Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 137(11)2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864427

RESUMEN

Endocannabinoid signalling mediated by cannabinoid receptor 1 (CB1R, also known as CNR1) is critical for homeostatic neuromodulation of both excitatory and inhibitory synapses. This requires highly polarised axonal surface expression of CB1R, but how this is achieved remains unclear. We previously reported that the α-helical H9 domain in the intracellular C terminus of CB1R contributes to axonal surface expression by an unknown mechanism. Here, we show in rat primary neuronal cultures that the H9 domain binds to the endocytic adaptor protein SGIP1 to promote CB1R expression in the axonal membrane. Overexpression of SGIP1 increases CB1R axonal surface localisation but has no effect on CB1R lacking the H9 domain (CB1RΔH9). Conversely, SGIP1 knockdown reduces axonal surface expression of CB1R but does not affect CB1RΔH9. Furthermore, SGIP1 knockdown diminishes CB1R-mediated inhibition of presynaptic Ca2+ influx in response to neuronal activity. Taken together, these data advance mechanistic understanding of endocannabinoid signalling by demonstrating that SGIP1 interaction with the H9 domain underpins axonal CB1R surface expression to regulate presynaptic responsiveness.


Asunto(s)
Axones , Unión Proteica , Receptor Cannabinoide CB1 , Animales , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Axones/metabolismo , Ratas , Dominios Proteicos , Humanos , Células Cultivadas , Neuronas/metabolismo , Ratas Sprague-Dawley , Membrana Celular/metabolismo
2.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37303235

RESUMEN

Mitochondrial protein import is essential for organellar biogenesis, and thereby for the sufficient supply of cytosolic ATP - which is particularly important for cells with high energy demands like neurons. This study explores the prospect of import machinery perturbation as a cause of neurodegeneration instigated by the accumulation of aggregating proteins linked to disease. We found that the aggregation-prone Tau variant (TauP301L) reduces the levels of components of the import machinery of the outer (TOM20, encoded by TOMM20) and inner membrane (TIM23, encoded by TIMM23) while associating with TOM40 (TOMM40). Intriguingly, this interaction affects mitochondrial morphology, but not protein import or respiratory function; raising the prospect of an intrinsic rescue mechanism. Indeed, TauP301L induced the formation of tunnelling nanotubes (TNTs), potentially for the recruitment of healthy mitochondria from neighbouring cells and/or the disposal of mitochondria incapacitated by aggregated Tau. Consistent with this, inhibition of TNT formation (and rescue) reveals Tau-induced import impairment. In primary neuronal cultures, TauP301L induced morphological changes characteristic of neurodegeneration. Interestingly, these effects were mirrored in cells where the import sites were blocked artificially. Our results reveal a link between aggregation-prone Tau and defective mitochondrial import relevant to disease.


Asunto(s)
Proteínas de Transporte de Membrana , Mitocondrias , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas/fisiología , Receptores de Superficie Celular/metabolismo , Neuronas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
3.
J Biol Chem ; 295(35): 12330-12342, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32620552

RESUMEN

GABA type A receptors (GABAARs) mediate fast synaptic inhibition and are trafficked to functionally diverse synapses. However, the precise molecular mechanisms that regulate the synaptic targeting of these receptors are unclear. Whereas it has been previously shown that phosphorylation events in α4, ß, and γ subunits of GABAARs govern their function and trafficking, phosphorylation of other subunits has not yet been demonstrated. Here, we show that the α2 subunit of GABAARs is phosphorylated at Ser-359 and enables dynamic regulation of GABAAR binding to the scaffolding proteins gephyrin and collybistin. We initially identified Ser-359 phosphorylation by MS analysis, and additional experiments revealed that it is regulated by the activities of cAMP-dependent protein kinase (PKA) and the protein phosphatase 1 (PP1) and/or PP2A. GST-based pulldowns and coimmunoprecipitation experiments demonstrate preferential binding of both gephyrin and collybistin to WT and an S359A phosphonull variant, but not to an S359D phosphomimetic variant. Furthermore, the decreased capacity of the α2 S359D variant to bind collybistin and gephyrin decreased the density of synaptic α2-containing GABAAR clusters and caused an absence of α2 enrichment in the axon initial segment. These results suggest that PKA-mediated phosphorylation and PP1/PP2A-dependent dephosphorylation of the α2 subunit play a role in the dynamic regulation of GABAAR accumulation at inhibitory synapses, thereby regulating the strength of synaptic inhibition. The MS data have been deposited to ProteomeXchange, with the data set identifier PXD019597.


Asunto(s)
Regulación hacia Abajo , Potenciales Postsinápticos Inhibidores , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mutación Missense , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Ratas , Ratas Wistar , Receptores de GABA-A/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Sinapsis/genética
4.
Physiol Rev ; 94(4): 1249-85, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25287864

RESUMEN

Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.


Asunto(s)
Neuronas/metabolismo , Sumoilación , Animales , Núcleo Celular/metabolismo , Humanos , Neuronas/citología , Neuronas/patología , Neuronas/fisiología , Procesamiento Proteico-Postraduccional
5.
J Neurochem ; 156(2): 145-161, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32538470

RESUMEN

SUMOylation is a post-translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein-protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse-associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries.


Asunto(s)
Sumoilación/fisiología , Sinapsis/metabolismo , Animales , Humanos
6.
J Neurochem ; 156(5): 614-623, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32852799

RESUMEN

The t-soluble NSF-attachment protein receptor protein Syntaxin-1a (Stx-1a) is abundantly expressed at pre-synaptic terminals where it plays a critical role in the exocytosis of neurotransmitter-containing synaptic vesicles. Stx-1a is phosphorylated by Casein kinase 2α (CK2α) at Ser14, which has been proposed to regulate the interaction of Stx-1a and Munc-18 to control of synaptic vesicle priming. However, the role of CK2α in synaptic vesicle dynamics remains unclear. Here, we show that CK2α over-expression reduces evoked synaptic vesicle release. Furthermore, shRNA-mediated knockdown of CK2α in primary hippocampal neurons strongly enhanced vesicle exocytosis from the reserve pool, with no effect on the readily releasable pool of primed vesicles. In neurons in which endogenous Stx-1a was knocked down and replaced with a CK2α phosphorylation-deficient mutant, Stx-1a(D17A), vesicle exocytosis was also increased. These results reveal a previously unsuspected role of CK2α phosphorylation in specifically regulating the reserve synaptic vesicle pool, without changing the kinetics of release from the readily releasable pool.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Endocitosis/fisiología , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Animales , Células Cultivadas , Femenino , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Fosforilación/fisiología , Embarazo , Ratas , Ratas Wistar
7.
Nat Rev Neurosci ; 17(6): 337-50, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27080385

RESUMEN

AMPA receptors (AMPARs) are assemblies of four core subunits, GluA1-4, that mediate most fast excitatory neurotransmission. The component subunits determine the functional properties of AMPARs, and the prevailing view is that the subunit composition also determines AMPAR trafficking, which is dynamically regulated during development, synaptic plasticity and in response to neuronal stress in disease. Recently, the subunit dependence of AMPAR trafficking has been questioned, leading to a reappraisal of this field. In this Review, we discuss what is known, uncertain, conjectured and unknown about the roles of the individual subunits, and how they affect AMPAR assembly, trafficking and function under both normal and pathological conditions.


Asunto(s)
Enfermedades del Sistema Nervioso/metabolismo , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos/genética , Animales , Humanos , Enfermedades del Sistema Nervioso/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología , Receptores AMPA/genética , Sinapsis/genética
8.
Semin Cell Dev Biol ; 77: 3-9, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28890422

RESUMEN

One of the most interesting features of Arc-dependent synaptic plasticity is how multiple types of synaptic activity can converge to alter Arc transcription and then diverge to induce different plasticity outcomes, ranging from AMPA receptor internalisation that promotes long-term depression (LTD), to actin stabilisation that promotes long-term potentiation (LTP). This diversity suggests that there must be numerous levels of control to ensure the temporal profile, abundance, localisation and function of Arc are appropriately regulated to effect learning and memory in the correct contexts. The activity-dependent transcription and post-translational modification of Arc are crucial regulators of synaptic plasticity, fine-tuning the function of this key protein depending on the specific situation. The extensive cross-talk between signalling pathways and the numerous routes of Arc regulation provide a complex interplay of processes in which Arc-mediated plasticity can be broadly induced, but specifically tailored to synaptic activity. Here we provide an overview what is currently known about these processes and potential future directions.


Asunto(s)
Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Regulación de la Expresión Génica/genética , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Procesamiento Proteico-Postraduccional/genética , Transcripción Genética/genética , Animales , Señalización del Calcio/fisiología , AMP Cíclico/metabolismo , Humanos , Aprendizaje/fisiología , Memoria/fisiología , Ratones , Plasticidad Neuronal/fisiología , Ratas , Receptores AMPA/metabolismo , Sumoilación , Ubiquitinación
9.
J Cell Sci ; 131(24)2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559217

RESUMEN

Kainate receptors (KARs) regulate neuronal excitability and network function. Most KARs contain the subunit GluK2 (also known as GRIK2), and the properties of these receptors are determined in part by ADAR2 (also known as ADARB1)-mediated mRNA editing of GluK2, which changes a genomically encoded glutamine residue into an arginine residue (Q/R editing). Suppression of synaptic activity reduces ADAR2-dependent Q/R editing of GluK2 with a consequential increase in GluK2-containing KAR surface expression. However, the mechanism underlying this reduction in GluK2 editing has not been addressed. Here, we show that induction of KAR upscaling, a phenomenon in which surface expression of receptors is increased in response to a chronic decrease in synaptic activity, results in proteasomal degradation of ADAR2, which reduces GluK2 Q/R editing. Because KARs incorporating unedited GluK2(Q) assemble and exit the ER more efficiently, this leads to an upscaling of KAR surface expression. Consistent with this, we demonstrate that partial ADAR2 knockdown phenocopies and occludes KAR upscaling. Moreover, we show that although the AMPA receptor (AMPAR) subunit GluA2 (also known as GRIA2) also undergoes ADAR2-dependent Q/R editing, this process does not mediate AMPAR upscaling. These data demonstrate that activity-dependent regulation of ADAR2 proteostasis and GluK2 Q/R editing are key determinants of KAR, but not AMPAR, trafficking and upscaling.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Adenosina Desaminasa/metabolismo , Edición de ARN/genética , Receptores AMPA/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Transporte de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Ratas Wistar , Receptor de Ácido Kaínico GluK2
10.
Purinergic Signal ; 16(3): 439-450, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32892251

RESUMEN

SUMOylation is a post-translational modification (PTM) whereby members of the Small Ubiquitin-like MOdifier (SUMO) family of proteins are conjugated to lysine residues in target proteins. SUMOylation has been implicated in a wide range of physiological and pathological processes, and much attention has been given to its role in neurodegenerative conditions. Due to its reported role in neuroprotection, pharmacological modulation of SUMOylation represents an attractive potential therapeutic strategy in a number of different brain disorders. However, very few compounds that target the SUMOylation pathway have been identified. Guanosine is an endogenous nucleoside with important neuromodulatory and neuroprotective effects. Experimental evidence has shown that guanosine can modulate different intracellular pathways, including PTMs. In the present study we examined whether guanosine alters global protein SUMOylation. Primary cortical neurons and astrocytes were treated with guanosine at 1, 10, 100, 300, or 500 µM at four time points, 1, 6, 24, or 48 h. We show that guanosine increases global SUMO2/3-ylation in neurons and astrocytes at 1 h at concentrations above 10 µM. The molecular mechanisms involved in this effect were evaluated in neurons. The guanosine-induced increase in global SUMO2/3-ylation was still observed in the presence of dipyridamole, which prevents guanosine internalization, demonstrating an extracellular guanosine-induced effect. Furthermore, the A1 adenosine receptor antagonist DPCPX abolished the guanosine-induced increase in SUMO2/3-ylation. The A2A adenosine receptor antagonist ZM241385 increased SUMOylation per se, but did not alter guanosine-induced SUMOylation, suggesting that guanosine may modulate SUMO2/3-ylation through an A1-A2A receptor interaction. Taken together, this is the first report to show guanosine as a SUMO2/3-ylation enhancer in astrocytes and neurons.


Asunto(s)
Astrocitos/efectos de los fármacos , Guanosina/farmacología , Neuronas/efectos de los fármacos , Receptores Purinérgicos P1/metabolismo , Sumoilación/efectos de los fármacos , Animales , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Ratas , Ratas Wistar , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
11.
Biochem J ; 476(2): 293-306, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30602588

RESUMEN

Retromer is an evolutionarily conserved endosomal trafficking complex that mediates the retrieval of cargo proteins from a degradative pathway for sorting back to the cell surface. To promote cargo recycling, the core retromer trimer of VPS (vacuolar protein sorting)26, VPS29 and VPS35 recognises cargo either directly, or through an adaptor protein, the most well characterised of which is the PDZ [postsynaptic density 95 (PSD95), disk large, zona occludens] domain-containing sorting nexin SNX27. Neuroligins (NLGs) are postsynaptic trans-synaptic scaffold proteins that function in the clustering of postsynaptic proteins to maintain synaptic stability. Here, we show that each of the NLGs (NLG1-3) bind to SNX27 in a direct PDZ ligand-dependent manner. Depletion of SNX27 from neurons leads to a decrease in levels of each NLG protein and, for NLG2, this occurs as a result of enhanced lysosomal degradation. Notably, while depletion of the core retromer component VPS35 leads to a decrease in NLG1 and NLG3 levels, NLG2 is unaffected, suggesting that, for this cargo, SNX27 acts independently of retromer. Consistent with loss of SNX27 leading to enhanced lysosomal degradation of NLG2, knockdown of SNX27 results in fewer NLG2 clusters in cultured neurons, and loss of SNX27 or VPS35 reduces the size and number of gephyrin clusters. Together, these data indicate that NLGs are SNX27-retromer cargoes and suggest that SNX27-retromer controls inhibitory synapse number, at least in part through trafficking of NLG2.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Lisosomas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteolisis , Sinapsis/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Células HEK293 , Humanos , Lisosomas/genética , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Wistar , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
Mol Cell Neurosci ; 101: 103416, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31654699

RESUMEN

The accumulation of intracytoplasmic inclusion bodies (Lewy bodies) composed of aggregates of the alpha-synuclein (α-syn) protein is the principal pathological characteristic of Parkinson's disease (PD) and may lead to degeneration of dopaminergic neurons. To date there is no medication that can promote the efficient clearance of these pathological aggregates. In this study, the effect on α-syn aggregate clearance of ginkgolic acid (GA), a natural compound extracted from Ginkgo biloba leaves that inhibits SUMOylation amongst other pathways, was assessed in SH-SY5Y neuroblastoma cells and rat primary cortical neurons. Depolarization of SH-SY5Y neuroblastoma cells and rat primary cortical neurons with KCl was used to induce α-syn aggregate formation. Cells pre-treated with either GA or the related compound, anacardic acid, revealed a significant decrease in intracytoplasmic aggregates immunopositive for α-syn and SUMO-1. An increased frequency of autophagosomes was also detected with both compounds. GA post-treatment 24 h after depolarization also significantly diminished α-syn aggregate bearing cells, indicating the clearance of pre-formed aggregates. Autophagy inhibitors blocked GA-dependent clearance of α-syn aggregates, but not increased autophagosome frequency. Western analysis revealed that the reduction in α-syn aggregate frequency obtained with GA pre-treatment was accompanied by little change in the abundance of SUMO conjugates. The current findings show that GA can promote autophagy-dependent clearance of α-syn aggregates and may have potential in disease modifying therapy.


Asunto(s)
Autofagia , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Salicilatos/farmacología , alfa-Sinucleína/metabolismo , Animales , Autofagosomas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Humanos , Neuronas/metabolismo , Agregado de Proteínas , Ratas , Ratas Wistar , Sumoilación
13.
Neurochem Res ; 44(3): 572-584, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29270706

RESUMEN

Kainate receptors (KARs) are glutamate-gated ion channels that play fundamental roles in regulating neuronal excitability and network function in the brain. After being cloned in the 1990s, important progress has been made in understanding the mechanisms controlling the molecular and cellular properties of KARs, and the nature and extent of their regulation of wider neuronal activity. However, there have been significant recent advances towards understanding KAR trafficking through the secretory pathway, their precise synaptic positioning, and their roles in synaptic plasticity and disease. Here we provide an overview highlighting these new findings about the mechanisms controlling KARs and how KARs, in turn, regulate other proteins and pathways to influence synaptic function.


Asunto(s)
Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Transporte de Proteínas/fisiología , Receptores de Ácido Kaínico/metabolismo , Animales , Humanos , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo
14.
Cereb Cortex ; 28(8): 2795-2809, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053799

RESUMEN

The cytokine erythropoietin (EPO) is the master regulator of erythropoiesis. Intriguingly, many studies have shown that the cognitive performance of patients receiving EPO for its hematopoietic effects is enhanced, which prompted the growing interest in the use of EPO-based strategies to treat neuropsychiatric disorders. EPO plays key roles in brain development and maturation, but also modulates synaptic transmission. However, the mechanisms underlying the latter have remained elusive. Here, we show that acute (40-60 min) exposure to EPO presynaptically downregulates spontaneous and afferent-evoked excitatory transmission, without affecting basal firing of action potentials. Conversely, prolonged (3 h) exposure to EPO, if followed by a recovery period (1 h), is able to elicit a homeostatic increase in excitatory spontaneous, but not in evoked, synaptic transmission. These data lend support to the emerging view that segregated pathways underlie spontaneous and evoked neurotransmitter release. Furthermore, we show that prolonged exposure to EPO facilitates a form of hippocampal long-term potentiation that requires noncanonical recruitment of calcium-permeable AMPA receptors for its maintenance. These findings provide important new insight into the mechanisms by which EPO enhances neuronal function, learning, and memory.


Asunto(s)
Eritropoyetina/farmacología , Hipocampo/citología , Hipocampo/fisiología , Homeostasis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Biofisica , Estimulación Eléctrica , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neurotransmisores/farmacología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Receptores AMPA/metabolismo , Receptores de Eritropoyetina/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/fisiología , Tetrodotoxina/farmacología , Factores de Tiempo
15.
Biochem Biophys Res Commun ; 500(3): 645-649, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29678571

RESUMEN

Neural stem cells (NSCs) are self-renewing multipotent stem cells that can be proliferated in vitro and differentiated into neuronal and/or glial lineages, making them an ideal model to study the processes involved in neuronal differentiation. Here we have used NSCs to investigate the role of the transcription factor MEF2A in neuronal differentiation and development in vitro. We show that although MEF2A is present in undifferentiated NSCs, following differentiation it is expressed at significantly higher levels in a subset of neuronal compared to non-neuronal cells. Furthermore, shRNA-mediated knockdown of MEF2A reduces the number of NSC-derived neurons compared to non-neuronal cells after differentiation. Together, these data indicate that MEF2A participates in neuronal differentiation/maturation from NSCs.


Asunto(s)
Diferenciación Celular , Factores de Transcripción MEF2/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Animales , Células Cultivadas , Técnicas de Silenciamiento del Gen , Ratas Wistar
16.
EMBO J ; 32(11): 1514-28, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23524851

RESUMEN

Global increases in small ubiquitin-like modifier (SUMO)-2/3 conjugation are a neuroprotective response to severe stress but the mechanisms and specific target proteins that determine cell survival have not been identified. Here, we demonstrate that the SUMO-2/3-specific protease SENP3 is degraded during oxygen/glucose deprivation (OGD), an in vitro model of ischaemia, via a pathway involving the unfolded protein response (UPR) kinase PERK and the lysosomal enzyme cathepsin B. A key target for SENP3-mediated deSUMOylation is the GTPase Drp1, which plays a major role in regulating mitochondrial fission. We show that depletion of SENP3 prolongs Drp1 SUMOylation, which suppresses Drp1-mediated cytochrome c release and caspase-mediated cell death. SENP3 levels recover following reoxygenation after OGD allowing deSUMOylation of Drp1, which facilitates Drp1 localization at mitochondria and promotes fragmentation and cytochrome c release. RNAi knockdown of SENP3 protects cells from reoxygenation-induced cell death via a mechanism that requires Drp1 SUMOylation. Thus, we identify a novel adaptive pathway to extreme cell stress in which dynamic changes in SENP3 stability and regulation of Drp1 SUMOylation are crucial determinants of cell fate.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , eIF-2 Quinasa/metabolismo , Animales , Apoptosis , Muerte Celular , Línea Celular , Cisteína Endopeptidasas/genética , Citocromos c/metabolismo , Citosol/metabolismo , Dinaminas , Embrión de Mamíferos , GTP Fosfohidrolasas/genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Isquemia , Ratones , Proteínas Asociadas a Microtúbulos/genética , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Modelos Biológicos , Mutación , Neuronas/metabolismo , Oxígeno/metabolismo , Ratas , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
17.
Biochem J ; 473(16): 2453-62, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27515257

RESUMEN

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1-5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.


Asunto(s)
Encéfalo/enzimología , Ubiquitina Tiolesterasa/metabolismo , Animales , Encéfalo/fisiología , Encéfalo/fisiopatología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Ubiquitina Tiolesterasa/química
18.
Adv Exp Med Biol ; 963: 261-281, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197918

RESUMEN

The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.


Asunto(s)
Degeneración Nerviosa , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica
19.
J Neurosci ; 35(12): 4830-6, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25810514

RESUMEN

Membrane trafficking of AMPA receptors (AMPARs) is critical for neuronal function and plasticity. Although rapid forms of AMPAR internalization during long-term depression (LTD) require clathrin and dynamin, the mechanisms governing constitutive AMPAR turnover and internalization of AMPARs during slow homeostatic forms of synaptic plasticity remain unexplored. Here, we show that, in contrast to LTD, constitutive AMPAR internalization and homeostatic AMPAR downscaling in rat neurons do not require dynamin or clathrin function. Instead, constitutive AMPAR trafficking is blocked by a Rac1 inhibitor and is regulated by a dynamic nonstructural pool of F-actin. Our findings reveal a novel role for neuronal clathrin-independent endocytosis controlled by actin dynamics and suggest that the interplay between different modes of receptor endocytosis provides for segregation between distinct modes of neuronal plasticity.


Asunto(s)
Actinas/metabolismo , Clatrina , Depresión Sináptica a Largo Plazo/fisiología , Transporte de Proteínas/fisiología , Receptores AMPA/metabolismo , Aminoquinolinas/farmacología , Animales , Técnicas de Cultivo de Célula , Clatrina/antagonistas & inhibidores , Clatrina/metabolismo , Dinaminas/antagonistas & inhibidores , Dinaminas/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Hidrazonas/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Transporte de Proteínas/efectos de los fármacos , Pirimidinas/farmacología , ARN Interferente Pequeño/farmacología , Ratas , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/fisiología
20.
Traffic ; 14(7): 810-22, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23556457

RESUMEN

Kainate receptors (KARs) play fundamentally important roles in controlling synaptic function and regulating neuronal excitability. Postsynaptic KARs contribute to excitatory neurotransmission but the molecular mechanisms underlying their activity-dependent surface expression are not well understood. Strong activation of KARs in cultured hippocampal neurons leads to the downregulation of postsynaptic KARs via endocytosis and degradation. In contrast, low-level activation augments postsynaptic KAR surface expression. Here, we show that this increase in KARs is due to enhanced recycling via the recruitment of Rab11-dependent, transferrin-positive endosomes into spines. Dominant-negative Rab11 or the recycling inhibitor primaquine prevents the kainate-evoked increase in surface KARs. Moreover, we show that the increase in surface expression is mediated via a metabotropic KAR signalling pathway, which is blocked by the protein kinase C inhibitor chelerythrine, the calcium chelator BAPTA and the G-protein inhibitor pertussis toxin. Thus, we report a previously uncharacterized positive feedback system that increases postsynaptic KARs in response to low- or moderate-level agonist activation and can provide additional flexibility to synaptic regulation.


Asunto(s)
Autorreceptores/metabolismo , Membrana Celular/metabolismo , Endocitosis , Receptores de Ácido Kaínico/metabolismo , Sinapsis/metabolismo , Animales , Benzofenantridinas/farmacología , Espinas Dendríticas/metabolismo , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Endosomas/metabolismo , Retroalimentación Fisiológica , Hipocampo/citología , Ácido Kaínico/farmacología , Toxina del Pertussis/farmacología , Primaquina/farmacología , Transporte de Proteínas , Proteolisis , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Receptor de Ácido Kaínico GluK2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA