with PDDC reduced the size of the liquid ordered membrane microdomains, reduced the localization of APP with BACE1 and reduced the production of Aß1-40 and Aß1-42. Although inhibition of nSMase2 reduced the release and increased the size of EVs, very little Aß was associated with EVs in all conditions tested. We also found that nSMase2 directly protected neurons from the toxic effects of oligomerized Aß and preserved neural network connectivity despite considerable Aß deposition. These data demonstrate that nSMase2 plays a role in the production of Aß by stabilizing the interaction of APP with BACE1 in liquid ordered membrane microdomains, and directly protects neurons from the toxic effects of Aß. The effects of inhibiting nSMase2 on EV biogenesis may be independent from effects on Aß production and neuronal protection.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Secretasas de la Proteína Precursora del Amiloide , Ratones Transgénicos , Ácido Aspártico Endopeptidasas , Péptidos beta-Amiloides , Neuronas , Precursor de Proteína beta-Amiloide/genética , Presenilina-1 , Modelos Animales de Enfermedad , Esfingomielina Fosfodiesterasa/genéticaRESUMEN
People living with HIV (PLH) have significantly higher rates of cognitive impairment (CI) and major depressive disorder (MDD) versus the general population. The enzyme neutral sphingomyelinase 2 (nSMase2) is involved in the biogenesis of ceramide and extracellular vesicles (EVs), both of which are dysregulated in PLH, CI, and MDD. Here we evaluated EcoHIV-infected mice for behavioral abnormalities relevant to depression and cognition deficits, and assessed the behavioral and biochemical effects of nSMase2 inhibition. Mice were infected with EcoHIV and daily treatment with either vehicle or the nSMase2 inhibitor (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)-carbamate (PDDC) began 3 weeks post-infection. After 2 weeks of treatment, mice were subjected to behavior tests. EcoHIV-infected mice exhibited behavioral abnormalities relevant to MDD and CI that were reversed by PDDC treatment. EcoHIV infection significantly increased cortical brain nSMase2 activity, resulting in trend changes in sphingomyelin and ceramide levels that were normalized by PDDC treatment. EcoHIV-infected mice also exhibited increased levels of brain-derived EVs and altered microRNA cargo, including miR-183-5p, miR-200c-3p, miR-200b-3p, and miR-429-3p, known to be associated with MDD and CI; all were normalized by PDDC. In conclusion, inhibition of nSMase2 represents a possible new therapeutic strategy for the treatment of HIV-associated CI and MDD.
Asunto(s)
Trastorno Depresivo Mayor , Vesículas Extracelulares , Infecciones por VIH , MicroARNs , Animales , Ceramidas , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Ratones , MicroARNs/genética , MicroARNs/farmacología , Esfingomielina Fosfodiesterasa/genéticaRESUMEN
During metabolically demanding physiological states, ruminants and other mammals coordinate nutrient use among tissues by varying the set point of insulin action. This set point is regulated in part by metabolic hormones with some antagonizing (e.g., growth hormone and TNFα) and others potentiating (e.g., adiponectin) insulin action. Fibroblast growth factor-21 (FGF21) was recently identified as a sensitizing hormone in rodent and primate models of defective insulin action. FGF21 administration, however, failed to improve insulin action in dairy cows during the naturally occurring insulin resistance of lactation, raising the possibility that ruminants as a class of animals or lactation as a physiological state are unresponsive to FGF21. To start addressing this question, we asked whether FGF21 could improve insulin action in nonlactating ewes. Gene expression studies showed that the ovine FGF21 system resembles that of other species, with liver as the major site of FGF21 expression and adipose tissue as a target tissue based on high expression of the FGF21 receptor complex and activation of p44/42 extracellular signal-regulated kinase (ERK1/2) following exogenous FGF21 administration. FGF21 treatment for 13 days reduced plasma glucose and insulin over the entire treatment period and improved glucose disposal during a glucose tolerance test. FGF21 increased plasma adiponectin by day 3 of treatment but had no effect on the plasma concentrations of total, C16:0-, or C18:0-ceramide. Overall, these data confirm that the insulin-sensitizing effects of FGF21 are conserved in ruminants and raise the possibility that lactation is an FGF21-resistant state.
Asunto(s)
Glucemia/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/administración & dosificación , Resistencia a la Insulina , Insulina/sangre , Adiponectina/sangre , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Factores de Crecimiento de Fibroblastos/farmacocinética , Inyecciones Intravenosas , Inyecciones Subcutáneas , Proteínas Klotho/agonistas , Proteínas Klotho/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Oveja Doméstica , Factores de TiempoRESUMEN
BACKGROUND: Sphingolipids are myelin components and inflammatory signaling intermediates. Sphingolipid metabolism may be altered in people with multiple sclerosis (PwMS), but existing studies are limited by small sample sizes. OBJECTIVES: To compare the levels of serum ceramides between PwMS and healthy controls (HCs) and to determine whether ceramide levels correlate with disability status, as well as optical coherence tomography (OCT)-derived rates of retinal layer atrophy. METHODS: We performed targeted lipidomics analyses for 45 ceramides in PwMS (n = 251) and HCs (n = 68). For a subset of PwMS, baseline and 5-year Expanded Disability Status Scale (EDSS) assessments (n = 185), or baseline and serial spectral-domain OCT (n = 180) were assessed. RESULTS: Several ceramides, including hexosylceramides, lactosylceramides, and dihydroceramides, were altered in PwMS compared with HCs. Higher levels of Cer16:0 were associated with higher odds of EDSS worsening at 5 years in univariable (odds ratio (OR) = 3.84, 95% confidence interval (CI) = 1.41-10.43) and multivariable analyses accounting for age, sex, and race (OR = 2.97, 95% CI = 1.03-8.59). Each 1 ng/mL higher concentration of Hex-Cer22:0 and DH-HexCer22:0 was associated with accelerated rates (µm/year) of ganglion cell + inner plexiform layer (-0.138 ± 0.053, p = 0.01; -0.158 ± 0.053, p = 0.003, respectively) and peripapillary retinal nerve fiber layer thinning (-0.305 ± 0.107, p = 0.004; -0.358 ± 0.106, p = 0.001, respectively). CONCLUSION: Ceramide levels are altered in PwMS and may be associated with retinal neurodegeneration and physical disability.
Asunto(s)
Esclerosis Múltiple , Ceramidas , Humanos , Retina , Células Ganglionares de la Retina , Tomografía de Coherencia ÓpticaRESUMEN
Copper (Cu) has emerged as an important modifier of body lipid metabolism. However, how Cu contributes to the physiology of fat cells remains largely unknown. We found that adipocytes require Cu to establish a balance between main metabolic fuels. Differentiating adipocytes increase their Cu uptake along with the ATP7A-dependent transport of Cu into the secretory pathway to activate a highly up-regulated amino-oxidase copper-containing 3 (AOC3)/semicarbazide-sensitive amine oxidase (SSAO); in vivo, the activity of SSAO depends on the organism's Cu status. Activated SSAO oppositely regulates uptake of glucose and long-chain fatty acids and remodels the cellular proteome to coordinate changes in fuel availability and related downstream processes, such as glycolysis, de novo lipogenesis, and sphingomyelin/ceramide synthesis. The loss of SSAO-dependent regulation due to Cu deficiency, limited Cu transport to the secretory pathway, or SSAO inactivation shifts metabolism towards lipid-dependent pathways and results in adipocyte hypertrophy and fat accumulation. The results establish a role for Cu homeostasis in adipocyte metabolism and identify SSAO as a regulator of energy utilization processes in adipocytes.
Asunto(s)
Adipocitos/enzimología , Adipocitos/metabolismo , Amina Oxidasa (conteniendo Cobre)/metabolismo , Cobre/metabolismo , Células 3T3-L1 , Animales , Secuencia de Bases , Transporte Biológico , Diferenciación Celular , Forma de la Célula , Tamaño de la Célula , Cobre/deficiencia , ATPasas Transportadoras de Cobre/metabolismo , Metabolismo Energético , Activación Enzimática , Ácidos Grasos/biosíntesis , Glucosa/metabolismo , Homeostasis , Hipertrofia , Masculino , Ratones , Proteómica , Ratas Wistar , Vías Secretoras , Triglicéridos/metabolismoRESUMEN
INTRODUCTION: We have demonstrated that asymptomatic cerebral small vessel disease (cSVD) measured by white matter hyperintensity volume is associated with reduced manipulative manual dexterity on the Grooved Peg Board Test (GPBT) in middle-aged healthy individuals with a family history of early coronary artery disease. In this current study, we aim to identify the association of subcortical white matter microstructural impairment measured by diffusion tensor imaging, manual dexterity measured by GPBT and circulating serums ceramide, another marker for white matter injury. We hypothesize that lower regional fractional anisotropy (rFA) is associated with worse performance on GPBT and elevated serum ceramides in the same study population. METHODS: rFA of 48 regions representing the subcortical white matters were analyzed in GeneSTAR participants in addition to serum ceramides and GPBT scores. Unadjusted univariable analyses with Bonferroni correction for multiple comparisons were completed using Spearman correlation for testing the associations between ceramides, rFA of subcortical white matter, and GPBT performance. Subsequently, sensitivity analyses were performed after excluding the participants that had any physical limitation that may influence their performance on GPBT. Finally, in the adjusted analysis using generalized estimating equation, linear regression models were performed for the areas that met significance threshold in the unadjusted analyses. RESULTS: 112 subjects (age [49 ± 11], 51% female, 39.3% African American) were included. Adjusted analyses for the significant correlations that met the Bonferroni correction threshold in the unadjusted univariable analyses identified significant negative associations between rFA of the right fornix (RF) and log-GPBT score (ß = -0.497, p = 0.037). In addition, rFA of RF negatively correlated with log serum ceramide levels (C18: ß = -0.03, p = 0.003, C20: ß = -0.0002, p = 0.004) and rFA of left genu of corpus callosum negatively correlated with log C18 level (ß = -0.0103, p = 0.027). CONCLUSIONS: These results demonstrate that subcortical microstructural white matter disruption is associated with elevated serum ceramides and reduced manual dexterity in a population with cSVD. These findings suggest that injury to white matter tracts undermines neural networks, with functional consequences in a middle-aged population with cardiovascular risk factors.
Asunto(s)
Ceramidas/sangre , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico , Cognición , Imagen de Difusión Tensora , Leucoencefalopatías/diagnóstico , Actividad Motora , Pruebas Neuropsicológicas , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Biomarcadores/sangre , Enfermedades de los Pequeños Vasos Cerebrales/sangre , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Estudios Transversales , Femenino , Humanos , Leucoencefalopatías/sangre , Leucoencefalopatías/fisiopatología , Leucoencefalopatías/psicología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Regulación hacia Arriba , Sustancia Blanca/fisiopatologíaRESUMEN
Extracellular vesicles have now emerged as key players in cell-to-cell communication. This is particularly important in the central nervous system, where glia-neuron cross-talk helps maintain normal neuronal function. Astrocyte-derived extracellular vesicles (ADEVs) secreted constitutively promote neurite outgrowth and neuronal survival. However, extracellular stimuli can alter the cargo and downstream functions of ADEVs. For example, ADEVs secreted in response to inflammation contain cargo microRNAs and proteins that reduce neurite outgrowth, neuronal firing, and promote neuronal apoptosis. We performed a comprehensive quantitative proteomic analysis to enumerate the proteomic cargo of ADEVs secreted in response to multiple stimuli. Rat primary astrocytes were stimulated with a trophic stimulus (adenosine triphosphate, ATP), an inflammatory stimulus (IL-1ß) or an anti-inflammatory stimulus (IL10) and extracellular vesicles secreted within a 2 hr time frame were collected using sequential ultracentrifugation method. ADEVs secreted constitutively without exposure to any stimulus were used a control. A tandem mass tag-based proteomic platform was used to identify and quantify proteins in the ADEVs. Ingenuity pathway analysis was performed to predict the downstream signaling events regulated by ADEVs. We found that in response to ATP or IL10, ADEVs contain a set of proteins that are involved in increasing neurite outgrowth, dendritic branching, regulation of synaptic transmission, and promoting neuronal survival. In contrast, ADEVs secreted in response to IL-1ß contain proteins that regulate peripheral immune response and immune cell trafficking to the central nervous system.
Asunto(s)
Astrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Neuronas/metabolismo , Mapas de Interacción de Proteínas/fisiología , Proteoma/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Vesículas Extracelulares/genética , Proteoma/genética , Ratas , Ratas Sprague-DawleyRESUMEN
Schwann cell (SC)-specific monocarboxylate transporter 1 (MCT1) knockout mice were generated by mating MCT1 f/f mice with myelin protein zero (P0)-Cre mice. P0-Cre+/- , MCT1 f/f mice have no detectable early developmental defects, but develop hypomyelination and reduced conduction velocity in sensory, but not motor, peripheral nerves during maturation and aging. Furthermore, reduced mechanical sensitivity is evident in aged P0-Cre+/- , MCT1 f/f mice. MCT1 deletion in SCs impairs both their glycolytic and mitochondrial functions, leading to altered lipid metabolism of triacylglycerides, diacylglycerides, and sphingomyelin, decreased expression of myelin-associated glycoprotein, and increased expression of c-Jun and p75-neurotrophin receptor, suggesting a regression of SCs to a less mature developmental state. Taken together, our results define the contribution of SC MCT1 to both SC metabolism and peripheral nerve maturation and aging.
Asunto(s)
Envejecimiento/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo , Células Receptoras Sensoriales/metabolismo , Simportadores/metabolismo , Envejecimiento/genética , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Transportadores de Ácidos Monocarboxílicos/deficiencia , Transportadores de Ácidos Monocarboxílicos/genética , Vaina de Mielina/genética , Conducción Nerviosa/fisiología , Nervio Sural/metabolismo , Simportadores/deficiencia , Simportadores/genéticaRESUMEN
Mounting evidence implicates antiretroviral (ARV) drugs as potential contributors to the persistence and evolution of clinical and pathological presentation of HIV-associated neurocognitive disorders in the post-ARV era. Based on their ability to induce endoplasmic reticulum (ER) stress in various cell types, we hypothesized that ARV-mediated ER stress in the central nervous system resulted in chronic dysregulation of the unfolded protein response and altered amyloid precursor protein (APP) processing. We used in vitro and in vivo models to show that HIV protease inhibitor (PI) class ARVs induced neuronal damage and ER stress, leading to PKR-like ER kinase-dependent phosphorylation of the eukaryotic translation initiation factor 2α and enhanced translation of ß-site APP cleaving enzyme-1 (BACE1). In addition, PIs induced ß-amyloid production, indicative of increased BACE1-mediated APP processing, in rodent neuroglial cultures and human APP-expressing Chinese hamster ovary cells. Inhibition of BACE1 activity protected against neuronal damage. Finally, ARVs administered to mice and SIV-infected macaques resulted in neuronal damage and BACE1 up-regulation in the central nervous system. These findings implicate a subset of PIs as potential mediators of neurodegeneration in HIV-associated neurocognitive disorders.
Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Células Cultivadas , Macaca , Masculino , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Estabilidad Proteica/efectos de los fármacos , Ratas , Ritonavir/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/metabolismoRESUMEN
Paroxetine and fluconazole have neuroprotective effects in an in vitro model of HIV protein-mediated neuronal injury. This study evaluated the safety, tolerability, and efficacy of both paroxetine and fluconazole for the treatment of HIV-associated neurocognitive disorder (HAND). A 24-week randomized double-blind, placebo-controlled 2 × 2 factorial design study was used. HIV+ individuals with cognitive impairment were enrolled in the 24-week trial. Participants were randomly assigned to one of four groups: (1) paroxetine 20 mg/day, (2) fluconazole 100 mg every 12 h, (3) paroxetine and fluconazole, or (4) placebo. Safety, tolerability, and efficacy were evaluated. Forty-five HIV+ individuals were enrolled. Medications were well tolerated. Compared to no paroxetine arms, HIV+ individuals receiving paroxetine showed improved NPZ8 summary scores, (mean change = 0.25 vs - 0.19, p = 0.049), CalCAP sequential test reaction time (mean change = 0.34 vs -0.23, p = 0.014), Trail Making Part B test performance (mean change = 0.49 vs - 0.33, p = 0.041), and FAS verbal fluency (mean change = 0.25 vs 0.02, p = 0.020) but a decline in the Letter number sequencing test (mean change = - 0.40 vs 0.26, p = 0.023). Biomarkers of cellular stress, inflammation, and neuronal damage were not affected by paroxetine. HIV+ individuals receiving fluconazole did not show a benefit in cognition and showed an increase in multiple markers of cellular stress compared to the no fluconazole arms. In conclusion, paroxetine was associated with improvement in a summary neuropsychological test measure and in several neuropsychological tests but worse performance in one neuropsychological test. Further studies of paroxetine for the treatment of HAND and to define its precise neuroprotective properties are warranted.
Asunto(s)
Complejo SIDA Demencia/tratamiento farmacológico , Fármacos Anti-VIH/uso terapéutico , Fluconazol/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Paroxetina/uso terapéutico , Complejo SIDA Demencia/fisiopatología , Complejo SIDA Demencia/psicología , Complejo SIDA Demencia/virología , Adulto , Antidepresivos de Segunda Generación/uso terapéutico , Antifúngicos/uso terapéutico , Método Doble Ciego , Esquema de Medicación , Reposicionamiento de Medicamentos , Análisis Factorial , Femenino , VIH-1/patogenicidad , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Seguridad del Paciente , Resultado del TratamientoRESUMEN
Background: Increased plasma free fatty acids (FFAs) impair insulin sensitivity in dairy cows via unknown mechanisms. In nonruminants, saturated FFAs upregulate the hepatic synthesis and secretion of ceramide, which inhibits insulin action. Objective: We aimed to determine whether an increase in plasma FFAs promotes hepatic and plasma ceramide accumulation in dairy cows. Methods: Six nonpregnant, nonlactating Holstein cows were used in a study with a crossover design and treatments consisting of intravenous infusion of either saline (control) or triacylglycerol emulsion (TG; 20 g/h) for 16 h. The feeding level was set at 120% of energy requirements. Blood was collected at regular intervals and liver was biopsied at 16 h. Ceramides, monohexosylceramides (Glc/Gal-Cer), lactosylceramides (LacCer), and sphingomyelins (SMs) in plasma and liver were profiled. Hepatic expression of ceramide synthases was determined. Data were analyzed with the use of mixed models, regressions, and Spearman rank correlations. Results: After 16 h of infusion, plasma FFA concentrations were >5-fold and liver triacylglycerol concentrations were 4-fold greater in TG cows, relative to control. Plasma total and very long-chain ceramide (e.g., C24:0-ceramide) concentrations increased â¼4-fold in TG over control by hour 16 of infusion, while C16:0-ceramide were not modified by TG. Infusion of TG increased plasma Glc/Gal-Cer (e.g., C16:0-Glc/Gal-Cer, 4-fold by hour 16) relative to control, but did not alter LacCer or SM concentrations. Hepatic ceramide concentrations increased with TG relative to control (e.g., C24:0-ceramide by 1.7-fold). Hepatic expression of ceramide synthase 2 was 60% greater after TG infusion compared with the control. Circulating ceramides were related to circulating FFA and hepatic triacylglycerol concentrations (e.g., C24:0-ceramide, ρ = 0.73 and 0.80, respectively; P < 0.001). Conclusion: Hepatic ceramide synthesis is associated with elevations in circulating FFAs and hepatic triacylglycerol during the induction of hyperlipidemia in dairy cows. This work supports the emerging evidence for the role of ceramide during hepatic steatosis and insulin antagonism in cows.
Asunto(s)
Ceramidas/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Hígado Graso/etiología , Resistencia a la Insulina , Hígado/efectos de los fármacos , Triglicéridos/farmacología , Animales , Bovinos , Ceramidas/sangre , Ácidos Grasos no Esterificados/sangre , Hígado Graso/metabolismo , Femenino , Hiperlipidemias/sangre , Hiperlipidemias/complicaciones , Hiperlipidemias/metabolismo , Infusiones Intravenosas , Insulina/sangre , Hígado/metabolismo , Esfingomielinas/sangre , Esfingomielinas/metabolismo , Triglicéridos/sangreRESUMEN
Despite the success of combination antiretroviral therapy (cART), there is increased prevalence of HIV-associated neurocognitive disorders (HAND) in HIV-1-infected individuals on cART, which poses a major health care challenge. Adding further complexity to this long-term antiretroviral use is the comorbidity with drugs of abuse such as morphine, cocaine, and methamphetamine, which can in turn, exacerbate neurologic and cognitive deficits associated with HAND. Furthermore, HIV proteins, such as the transactivator of transcription (Tat) and the envelope protein (gp120), as well as antiretrovirals themselves can also contribute to the progression of neurodegeneration underlying HAND. In the field of NeuroHIV and drug addiction, EVs hold the potential to serve as biomarkers of cognitive dysfunction, targets of therapy, and as vehicles for therapeutic delivery of agents that can ameliorate disease pathogenesis. Based on the success of a previous Satellite Symposium in 2015 at the ISEV meeting in Washington, experts again expanded on their latest research findings in the field, shedding light on the emerging trends in the field of Extracellular Vesicle (EV) biology in NeuroHIV and drug abuse. The satellite symposium sought to align experts in the fields of NeuroHIV and drug abuse to share their latest insights on the role of EVs in regulating neuroinflammation, neurodegeneration, peripheral immune response, and HIV latency in HIV-infected individuals with or without the comorbidity of drug abuse.
Asunto(s)
Complejo SIDA Demencia/terapia , Fármacos Anti-VIH/uso terapéutico , Portadores de Fármacos/uso terapéutico , Vesículas Extracelulares/metabolismo , VIH/efectos de los fármacos , Trastornos Relacionados con Sustancias/terapia , Complejo SIDA Demencia/complicaciones , Complejo SIDA Demencia/inmunología , Complejo SIDA Demencia/virología , Fármacos Anti-VIH/metabolismo , Biomarcadores/metabolismo , Cocaína/administración & dosificación , Portadores de Fármacos/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/trasplante , Expresión Génica , VIH/genética , VIH/metabolismo , VIH/patogenicidad , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Metanfetamina/administración & dosificación , Morfina/administración & dosificación , Trastornos Relacionados con Sustancias/complicaciones , Trastornos Relacionados con Sustancias/inmunología , Trastornos Relacionados con Sustancias/virología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons in the CNS. Astrocytes play a critical role in disease progression of ALS. Astrocytes are interconnected through a family of gap junction proteins known as connexins (Cx). Cx43 is a major astrocyte connexin conducting crucial homeostatic functions in the CNS. Under pathological conditions, connexin expression and functions are altered. Here we report that an abnormal increase in Cx43 expression serves as one of the mechanisms for astrocyte-mediated toxicity in ALS. We observed a progressive increase in Cx43 expression in the SOD1(G93A) mouse model of ALS during the disease course. Notably, this increase in Cx43 was also detected in the motor cortex and spinal cord of ALS patients. Astrocytes isolated from SOD1(G93A) mice as well as human induced pluripotent stem cell (iPSC)-derived astrocytes showed an increase in Cx43 protein, which was found to be an endogenous phenomenon independent of neuronal co-culture. Increased Cx43 expression led to important functional consequences when tested in SOD1(G93A) astrocytes when compared to control astrocytes over-expressing wild-type SOD1 (SOD1(WT) ). We observed SOD1(G93A) astrocytes exhibited enhanced gap junction coupling, increased hemichannel-mediated activity, and elevated intracellular calcium levels. Finally, we tested the impact of increased expression of Cx43 on MN survival and observed that use of both a pan Cx43 blocker and Cx43 hemichannel blocker conferred neuroprotection to MNs cultured with SOD1(G93A) astrocytes. These novel findings show a previously unrecognized role of Cx43 in ALS-related motor neuron loss. GLIA 2016;64:1154-1169.
Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Astrocitos/fisiología , Corteza Cerebral/patología , Conexina 43/metabolismo , Regulación de la Expresión Génica/genética , Neuronas Motoras/fisiología , Médula Espinal/patología , Adenosina Trifosfato/farmacología , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/genética , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Conexina 43/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Interleucina-1beta/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neuronas Motoras/efectos de los fármacos , Péptidos/farmacología , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Antiretroviral therapy extends the lifespan of human immunodeficiency virus (HIV)-infected patients, but many survivors develop premature impairments in cognition. These residual cognitive impairments may involve aberrant deposition of amyloid ß-peptides (Aß). By unknown mechanisms, Aß accumulates in the lysosomal and autophagic compartments of neurons in the HIV-infected brain. Here we identify the molecular events evoked by the HIV coat protein gp120 that facilitate the intraneuronal accumulation of Aß. We created a triple transgenic gp120/APP/PS1 mouse that recapitulates intraneuronal deposition of Aß in a manner reminiscent of the HIV-infected brain. In cultured neurons, we found that the HIV coat protein gp120 increased the transcriptional expression of BACE1 through repression of PPARγ, and increased APP expression by promoting interaction of the translation-activating RBP heterogeneous nuclear ribonucleoprotein C with APP mRNA. APP and BACE1 were colocalized into stabilized membrane microdomains, where the ß-cleavage of APP and Aß formation were enhanced. Aß-peptides became localized to lysosomes that were engorged with sphingomyelin and calcium. Stimulating calcium efflux from lysosomes with a TRPM1 agonist promoted calcium efflux, luminal acidification, and cleared both sphingomyelin and Aß from lysosomes. These findings suggest that therapeutics targeted to reduce lysosomal pH in neurodegenerative conditions may protect neurons by facilitating the clearance of accumulated sphingolipids and Aß-peptides.