Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 206: 107271, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906202

RESUMEN

Colorectal cancer is the second most prevalent and deadly cancer worldwide. The emergence of immune checkpoint therapy has provided a revolutionary strategy for the treatment of solid tumors. However, less than 5 % of colorectal cancer patients respond to immune checkpoint therapy. Thus, it is of great scientific significance to develop "potentiators" for immune checkpoint therapy. In this study, we found that knocking down different DNMT and HDAC isoforms could increase the expression of IFNs in colorectal cancer cells, which can enhance the effectiveness of immune checkpoint therapy. Therefore, the combined inhibition of DNMT and HDAC cloud synergistically enhance the effect of immunotherapy. We found that dual DNMT and HDAC inhibitors C02S could inhibit tumor growth in immunocompetent mice but not in immunocompromised nude mice, which indicates that C02S exerts its antitumor effects through the immune system. Mechanistically, C02S could increase the expression of ERVs, which generated the intracellular levels of dsRNA in tumor cells, and then promotes the expression of IFNs through the RIG-I/MDA5-MAVS signaling pathway. Moreover, C02S increased the immune infiltration of DCs and T cells in microenvironment, and enhanced the efficacy of anti-PD-L1 therapy in MC38 and CT26 mice model. These results confirmed that C02S can activate IFNs through the RIG-I/MDA5-MAVS signaling pathway, remodel the tumor immune microenvironment and enhance the efficacy of immune checkpoint therapy, which provides new evidence and solutions for the development of "potentiator" for colorectal cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones Desnudos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Femenino , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética
2.
J Org Chem ; 89(1): 710-718, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101332

RESUMEN

The proton of alcohols as the sole hydrogen source in diboron-mediated nickel-catalyzed asymmetric transfer hydrogenation of cyclic N-sulfonyl imines has been developed, providing the chiral cyclic sulfamidates in excellent enantioselectivities. The mechanistic investigations suggested that the proton of alcohols could be activated by tetrahydroxydiboron to form active nickel hydride species.

3.
Environ Sci Technol ; 58(24): 10717-10728, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847549

RESUMEN

Ruthenium single-atom catalysts have great potential in ammonia-selective catalytic oxidation (NH3-SCO); however, the stable sp3 hybrid orbital of NH3 molecules makes N(sp3)-H dissociation a challenge for conventional symmetrical metallic oxide catalysts. Herein, we propose a heterogeneous interface reverse atom capture strategy to construct Ru with unique asymmetric Ru1N2O1 coordination. Ru1N2O1/CeO2 exhibits intrinsic low-temperature conversion (T100 at 160 °C) compared to symmetric coordinated Ru-based (280 °C), Ir-based (220 °C), and Pt-based (200 °C) catalysts, and the TOF is 65.4 times that of Ag-based catalysts. The experimental and theoretical studies show that there is a strong d-p orbital interaction between Ru and N atoms, which not only enhances the adsorption of ammonia at the Ru1N2O1 position but also optimizes the electronic configuration of Ru. Furthermore, the affinity of Ru1N2O1/CeO2 to water is significantly weaker than that of conventional catalysts (the binding energy of the Pd3Au1 catalyst is -1.19 eV, but it is -0.39 eV for our material), so it has excellent water resistance. Finally, the N(sp3)-H activation of NH3 requires the assistance of surface reactive oxygen species, but we found that asymmetric Ru1N2O1 can directly activate the N(sp3)-H bond without the involvement of surface reactive oxygen species. This study provides a novel principle for the rational design of the proximal coordination of active sites to achieve its optimal catalytic activity in single-atom catalysis.


Asunto(s)
Amoníaco , Oxidación-Reducción , Rutenio , Amoníaco/química , Catálisis , Rutenio/química
4.
Environ Sci Technol ; 58(1): 960-969, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150269

RESUMEN

SO2 reduction with CH4 to produce elemental sulfur (S8) or other sulfides is typically challenging due to high energy barriers and catalyst poisoning by SO2. Herein, we report that a comproportionation reaction (CR) induced by H2S recirculating significantly accelerates the reactions, altering reaction pathways and enabling flexible adjustment of the products from S8 to sulfides. Results show that SO2 can be fully reduced to H2S at a lower temperature of 650 °C, compared to the 800 °C required for the direct reduction (DR), effectively eliminating catalyst poisoning. The kinetic rate constant is significantly improved, with CR at 650 °C exhibiting about 3-fold higher value than DR at 750 °C. Additionally, the apparent activation energy decreases from 128 to 37 kJ/mol with H2S, altering the reaction route. This CR resolves the challenges related to robust sulfur-oxygen bond activation and enhances CH4 dissociation. During the process, the well-dispersed lamellar MoS2 crystallites with Co promoters (CoMoS) act as active species. H2S facilitates the comproportionation reaction, reducing SO2 to a nascent sulfur (Sx*). Subsequently, CH4 efficiently activates CoMoS in the absence of SO2, forming H2S. This shifts the mechanism from Mars-van Krevelen (MvK) in DR to sequential Langmuir-Hinshelwood (L-H) and MvK in CR. Additionally, it mitigates sulfation poisoning through this rapid activation reaction pathway. This unique comproportionation reaction provides a novel strategy for efficient sulfur resource utilization.


Asunto(s)
Metano , Dióxido de Azufre , Metano/química , Sulfuros/química , Temperatura , Azufre/química , Oxidación-Reducción
5.
Environ Sci Technol ; 58(15): 6704-6715, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574268

RESUMEN

The transformation of toxic arsine (AsH3) gas into valuable elemental arsenic (As0) from industrial exhaust gases is important for achieving sustainable development goals. Although advanced arsenic removal catalysts can improve the removal efficiency of AsH3, toxic arsenic oxides generated during this process have not received adequate attention. In light of this, a novel approach for obtaining stable As0 products was proposed by performing controlled moderate oxidation. We designed a tailored Ni-based catalyst through an acid etching approach to alter interactions between Ni and NaY. As a result, the 1Ni/NaY-H catalyst yielded an unprecedented proportion of As0 as the major product (65%), which is superior to those of other reported catalysts that only produced arsenic oxides. Density functional theory calculations clarified that Ni species changed the electronic structure of oxygen atoms, and the formed [NiIII-OH (µ-O)] active centers facilitated the adsorption of AsH2*, AsH*, and As* reaction intermediates for As-H bond cleavage, thereby decreasing the direct reactivity of oxygen with the arsenic intermediates. This work presents pioneering insights into inhibiting excessive oxidation during AsH3 removal, demonstrating potential environmental applications for recovery of As0 from toxic AsH3.


Asunto(s)
Arsénico , Zeolitas , Níquel/química , Electrones , Oxígeno , Gases
6.
Environ Res ; 263(Pt 3): 120195, 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39427946

RESUMEN

This research presents the effective preparation of a novel dual network chitosan-based hydrogel (CMAPP) for the adsorption of methylene blue (MB), malachite green (MG), crystalline violet (CV), and basic fuchsin (BF) using the sol-gel method to address the escalating issue of dye pollution. FTIR, XRD, SEM, EDS, XPS, TGA, and zeta potential study examined hydrogel production and physicochemical properties. To ascertain the maximum adsorption capacity, the influences of pH, temperature, initial dye concentration, contact time, and adsorbent dosage on adsorption were systematically analyzed. It was observed that CMAPP demonstrated significant removal efficiencies (97.62%, 96.67%, 98.12%, and 99.32%) for the dyes MB, MG, CV, and BF at a concentration of 500 mg/L under optimal conditions. The findings from the adsorption kinetics and isotherm studies indicated that pseudo-second-order kinetics and the Langmuir model were the most appropriate for characterizing the adsorption process of hydrogels. The thermodynamic findings demonstrated that the adsorption process was exothermic and spontaneous. After five cycles of adsorption, the hydrogel demonstrated a consistent dye removal efficiency of around 80%, indicating commendable recyclability. In the interference studies, CMAPP exhibits superior anti-interference capability against CV and BF, which is advantageous for its practical application. The findings from XPS and FTIR investigations indicate that electrostatic attraction, hydrogen bonding, and n-π interactions are the primary forces between the adsorbent and the dyes. The synthesis of CMAPP offers an innovative approach for the effective elimination of cationic dyes and demonstrates significant potential in the treatment of complicated wastewater.

7.
Surg Innov ; 31(4): 373-380, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38654530

RESUMEN

BACKGROUND: Minimally invasive treatment has become the most popular and effective treatment for pelvic fractures. This study aimed to evaluate the safety and efficacy of a new technique, titanium elastic nailing (TEN), for the minimally invasive treatment of pelvic fractures. METHOD: Twenty-four patients with pelvic fractures were referred to us between January 2020 to January 2022, including sixteen males and 8 females. Pelvic fractures were temporarily fixed by pelvic fixation belt accompanied by traction from the lower limb bone. Anterior pelvic ring injuries (superior ramus of pubis) and ilium fractures were treated with closed reduction and intramedullary fixation with minimally invasive TEN. Intraoperative C-arm, including pelvic anteroposterior, pelvic outlet, inlet and ilium oblique views, and O-arm fluoroscopy (intraoperative CT) were employed to assess fractures reduction and determine the location of the elastic titanium nail within the bone channel. RESULTS: By adopting closed reduction and minimally invasive incision techniques, pelvic fractures could be safely fixed by placing an elastic titanium nail in the osseous medullary cavity channels of the pelvis. Postoperative investigation indicated that the wounds of all patients were healed in the first stage without any occurrence of complications, such as injuries to the nerves, blood vessels, and important tissue structures. Patients are essential quickly after the operation and could perform the functional exercise in the early stages of the recovery. CONCLUSION: TEN can be used for minimally invasive treatment of pelvic fractures. This novel technique has no obvious complications and is worthwhile in clinical practice.


Asunto(s)
Clavos Ortopédicos , Fracturas Óseas , Procedimientos Quirúrgicos Mínimamente Invasivos , Huesos Pélvicos , Titanio , Humanos , Femenino , Masculino , Huesos Pélvicos/lesiones , Huesos Pélvicos/cirugía , Fracturas Óseas/cirugía , Adulto , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación , Persona de Mediana Edad , Fijación Intramedular de Fracturas/métodos , Fijación Intramedular de Fracturas/instrumentación , Adulto Joven , Resultado del Tratamiento
8.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32393985

RESUMEN

Sepsis is a life-threatening complication of pneumonia, including coronavirus disease-2019 (COVID-19)-induced pneumonia. Evidence of the benefits of vitamin C (VC) for the treatment of sepsis is accumulating. However, data revealing the targets and molecular mechanisms of VC action against sepsis are limited. In this report, a bioinformatics analysis of network pharmacology was conducted to demonstrate screening targets, biological functions, and the signaling pathways of VC action against sepsis. As shown in network assays, 63 primary causal targets for the VC action against sepsis were identified from the data, and four optimal core targets for the VC action against sepsis were identified. These core targets were epidermal growth factor receptor (EGFR), mitogen-activated protein kinase-1 (MAPK1), proto-oncogene c (JUN), and signal transducer and activator of transcription-3 (STAT3). In addition, all biological processes (including a top 20) and signaling pathways (including a top 20) potentially involved in the VC action against sepsis were identified. The hub genes potentially involved in the VC action against sepsis and interlaced networks from the Kyoto Encyclopedia of Genes and Genomes Mapper assays were highlighted. Considering all the bioinformatic findings, we conclude that VC antisepsis effects are mechanistically and pharmacologically implicated with suppression of immune dysfunction-related and inflammation-associated functional processes and other signaling pathways. These primary predictive biotargets may potentially be used to treat sepsis in future clinical practice.


Asunto(s)
Ácido Ascórbico/uso terapéutico , COVID-19/complicaciones , Biología Computacional , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ácido Ascórbico/farmacología , COVID-19/epidemiología , COVID-19/metabolismo , COVID-19/virología , Expresión Génica/efectos de los fármacos , Humanos , Mapas de Interacción de Proteínas , Proto-Oncogenes Mas , SARS-CoV-2/aislamiento & purificación , Sepsis/etiología , Sepsis/metabolismo
9.
Opt Express ; 31(20): 31818-31824, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37858998

RESUMEN

Micro-LEDs have promising development potential in display applications because of their outstanding performance. Achieving a full-color display based on micro-LEDs is one of the most important issues in commercial applications. In this paper, an effective method based on quantum dots and blue micro-LEDs was developed. Using an etching method, a thick black matrix was fabricated to reduce crosstalk and form a thick bank for quantum dots. Quantum dots were deposited in a thick black matrix using inkjet printing technology. With blue micro-LEDs, inkjet-printed quantum dot films can realize effective color conversion. The integrated blue micro-LEDs and red/green quantum dot films can achieve full-color displays without color filters, because the blue light leakage in the color conversion film can be reduced by the quantum dots themselves. The results suggest that inkjet-printed quantum dots are a promising way to achieve full-color micro-LED displays.

10.
Psychol Med ; 53(9): 3932-3942, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388776

RESUMEN

BACKGROUND: Subthreshold depression (sD) negatively impacts well-being and psychosocial function and is more prevalent compared with major depressive disorder (MDD). However, as adults with sD are less likely to seek face-to-face intervention, internet-based cognitive-behavioral therapy (ICBT) may overcome barriers of accessibility to psychotherapy. Although several trials explored the efficacy of ICBT for sD, the results remain inconsistent. This study evaluated whether ICBT is effective in reducing depressive symptoms among Chinese adults with sD. METHODS: A randomized controlled trial was performed. The participants were randomly assigned to 5 weeks of ICBT, group-based face-to-face cognitive-behavioral therapy (CBT), or a waiting list (WL). Assessments were conducted at baseline, post-intervention and at a 6-month follow-up. The primary outcome measured depressive symptoms using the Center for Epidemiological Studies Depression Scale (CES-D). Outcomes were analyzed using a mixed-effects model to assess the effects of ICBT. RESULTS: ICBT participants reported greater reductions on all the outcomes compared to the WL group at post-intervention. The ICBT group showed larger improvement on the Patient Health Questionnaire-9 (PHQ-9) at post-intervention (d = 0.12) and at follow-up (d = 0.10), and with CES-D at post-intervention (d = 0.06), compared to the CBT group. CONCLUSIONS: ICBT is effective in reducing depressive symptoms among Chinese adults with sD, and improvements in outcomes were sustained at a 6-month follow-up. Considering the low rates of face-to-face psychotherapy, our findings highlight the considerable potential and implications for the Chinese government to promote the use of ICBT for sD in China.


Asunto(s)
Terapia Cognitivo-Conductual , Trastorno Depresivo Mayor , Psicoterapia de Grupo , Humanos , Adulto , Depresión/terapia , Depresión/psicología , Trastorno Depresivo Mayor/terapia , Terapia Cognitivo-Conductual/métodos , Psicoterapia , Internet , Resultado del Tratamiento
11.
Cell Biol Int ; 47(12): 1926-1941, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37655479

RESUMEN

α7-Nicotinic acetylcholine receptor (α7-nAChR) is the key effector molecule of the cholinergic anti-inflammatory pathway. Evolution has evolved a uniquely human α7-nAChR encoded by CHRFAM7A. It has been demonstrated that CHRFAM7A dominant negatively regulates the functions of α7-nAChR. However, its role in inflammation remains to be fully characterized. CHRFAM7A transgenic (Tg) mice were phenotypically normal and their peritoneal macrophages exhibited decreased ligand-binding capability and, importantly, an activated gene expression profile of pro-inflammatory cytokines. Surprisingly, when challenged with sepsis, the Tg mice showed no survival disadvantage relative to their wild-type (Wt) counterparts. Further analysis showed that the complete blood count and serum levels of pro-inflammatory cytokines were comparable at resting state, but the degrees of leukocyte mobilization and the increase of pro-inflammatory cytokines were significantly higher in Tg than Wt mice at the early stage of sepsis. In vitro, peritoneal macrophages of the Tg mice exhibited an exaggerated response to lipopolysaccharides (LPSs), especially at the earlier time points and at lower dosages of LPS. Remarkably, monocytes from CHRFAM7A-carrier showed similar dynamic changes of the pro-inflammatory cytokines to that observed in the Tg mice upon LPS challenge. Our results suggest that CHRFAM7A increases the mobilization of leukocytes and primes macrophages that confer an enhanced immune response at the early stage of inflammation, which may lead to prompt pathogen clearance, an evolutionary advantage in less severe inflammatory conditions.


Asunto(s)
Lipopolisacáridos , Sepsis , Animales , Humanos , Ratones , Citocinas , Inflamación , Lipopolisacáridos/farmacología , Macrófagos , Ratones Transgénicos
12.
Bioorg Med Chem Lett ; 94: 129466, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660833

RESUMEN

The Jumonji domain-containing protein demethylase 3 (JMJD3) and histone deacetylase (HADC) are related to various cancers and regard as antitumor targets for drug discovery. In this study, based on rational drug design strategy, we designed and synthesized a series of pyrimidine derivatives with hydroxamic acid as novel dual JMJD3 and HDAC inhibitors for synergistic cancer treatment. Compound A5b exhibited inhibitory potency against JMJD3 and HDAC1/6 simultaneously and favorable cytotoxicity against human cancer cells such as A549 and U937. Furthermore, mechanistic studies showed that A5b treatment in A549 cells increased the hypermethylation of histone H3K27 and hyperacetylation of H3K9, suppressed clonogenicity, migration and invasion of cancer cells. Besides, A5b induced apoptosis via the cleavage of caspase-7 and PARP, and G1 cell cycle arrest via upregulated p21 expression. All these results suggested that A5b was the first dual inhibitor against JMJD3 and HDAC and can be a potential compound for cancer therapy.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Humanos , Células A549 , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Pirimidinas/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología
13.
Org Biomol Chem ; 21(42): 8516-8520, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853833

RESUMEN

It is challenging to enantioselectively construct molecules bearing multiple nonadjacent stereocenters, in contrast to those bearing a single stereocenter or adjacent stereocenters. Herein, we report an enantio- and diastereoselective synthesis of substituted chiral allenes with nonadjacent axial and two central chiral centers through a combination of retro-oxa-Michael addition and palladium-catalyzed asymmetric allenylic alkylation. This methodology exhibits good functional-group compatibility, and the corresponding allenylic alkylated compounds, including flavonoid frameworks, are obtained with good yields and diastereoselectivities and excellent enantioselectivities (all >95% ee). Furthermore, the scalability of the current synthetic protocol was proven by performing a gram-scale reaction.

14.
Org Biomol Chem ; 21(17): 3691-3696, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070775

RESUMEN

We report a Brønsted acid-catalyzed C6 functionalization of 2,3-disubstituted indoles with 2,2-diarylacetonitriles for efficient construction of cyano-substituted all-carbon quaternary centers with excellent yields. The synthetic utility was demonstrated by the conversion of the cyano-group which enables the divergent preparation of aldehydes, primary amines and amides. Control experiments suggested that this process involves C-H oxidation of 2,2-diarylacetonitriles to in situ generate δ,δ-disubstituted p-quinone methide intermediates. This protocol provides an efficient method for C6 functionalization of 2,3-disubstituted indoles to construct all-carbon quaternary centers.

15.
Environ Sci Technol ; 57(29): 10882-10890, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436147

RESUMEN

Gaseous elemental mercury (Hg0) extraction from industrial flue gases is undergoing intense research due to its unique properties. Selective adsorption that renders Hg0 to HgO or HgS over metal oxide- or sulfide-based sorbents is a promising method, yet the sorbents are easily poisoned by sulfur dioxide (SO2) and H2O vapor. The Se-Cl intermediate derived from SeO2 and HCl driven by SO2 has been demonstrated to stabilize Hg0. Thus, a surface-induced method was put forward when using γ-Al2O3 supported selenite-chloride (xSeO32--yCl-, named xSe-yCl) for mercury deposition. Results confirmed that under 3000 ppm SO2 and 4% H2O, Se-2Cl exhibited the highest induced adsorption performance at 160 °C and higher humidity can accelerate the induction process. Driven by SO2 under the wet interface, the in situ generated active Se0 has high affinity toward Hg0, and the introduction of Cl- enabled the fast-trapping and stabilization of Hg0 due to its intercalation in the HgSe product. Additionally, the long-time scale-up experiment showed a gradient color change of the Se-2Cl-induced surface, which maintained almost 100% Hg0 removal efficiency over 180 h with a normalized adsorption capacity of 157.26 mg/g. This surface-induced method has the potential for practical application and offers a guideline for reversing the negative effect of SO2 on gaseous pollutant removal.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Mercurio , Dióxido de Azufre , Mercurio/análisis , Cloruros , Óxidos , Adsorción , Contaminantes Atmosféricos/análisis
16.
Environ Sci Technol ; 57(50): 21272-21283, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051813

RESUMEN

Cobalt-based catalysts have been identified for effective CO oxidation, but their activity is limited by molecular O2 and interfacial oxygen passivation at low temperatures. Optimization of the d-band structure of the cobalt center is an effective method to enhance the dissociation of oxygen species. Here, we developed a novel Co/FeOx catalyst based on selective cationic deposition to anchor Co cations at the defect site of FeOx, which exhibited superior intrinsic low-temperature activity (100%, 115 °C) compared to that of Pt/Co3O4 (100%, 140 °C) and La/Co2O3 (100%, 150 °C). In contrast to catalysts with oxygen defects, the cationic Fe defect in Co/FeOx showed an exceptional ability to accept electrons from the Co 3d orbital, resulting in significant electron delocalization at the Co sites. The Co/FeOx catalyst exhibited a remarkable turnover frequency of 178.6 per Co site per second, which is 2.3 times higher than that of most previously reported Co-based catalysts. The d-band center is shifted upward by electron redistribution effects, which promotes the breaking of the antibonding orbital *π of the O═O bond. In addition, the controllable regulation of the Fe-Ov-Co oxygen defect sites enlarges the Fe-O bond from 1.97 to 2.02 Å to activate the lattice oxygen. Moreover, compared to CoxFe3-xO4, Co/FeOx has a lower energy barrier for CO oxidation, which significantly accelerates the rate-determining step, *COO formation. This study demonstrates the feasibility of modulating the d-band structure to enhance O2 molecular and interfacial lattice oxygen activation.


Asunto(s)
Nanoestructuras , Cationes , Cobalto , Electrónica , Oxígeno
17.
Environ Sci Technol ; 57(45): 17566-17576, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37906097

RESUMEN

Low-temperature catalytic oxidation is of significance to the degradation of halogenated volatile organic compounds (HVOCs) to avoid hazardous byproducts with low energy consumption. Efficient molecular oxygen (O2) activation is pivotal to it but usually limited by the insufficient electron cloud density at the metal center. Herein, Ru-B catalysts with enhanced electron density around Ru were designed to achieve efficient O2 activation, realizing dibromomethane (DBM) degradation T90 at 182 °C on RuB1/TiO2 (about 30 °C lower than pristine Ru/TiO2) with a TOFRu value of 0.055 s-1 (over 8 times that of Ru/TiO2). Compared to the limited electron transfer (0.02 e) on pristine Ru/TiO2, the Ru center gained sufficient negative charges (0.31 e) from BOx via strong p-d orbital hybridization. The Ru-B site then acted as the electron donor complexing with the 2π* antibonding orbital of O2 to realize the O2 dissociative activation. The reactive oxygen species formed thereby could initiate a fast conversion and oxidation of formate intermediates, thus eventually boosting the low-temperature catalytic activity. Furthermore, we found that the Ru-B sites for O2 activation have adaptation for pollutant removal and multiple metal availability. Our study shed light on robust O2 activation catalyst design based on electron density adjustment by boron.


Asunto(s)
Boro , Electrones , Temperatura , Metales
18.
Environ Sci Technol ; 57(13): 5424-5432, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939455

RESUMEN

Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (e.g., HgCl2, HgO, HgS, and HgSe). Herein, we demonstrate a superstable Hg3Se2Cl2 compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in Hg3Se2Cl2, with the highest mercury dissociation energy (4.71 eV) among all known mercury compounds. Experiments demonstrate its unprecedentedly high thermal stability (>400 °C) and strong acid resistance (5% H2SO4). The Hg3Se2Cl2 compound could be produced via the reduction of SeO32- to nascent active Se0 by the flue gas component SO2 and the subsequent combination of Se0 with Hg0 and Cl- ions or HgCl2. During a laboratory-simulated experiment, this Hg3Se2Cl2-based strategy achieves >96% removal efficiencies of both Hg0 and HgCl2 enabling nearly zero Hg0 re-emission. As expected, real mercury removal efficiency under Se-rich industrial flue gas conditions is much more efficient than Se-poor counterparts, confirming the feasibility of this Hg3Se2Cl2-based strategy for practical applications. This study sheds light on the importance of stable demercury products in flue gas mercury treatment and also provides a highly efficient and safe flue gas demercury strategy.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Ecosistema , Gases/química , Contaminantes Atmosféricos/análisis
19.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679548

RESUMEN

The combination of advanced radar sensor technology and smart grid has broad prospects. It is meaningful to monitor the respiration and heartbeat of grid employees under resting state through radar sensors to ensure that they are in a healthy working state. Ultra-wideband (UWB) radar sensor is suitable for this application because of its strong penetration ability, high range resolution and low average power consumption. However, due to weak heartbeat amplitude and measurement noise, the accurate measurement of the target heart rate is a challenge. In this paper, singular spectrum analysis (SSA) is proposed to reconstruct the eigenvalues of noisy vital signs to eliminate noise peaks around the heartbeat rate; combined with the variational modal decomposition (VMD), the target vital signs can be extracted with high accuracy. The experiment confirmed that the target vital sign information can be extracted with high accuracy from ten subjects at different distances, which can play an important role in short distance human detection and vital sign monitoring.


Asunto(s)
Radar , Procesamiento de Señales Asistido por Computador , Humanos , Signos Vitales/fisiología , Frecuencia Cardíaca/fisiología , Respiración , Algoritmos , Monitoreo Fisiológico
20.
Sensors (Basel) ; 23(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37448016

RESUMEN

Piezoresistive pressure sensors exhibit inherent nonlinearity and sensitivity to ambient temperature, requiring multidimensional compensation to achieve accurate measurements. However, recent studies on software compensation mainly focused on developing advanced and intricate algorithms while neglecting the importance of calibration data and the limitation of computing resources. This paper aims to present a novel compensation method which generates more data by learning the calibration process of pressure sensors and uses a larger dataset instead of more complex models to improve the compensation effect. This method is performed by the proposed aquila optimizer optimized mixed polynomial kernel extreme learning machine (AO-MPKELM) algorithm. We conducted a detailed calibration experiment to assess the quality of the generated data and evaluate the performance of the proposed method through ablation analysis. The results demonstrate a high level of consistency between the generated and real data, with a maximum voltage deviation of only 0.71 millivolts. When using a bilinear interpolation algorithm for compensation, extra generated data can help reduce measurement errors by 78.95%, ultimately achieving 0.03% full-scale (FS) accuracy. These findings prove the proposed method is valid for high-accuracy measurements and has superior engineering applicability.


Asunto(s)
Algoritmos , Temperatura , Calibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA