Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 37(6): 1193-1201, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35257414

RESUMEN

BACKGROUND: Essential tremor is the most common movement disorder with clear unmet need. Mounting evidence indicates tremor is caused by increased neuronal burst firing and oscillations in cerebello-thalamo-cortical circuitry and may be dependent on T-type calcium channel activity. T-type calcium channels regulate sigma band electroencephalogram (EEG) power during non-rapid eye movement sleep, representing a potential biomarker of channel activity. PRAX-944 is a novel T-type calcium channel blocker in development for essential tremor. OBJECTIVES: Using a rat tremor model and sigma-band EEG power, we assessed pharmacodynamically-active doses of PRAX-944 and their translation into clinically tolerated doses in healthy participants, informing dose selection for future efficacy trials. METHODS: Harmaline-induced tremor and spontaneous locomotor activity were used to assess PRAX-944 efficacy and tolerability, respectively, in rats. Sigma-power was used as a translational biomarker of T-type calcium channel blockade in rats and, subsequently, in a phase 1 trial assessing pharmacologic activity and tolerability in healthy participants. RESULTS: In rats, PRAX-944 dose-dependently reduced tremor by 50% and 72% at 1 and 3 mg/kg doses, respectively, without locomotor side effects. These doses also reduced sigma-power by ~30% to 50% in rats. In healthy participants, sigma-power was similarly reduced by 34% to 50% at 10 to 100 mg, with no further reduction at 120 mg. All doses were well tolerated. CONCLUSIONS: In rats, PRAX-944 reduced sigma-power at concentrations that reduced tremor without locomotor side effects. In healthy participants, comparable reductions in sigma-power indicate that robust T-type calcium channel blockade was achieved at well-tolerated doses that may hold promise for reducing tremor in patients with essential tremor. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo T , Temblor Esencial , Animales , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo T/efectos de los fármacos , Desarrollo de Medicamentos , Temblor Esencial/tratamiento farmacológico , Ratas
2.
Epilepsia ; 63(3): 697-708, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35037706

RESUMEN

OBJECTIVE: This study investigates the effects of PRAX-562 on sodium current (INa ), intrinsic neuronal excitability, and protection from evoked seizures to determine whether a preferential persistent INa inhibitor would exhibit improved preclinical efficacy and tolerability compared to two standard voltage-gated sodium channel (NaV ) blockers. METHODS: Inhibition of INa  was characterized using patch clamp analysis. The effect on intrinsic excitability was measured using evoked action potentials recorded from hippocampal CA1 pyramidal neurons in mouse brain slices. Anticonvulsant activity was evaluated using the maximal electroshock seizure (MES) model, and tolerability was assessed by measuring spontaneous locomotor activity (sLMA). RESULTS: PRAX-562 potently and preferentially inhibited persistent INa induced by ATX-II or the SCN8A mutation N1768D (half-maximal inhibitory concentration [IC50 ] = 141 and 75 nmol·L-1 , respectively) relative to peak INa tonic/resting block (60× preference). PRAX-562 also exhibited potent use-dependent block (31× preference to tonic block). This profile is considerably different from standard NaV blockers, including carbamazepine (CBZ; persistent INa IC50 = 77 500 nmol·L-1 , preference ratios of 30× [tonic block], less use-dependent block observed at various frequencies). In contrast to CBZ, PRAX-562 reduced neuronal intrinsic excitability with only a minor reduction in action potential amplitude. PRAX-562 (10 mg/kg po) completely prevented evoked seizures without affecting sLMA (MES unbound brain half-maximal efficacious concentration = 4.3 nmol·L-1 , sLMA half-maximal tolerated concentration = 69.7 nmol·L-1 , protective index [PI] = 16×). In contrast, CBZ and lamotrigine (LTG) had PIs of approximately 5.5×, with significant overlap between doses that were anticonvulsant and that reduced locomotor activity. SIGNIFICANCE: PRAX-562 demonstrated robust preclinical anticonvulsant activity similar to CBZ but improved compared to LTG. PRAX-562 exhibited significantly improved preclinical tolerability compared with standard NaV blockers (CBZ and LTG), potentially due to the preference for persistent INa . Preferential targeting of persistent INa may represent a differentiated therapeutic option for diseases of hyperexcitability, where standard NaV blockers have demonstrated efficacy but poor tolerability.


Asunto(s)
Anticonvulsivantes , Bloqueadores de los Canales de Sodio , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Lamotrigina/uso terapéutico , Ratones , Morfolinas , Canal de Sodio Activado por Voltaje NAV1.6/genética , Convulsiones/tratamiento farmacológico , Sodio , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Nivel de Atención
3.
Brain Behav Immun ; 64: 285-295, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28438557

RESUMEN

Inhibitors of phosphodiesterase-4 (PDE4) have been approved for the treatment of inflammatory disorders, but are associated with dose-limiting nausea and vomiting. These side effects are hypothesized to be mediated by inhibition of the PDE4D isozyme. Here we demonstrate the anti-inflammatory effects of the novel brain penetrant PDE4D-sparing PDE4 inhibitor, ABI-4. ABI-4 was a potent (EC50∼14nM) inhibitor of lipopolysaccharide (LPS) induced TNF-α release from mouse microglia and human PBMCs. ABI-4 (0.32mg/kg) blocked LPS-induced release of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6) in blood and brain of mice. In a rat model of endotoxin induced uveitis, ABI-4 (0.03-0.3mg/kg) demonstrated steroid-like efficacy in preventing leucocyte infiltration of the aqueous humor when administered 4h after LPS. LPS (0.32mg/kg×5days) caused a 30% upregulation of translocator protein (TSPO) binding which was prevented by co-administration of ABI-4 (0.32mg/kg). In a paradigm to assess motivation, LPS (0.32mg/kg) reduced the number of rewards received, whereas the effect was significantly blunted in mice dosed with ABI-4 (P<0.05) or in PDE4B-/- mice. PDE4B was also shown to modulate brain and plasma levels of TNF-α and IL-1ß in aged mice. Aged mice dosed chronically with ABI-4 (0.32mg/kg) as well as aged PDE4B-/- mice, had significantly lower levels of TNF-α and IL-1ß in brain and plasma relative to vehicle treated or PDE4+/+ mice. Together these data demonstrate that the PDE4D sparing, PDE4 inhibitor, ABI-4 retains potency and efficacy in exerting anti-inflammatory effects. This mechanism warrants further investigation in human disorders involving neuroinflammation.


Asunto(s)
Antiinflamatorios/administración & dosificación , Encéfalo/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/administración & dosificación , Animales , Encéfalo/metabolismo , Encefalitis/inducido químicamente , Encefalitis/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Isoenzimas/administración & dosificación , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Motivación/efectos de los fármacos , Ratas Endogámicas Lew
4.
Glia ; 64(10): 1698-709, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27038323

RESUMEN

The importance of microglia in immune homeostasis within the brain is undisputed. Their role in a diversity of neurological and psychiatric diseases as well as CNS injury is the subject of much investigation. Cyclic adenosine monophosphate (AMP) is a critical regulator of microglia homeostasis; as the predominant negative modulator of cyclic AMP signaling within microglia, phosphodiesterase 4 (PDE4) represents a promising target for modulating immune function. PDE4 expression is regulated by inflammation, and in turn, PDE4 inhibition can alter microglia reactivity. As the prototypic PDE4 inhibitor, rolipram, was tested clinically in the 1980s, drug discovery and clinical development of PDE4 inhibitors have been severely hampered by tolerability issues involving nausea and emesis. The two PDE4 inhibitors approved for peripheral inflammatory disorders (roflumilast and apremilast) lack brain penetration and are dose-limited by side effects making them unsuitable for modulating microglial function. Subtype selective inhibitors targeting PDE4B are of high interest given the critical role PDE4B plays in immune function versus the association of PDE4D with nausea and emesis. The challenges and requirements for successful development of a novel brain-penetrant PDE4B inhibitor are discussed in the context of early clinical development strategies. Furthermore, the challenges of monitoring the state of microglia in vivo are highlighted, including a description of the currently available tools and their limitations. Continued drug discovery efforts to identify safe and well-tolerated, brain-penetrant PDE4 inhibitors are a reflection of the confidence in the rationale for modulation of this target to produce meaningful therapeutic benefit in a wide range of neurological conditions and injury. GLIA 2016;64:1698-1709.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Inhibidores de Fosfodiesterasa/uso terapéutico , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Encefalitis/metabolismo , Encefalitis/patología , Humanos
5.
Glia ; 64(10): 1788-94, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27246804

RESUMEN

Minocycline, a second generation broad-spectrum antibiotic, has been frequently postulated to be a "microglia inhibitor." A considerable number of publications have used minocycline as a tool and concluded, after achieving a pharmacological effect, that the effect must be due to "inhibition" of microglia. It is, however, unclear how this "inhibition" is achieved at the molecular and cellular levels. Here, we weigh the evidence whether minocycline is indeed a bona fide microglia inhibitor and discuss how data generated with minocycline should be interpreted. GLIA 2016;64:1788-1794.


Asunto(s)
Antibacterianos/farmacología , Microglía/efectos de los fármacos , Minociclina/farmacología , Animales , Antibacterianos/uso terapéutico , Bases de Datos Factuales/estadística & datos numéricos , Humanos , Microglía/fisiología , Minociclina/uso terapéutico
6.
Int J Neuropsychopharmacol ; 18(3)2014 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-25522417

RESUMEN

BACKGROUND: The neurotransmitter norepinephrine has been implicated in psychiatric and neurodegenerative disorders. Examination of synaptic norepinephrine concentrations in the living brain may be possible with positron emission tomography (PET), but has been hampered by the lack of suitable radioligands. METHODS: We explored the use of the novel α2C-adrenoceptor antagonist PET tracer [(11)C]ORM-13070 for measurement of amphetamine-induced changes in synaptic norepinephrine. The effect of amphetamine on [(11)C]ORM-13070 binding was evaluated ex vivo in rat brain sections and in vivo with PET imaging in monkeys. RESULTS: Microdialysis experiments confirmed amphetamine-induced elevations in rat striatal norepinephrine and dopamine concentrations. Regional [(11)C]ORM-13070 receptor binding was high in the striatum and low in the cerebellum. After injection of [(11)C]ORM-13070 in rats, mean striatal specific binding ratios, determined using cerebellum as a reference region, were 1.4±0.3 after vehicle pretreatment and 1.2±0.2 after amphetamine administration (0.3mg/kg, subcutaneous). Injection of [(11)C]ORM-13070 in non-human primates resulted in mean striatal binding potential (BP ND) estimates of 0.65±0.12 at baseline. Intravenous administration of amphetamine (0.5 and 1.0mg/kg, i.v.) reduced BP ND values by 31-50%. Amphetamine (0.3mg/kg, subcutaneous) increased extracellular norepinephrine (by 400%) and dopamine (by 270%) in rat striata. CONCLUSIONS: Together, these results indicate that [(11)C]ORM-13070 may be a useful tool for evaluation of synaptic norepinephrine concentrations in vivo. Future studies are required to further understand a potential contribution of dopamine to the amphetamine-induced effect.


Asunto(s)
Anfetamina/farmacología , Encéfalo/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Tomografía de Emisión de Positrones , Receptores Adrenérgicos alfa 2/metabolismo , Inhibidores de Captación Adrenérgica/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Clorhidrato de Atomoxetina , Dioxanos/metabolismo , Femenino , Humanos , Imidazoles/farmacología , Macaca fascicularis , Masculino , Piperazinas/metabolismo , Propilaminas/farmacología , Unión Proteica/efectos de los fármacos , Radiofármacos/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
7.
Neuropsychopharmacology ; 49(6): 905-914, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38177696

RESUMEN

The NMDA receptor (NMDAR) antagonist ketamine has shown great potential as a rapid-acting antidepressant; however, its use is limited by poor oral bioavailability and a side effect profile that necessitates in-clinic dosing. GM-1020 is a novel NMDAR antagonist that was developed to address these limitations of ketamine as a treatment for depression. Here, we present the preclinical characterization of GM-1020 alongside ketamine, for comparison. In vitro, we profiled GM-1020 for binding to NMDAR and functional inhibition using patch-clamp electrophysiology. In vivo, GM-1020 was assessed for antidepressant-like efficacy using the Forced Swim Test (FST) and Chronic Mild Stress (CMS), while motor side effects were assessed in spontaneous locomotor activity and on the rotarod. The pharmacokinetic properties of GM-1020 were profiled across multiple preclinical species. Electroencephalography (EEG) was performed to determine indirect target engagement and provide a potentially translational biomarker. These results demonstrate that GM-1020 is an orally bioavailable NMDAR antagonist with antidepressant-like efficacy at exposures that do not produce unwanted motor effects.


Asunto(s)
Antidepresivos , Receptores de N-Metil-D-Aspartato , Animales , Antidepresivos/administración & dosificación , Antidepresivos/farmacología , Antidepresivos/farmacocinética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Masculino , Ratas , Ratones , Administración Oral , Ratas Sprague-Dawley , Disponibilidad Biológica , Ketamina/administración & dosificación , Ketamina/farmacología , Depresión/tratamiento farmacológico , Actividad Motora/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ratones Endogámicos C57BL , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacocinética , Humanos
8.
J Nucl Med ; 63(12): 1919-1924, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35772961

RESUMEN

Phosphodiesterase-4 (PDE4), which metabolizes the second messenger cyclic adenosine monophosphate (cAMP), has 4 isozymes: PDE4A, PDE4B, PDE4C, and PDE4D. PDE4B and PDE4D have the highest expression in the brain and may play a role in the pathophysiology and treatment of depression and dementia. This study evaluated the properties of the newly developed PDE4B-selective radioligand 18F-PF-06445974 in the brains of rodents, monkeys, and humans. Methods: Three monkeys and 5 healthy human volunteers underwent PET scans after intravenous injection of 18F-PF-06445974. Brain uptake was quantified as total distribution volume (V T) using the standard 2-tissue-compartment model and serial concentrations of parent radioligand in arterial plasma. Results: 18F-PF-06445974 readily distributed throughout monkey and human brain and had the highest binding in the thalamus. The value of V T was well identified by a 2-tissue-compartment model but increased by 10% during the terminal portions (40 and 60 min) of the monkey and human scans, respectively, consistent with radiometabolite accumulation in the brain. The average human V T values for the whole brain were 9.5 ± 2.4 mL ⋅ cm-3 Radiochromatographic analyses in knockout mice showed that 2 efflux transporters-permeability glycoprotein (P-gp) and breast cancer resistance protein (BCRP)-completely cleared the problematic radiometabolite but also partially cleared the parent radioligand from the brain. In vitro studies with the human transporters suggest that the parent radioligand was a partial substrate for BCRP and, to a lesser extent, for P-gp. Conclusion: 18F-PF-06445974 quantified PDE4B in the human brain with reasonable, but not complete, success. The gold standard compartmental method of analyzing brain and plasma data successfully identified the regional densities of PDE4B, which were widespread and highest in the thalamus, as expected. Because the radiometabolite-induced error was only about 10%, the radioligand is, in the opinion of the authors, suitable to extend to clinical studies.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Proteínas de Neoplasias , Animales , Ratones , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Proteínas de Neoplasias/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Haplorrinos/metabolismo , Radiofármacos/metabolismo
9.
J Pharmacol Exp Ther ; 338(1): 345-52, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21508084

RESUMEN

Metabotropic glutamate receptor 7 (mGluR7) remains the most elusive of the eight known mGluRs primarily because of the limited availability of tool compounds to interrogate its potential therapeutic utility. The discovery of N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) as the first orally active, brain-penetrable, mGluR7-selective allosteric agonist by Mitsukawa and colleagues (Proc Natl Acad Sci USA 102:18712-18717, 2005) provides a means to investigate this receptor system directly. AMN082 demonstrates mGluR7 agonist activity in vitro and interestingly has a behavioral profile that supports utility across a broad spectrum of psychiatric disorders including anxiety and depression. The present studies were conducted to extend the in vitro and in vivo characterization of AMN082 by evaluating its pharmacokinetic and metabolite profile. Profiling of AMN082 in rat liver microsomes revealed rapid metabolism (t(1/2) < 1 min) to a major metabolite, N-benzhydrylethane-1,2-diamine (Met-1). In vitro selectivity profiling of Met-1 demonstrated physiologically relevant transporter binding affinity at serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET) (323, 3020, and 3410 nM, respectively); whereas the parent compound AMN082 had appreciable affinity at NET (1385 nM). AMN082 produced antidepressant-like activity and receptor occupancy at SERT up to 4 h postdose, a time point at which AMN082 is significantly reduced in brain and plasma while the concentration of Met-1 continues to increase in brain. Acute Met-1 administration produced antidepressant-like activity as would be expected from its in vitro profile as a mixed SERT, NET, DAT inhibitor. Taken together, these data suggest that the reported in vivo actions of AMN082 should be interpreted with caution, because they may involve other mechanisms in addition to mGluR7.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Monoaminas Biogénicas/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/fisiología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Compuestos de Bencidrilo/metabolismo , Monoaminas Biogénicas/fisiología , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Masculino , Ratones , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
10.
ACS Med Chem Lett ; 12(4): 593-602, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33859800

RESUMEN

The gene KCNT1 encodes the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2). Variants in the KCNT1 gene induce a gain-of-function (GoF) phenotype in ionic currents and cause a spectrum of intractable neurological disorders in infants and children, including epilepsy of infancy with migrating focal seizures (EIMFS) and autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Effective treatment options for KCNT1-related disease are absent, and novel therapies are urgently required. We describe the development of a novel class of oxadiazole KNa1.1 inhibitors, leading to the discovery of compound 31 that reduced seizures and interictal spikes in a mouse model of KCNT1 GoF.

11.
J Neurochem ; 113(3): 601-14, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20096092

RESUMEN

The critical sequence of molecular, neurotransmission and synaptic disruptions that underpin the emergence of psychiatric disorders like schizophrenia remain to be established with progress only likely using animal models that capture key features of such disorders. We have related the emergence of behavioural, neurochemical and synapse ultrastructure deficits to transcriptional dysregulation in the medial prefrontal cortex of Wistar rats reared in isolation. Isolation reared animals developed sensorimotor deficits at postnatal day 60 which persisted into adulthood. Analysis of gene expression prior to the emergence of the sensorimotor deficits revealed a significant disruption in transcriptional control, notably of immediate early and interferon-associated genes. At postnatal day 60 many gene transcripts relating particularly to GABA transmission and synapse structure, for example Gabra4, Nsf, Syn2 and Dlgh1, transiently increased expression. A subsequent decrease in genes such as Gria2 and Dlgh2 at postnatal day 80 suggested deficits in glutamatergic transmission and synapse integrity, respectively. Microdialysis studies revealed decreased extracellular glutamate suggesting a state of hypofrontality while ultrastructural analysis showed total and perforated synapse complement in layer III to be significantly reduced in the prefrontal cortex of postnatal day 80 isolated animals. These studies provide a molecular framework to understand the developmental emergence of the structural and behavioural characteristics that may in part define psychiatric illness.


Asunto(s)
Corteza Cerebral/metabolismo , Regulación de la Expresión Génica/fisiología , Aislamiento Social/psicología , Animales , Conducta Animal/fisiología , Corteza Cerebral/química , Corteza Cerebral/ultraestructura , Biología Computacional , ADN/biosíntesis , ADN/genética , Masculino , Microdiálisis , Actividad Motora/fisiología , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/biosíntesis , ARN/genética , ARN Complementario/biosíntesis , ARN Complementario/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Psicológico/genética , Estrés Psicológico/psicología , Sinapsis/fisiología , Factores de Transcripción
12.
J Pharmacol Exp Ther ; 332(1): 190-201, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19828876

RESUMEN

The preclinical characterization of WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D(2) receptor (D(2L) K(i), 4.0 nM) and serotonin transporter (K(i), 7.1 nM), potent D(2) partial agonist activity (EC(50), 0.38 nM; E(max), 30%), and complete block of the serotonin transporter (IC(50), 56.4 nM). Consistent with this in vitro profile, WS-50030 (10 mg/kg/day, 21 days) significantly increased extracellular 5-HT in the rat medial prefrontal cortex, short-term WS-50030 treatment blocked apomorphine-induced climbing (ID(50), 0.51 mg/kg) in a dose range that produced minimal catalepsy in mice and induced low levels of contralateral rotation in rats with unilateral substantia nigra 6-hydroxydopamine lesions (10 mg/kg i.p.), a behavioral profile similar to that of the D(2) partial agonist aripiprazole. In a rat model predictive of antipsychotic-like activity, WS-50030 and aripiprazole reduced conditioned avoidance responding by 42 and 55% at 10 mg/kg, respectively. Despite aripiprazole's reported lack of effect on serotonin transporters, long-term treatment with aripiprazole or WS-50030 reversed olfactory bulbectomy-induced hyperactivity at doses that did not reduce activity in sham-operated rats, indicating antidepressant-like activity for both compounds. Despite possessing serotonin reuptake inhibitory activity in addition to D(2) receptor partial agonism, WS-50030 displays activity in preclinical models predictive of antipsychotic- and antidepressant efficacy similar to aripiprazole, suggesting potential efficacy of WS-50030 versus positive and negative symptoms of schizophrenia, comorbid mood symptoms, bipolar disorder, major depressive disorder, and treatment-resistant depression. Furthermore, WS-50030 provides a tool to further explore how combining these mechanisms might differentiate from other antipsychotics or antidepressants.


Asunto(s)
Antidepresivos/farmacología , Antipsicóticos/farmacología , Benzoxazoles/farmacología , Agonistas de Dopamina/farmacología , Indenos/farmacología , Receptores de Dopamina D2/agonistas , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Antidepresivos/química , Antipsicóticos/química , Reacción de Prevención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Benzoxazoles/química , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Dopamina/metabolismo , Agonistas de Dopamina/química , Evaluación Preclínica de Medicamentos , Humanos , Indenos/química , Masculino , Ratones , Ratones Endogámicos , Microdiálisis , Actividad Motora/efectos de los fármacos , Unión Proteica , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Serotonina/metabolismo , Antagonistas del Receptor de Serotonina 5-HT1 , Antagonistas del Receptor de Serotonina 5-HT2 , Inhibidores Selectivos de la Recaptación de Serotonina/química , Transfección
13.
Int J Neuropsychopharmacol ; 12(8): 1045-53, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19435548

RESUMEN

Sexual dysfunction associated with antidepressant treatment continues to be a major compliance issue for antidepressant therapies. 5-HT(1A) antagonists have been suggested as beneficial adjunctive treatment in respect of antidepressant efficacy; however, the effects of 5-HT(1A) antagonism on antidepressant-induced side-effects has not been fully examined. The present study was conducted to evaluate the ability of acute or chronic treatment with 5-HT(1A) antagonists to alter chronic fluoxetine-induced impairments in sexual function. Chronic 14-d treatment with fluoxetine resulted in a marked reduction in the number of non-contact penile erections in sexually experienced male rats, relative to vehicle-treated controls. Acute administration of the 5-HT(1A) antagonist WAY-101405 resulted in a complete reversal of chronic fluoxetine-induced deficits on non-contact penile erections at doses that did not significantly alter baselines. Chronic co-administration of the 5-HT(1A) antagonists WAY-100635 or WAY-101405 with fluoxetine prevented fluoxetine-induced deficits in non-contact penile erections in sexually experienced male rats. Moreover, withdrawal of WAY-100635 from co-treatment with chonic fluoxetine, resulted in a time-dependent reinstatement of chronic fluoxetine-induced deficits in non-contact penile erections. Additionally, chronic administration of SSA-426, a molecule with dual activity as both a SSRI and 5-HT(1A) antagonist, did not produce deficits in non-contact penile erections at doses demonstrated to have antidepressant-like activity in the olfactory bulbectomy model. Taken together, these data suggest that 5-HT(1A) antagonist treatment may have utility for the management of SSRI-induced sexual dysfunction.


Asunto(s)
Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Antagonistas del Receptor de Serotonina 5-HT1 , Disfunciones Sexuales Fisiológicas/inducido químicamente , Disfunciones Sexuales Fisiológicas/prevención & control , Aminopiridinas/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Conducta Exploratoria/efectos de los fármacos , Femenino , Masculino , Bulbo Olfatorio/lesiones , Bulbo Olfatorio/fisiología , Ovariectomía , Piperazinas/farmacología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Factores de Tiempo
14.
Pharmacol Ther ; 113(1): 134-53, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17010443

RESUMEN

There have been significant advances in the treatment of depression since the serendipitous discovery that modulating monoaminergic neurotransmission may be a pathological underpinning of the disease. Despite these advances, particularly over the last 15years with the introduction of selective serotonin and/or norepinephrine reuptake inhibitors (SNRI), there still remain multiple unmet clinical needs that would represent substantial improvements to current treatment regimens. In terms of efficacy there have been improvements in the percentage of patients achieving remission but this can still be dramatically improved and, in fact, issues still remain with relapse. Furthermore, advances are still required in terms of improving the onset of efficacy as well as addressing the large proportion of patients who remain treatment resistant. While this is not well understood, collective research in the area suggests the disease is heterogeneous in terms of the multiple parameters related to etiology, pathology and response to pharmacological agents. In addition to efficacy further therapeutic advances will also need to address such issues as cognitive impairment, pain, sexual dysfunction, nausea and emesis, weight gain and potential cardiovascular effects. With these unmet needs in mind, the next generation of antidepressants will need to differentiate themselves from the current array of therapeutics for depression. There are multiple strategies for addressing unmet needs that are currently being investigated. These range from combination monoaminergic approaches to subtype selective agents to novel targets that include mechanisms to modulate neuropeptides and excitatory amino acids (EAA). This review will discuss the many facets of differentiation and potential strategies for the development of novel antidepressants.


Asunto(s)
Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Diseño de Fármacos , Animales , Antidepresivos/efectos adversos , Enfermedades Cardiovasculares/inducido químicamente , Cognición/efectos de los fármacos , Depresión/complicaciones , Evaluación Preclínica de Medicamentos/métodos , Humanos , Dolor/complicaciones , Dolor/tratamiento farmacológico , Cooperación del Paciente , Disfunciones Sexuales Fisiológicas/inducido químicamente , Insuficiencia del Tratamiento , Vómitos/inducido químicamente , Aumento de Peso/efectos de los fármacos
15.
J Pharmacol Exp Ther ; 325(1): 134-45, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18182558

RESUMEN

5-Hydroxytryptamine (5-HT)(1A) receptors play an important role in multiple cognitive processes, and compelling evidence suggests that 5-HT(1A) antagonists can reverse cognitive impairment. We have examined the therapeutic potential of a potent (K(i) = 1.1 nM), selective (>100-fold), orally bioavailable, silent 5-HT(1A) receptor antagonist (K(B) = 1.3 nM) (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)-ethyl)-N-(2-pyridinyl)-cyclohexane carboxamide (WAY-101405). Oral administration of WAY-101405 was shown to be effective in multiple rodent models of learning and memory. In a novel object recognition paradigm, 1 mg/kg enhanced retention (memory) for previously learned information, and it was able to reverse the memory deficits induced by scopolamine. WAY-101405 (1 mg/kg) was also able to reverse scopolamine-induced deficits in a rat contextual fear conditioning model. In the Morris water maze, WAY-101405 (3 mg/kg) significantly improved learning in a paradigm of increasing task difficulty. In vivo microdialysis studies in the dorsal hippocampus of freely moving adult rats demonstrated that acute administration of WAY-101405 (10 mg/kg) increased extracellular acetylcholine levels. The selective radioligand [(3)H]WAY-100635, administered i.v., was used for in vivo receptor occupancy studies, where WAY-101405 occupied 5-HT(1A) receptors in the rat cortex, with an ED(50) value of 0.1 mg/kg p.o. Taken together, these studies demonstrate that WAY-101405 is a potent and selective, brain penetrant, orally bioavailable 5-HT(1A) receptor "silent" antagonist that is effective in preclinical memory paradigms at doses where approximately 90% of the postsynaptic 5-HT(1A) receptors are occupied. These results further support the rationale for use of this compound class in the treatment of cognitive dysfunction associated with psychiatric and neurological conditions.


Asunto(s)
Aminopiridinas/farmacología , Cognición/efectos de los fármacos , Ciclohexanos/farmacología , Piperazinas/farmacología , Antagonistas del Receptor de Serotonina 5-HT1 , Antagonistas de la Serotonina/farmacología , Animales , Disponibilidad Biológica , Encéfalo/metabolismo , Memoria/efectos de los fármacos , Modelos Animales , Ensayo de Unión Radioligante , Ratas , Antagonistas de la Serotonina/administración & dosificación , Antagonistas de la Serotonina/farmacocinética
16.
Neuropharmacology ; 54(7): 1136-42, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18423777

RESUMEN

Recent studies have reported that estrogen has antidepressant-like effects in animal models. In this study we used the highly selective ER beta agonist, WAY-200070, to examine the role of ER beta activation on brain neurochemistry and activity in antidepressant and anxiolytic models in male mice. Within 15 min of administration, WAY-200070 (30 mg/kg s.c.) caused the nuclear translocation of striatal ER beta receptors from the cytosol. WAY-200070 also increased c-fos activation 4h, but not 15 min after administration. Both nuclear translocation and c-fos induction effects of WAY-200070 demonstrate that WAY-200070 has bound to estrogen receptors and triggered downstream events. The absence of these effects in the ER beta KO mice confirms that WAY-200070 was targeting ER beta. Administration of WAY-200070 (30 mg/kg s.c.) produced a delayed approximately 50% increase in dopamine in the striatum of wild type mice. The effect was significant and maintained from 90 to 240 min. This increase was absent in ER beta KO mice. In wild type mice, WAY-200070 (30 mg/kg s.c.) also produced a delayed and transient approximately 100% increase in 5-HT. To further investigate the role of ER beta receptors on serotonergic function, 5-HTP accumulation was measured. ER beta KO mice were found to have reduced frontal cortex levels of 5-HTP, indicating reduced tryptophan hydroxylase activity. WAY-200070 (3-30 mg/kg s.c.) was also tested in behavioural models. WAY-200070 (30 mg/kg s.c.) reduced immobility time in the mouse tail suspension test indicating an antidepressant-like effect. WAY-200070 (30 mg/kg) showed anxiolytic-like effects in the four-plate test (increased punished crossings) and stress-induced hyperthermia (attenuation of hyperthermic response). The effects of the selective ER beta agonist, WAY-200070, on dopamine and serotonin, the anxiolytic-like and antidepressant-like effects as well as the genotype specific effects on neurochemistry support that positive modulation of ER beta function may provide a novel treatment for affective disorders.


Asunto(s)
Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Depresión/tratamiento farmacológico , Receptor beta de Estrógeno/agonistas , Oxazoles/uso terapéutico , Fenoles/uso terapéutico , 5-Hidroxitriptófano/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Receptor alfa de Estrógeno/deficiencia , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/deficiencia , Receptor beta de Estrógeno/metabolismo , Suspensión Trasera/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microdiálisis , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Desempeño Psicomotor/efectos de los fármacos , Factores de Tiempo
17.
J Psychopharmacol ; 32(9): 1027-1036, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29897000

RESUMEN

Deficits in hippocampal-mediated pattern separation are one aspect of cognitive function affected in schizophrenia (SZ) or Alzheimer's disease (AD). To develop novel therapies, it is beneficial to explore this specific aspect of cognition preclinically. The location discrimination reversal (LDR) task is a hippocampal-dependent operant paradigm that evaluates spatial learning and cognitive flexibility using touchscreens. Here we assessed baseline performance as well as multimodal disease-relevant manipulations in mice. Mice were trained to discriminate between the locations of two images where the degree of separation impacted performance. Administration of putative pro-cognitive agents was unable to improve performance at narrow separation. Furthermore, a range of disease-relevant manipulations were characterized to assess whether performance could be impaired and restored. Pertinent to the cholinergic loss in AD, scopolamine (0.1 mg/kg) produced a disruption in LDR, which was attenuated by donepezil (1 mg/kg). Consistent with NMDA hypofunction in cognitive impairment associated with SZ, MK-801 (0.1 mg/kg) also disrupted performance; however, this deficit was not modified by rolipram. Microdeletion of genes associated with SZ (22q11) resulted in impaired performance, which was restored by rolipram (0.032 mg/kg). Since aging and inflammation affect cognition and are risk factors for AD, these aspects were also evaluated. Aged mice were slower to acquire the task than young mice and did not reach the same level of performance. A systemic inflammatory challenge (lipopolysaccharide (LPS), 1 mg/kg) produced prolonged (7 days) deficits in the LDR task. These data suggest that LDR task is a valuable platform for evaluating disease-relevant deficits in pattern separation and offers potential for identifying novel therapies.


Asunto(s)
Envejecimiento/psicología , Condicionamiento Operante/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Inflamación/psicología , Escopolamina/farmacología , Animales , Maleato de Dizocilpina/antagonistas & inhibidores , Donepezilo/farmacología , Inflamación/inducido químicamente , Lipopolisacáridos , Masculino , Ratones , Rolipram/farmacología , Escopolamina/antagonistas & inhibidores , Percepción Espacial/efectos de los fármacos
18.
Psychopharmacology (Berl) ; 192(1): 121-33, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17265079

RESUMEN

RATIONALE: The delay in onset and treatment resistance of subpopulations of depressed patients to conventional serotonin reuptake inhibitors has lead to new drug development strategies to produce agents with improved antidepressant efficacy. OBJECTIVES: We report the in vivo characterization of the novel 5-HT(1A/1B) autoreceptor antagonist/5-HT transporter inhibitor (6-[(1-{2-[(2-methyl-5-quinolinyl)oxy]ethyl}-4-piperidinyl)methyl]-2H-1,4-benzoxazin-3(4H)-one), SB-649915-B. MATERIALS AND METHODS: Ex vivo binding was used to ascertain 5-HT(1A) receptor and serotonin transporter occupancy. 8-OH-DPAT-induced hyperlocomotion and SKF-99101-induced elevation of seizure threshold were used as markers of central blockade of 5-HT(1A) and 5-HT(1B) receptors, respectively. In vivo electrophysiology in the rat dorsal raphe and microdialysis in freely moving guinea pigs and rats were used to evaluate the functional outcome of SB-649915-B. RESULTS: SB-649915-B (1-10 mg/kg p.o.) produced a dose-related inhibition of 5-HT(1A) receptor radioligand binding and inhibited ex vivo [(3)H]5-HT uptake in both guinea pig and rat cortex. SB-649915-B (0.1-10 mg/kg p.o.) reversed both 8-OH-DPAT-induced hyperlocomotor activity and SKF-99101-induced elevation of seizure threshold in the rat, demonstrating in vivo blockade of both 5-HT(1A) and 5-HT(1B) receptors, respectively. SB-649915-B (0.1-3 mg/kg i.v.) produced no change in raphe 5-HT neuronal cell firing per se but attenuated the inhibitory effect of 8-OH-DPAT. Acute administration of SB-649915-B resulted in increases (approximately two- to threefold) in extracellular 5-HT in the cortex of rats and the dentate gyrus and cortex of guinea pigs. CONCLUSIONS: Based on these data, one may speculate that the 5-HT autoreceptor antagonist/5-HT transport inhibitor SB-649915-B will have therapeutic efficacy in the treatment of affective disorders with the potential for a faster onset of action compared to current selective serotonin reuptake inhibitors.


Asunto(s)
Benzoxazinas/farmacología , Piperidinas/farmacología , Quinolinas/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Antagonistas del Receptor de Serotonina 5-HT1 , Proteínas de Transporte de Serotonina en la Membrana Plasmática/efectos de los fármacos , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Relación Dosis-Respuesta a Droga , Electrofisiología , Electrochoque , Cobayas , Locomoción/efectos de los fármacos , Masculino , Microdiálisis , Trastornos del Humor/tratamiento farmacológico , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ensayo de Unión Radioligante , Núcleos del Rafe , Ratas , Ratas Sprague-Dawley , Convulsiones , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Especificidad de la Especie
19.
J Pharm Biomed Anal ; 44(2): 586-93, 2007 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-17383138

RESUMEN

Monitoring concentrations of acetylcholine (ACh) in specific brain regions is important in understanding disease pathology, as well as in designing and evaluating novel disease-modifying treatments where cholinergic dysfunction is a hallmark feature. We have developed a sensitive and quantitative liquid chromatography/tandem mass spectrometry method to analyze the extracellular concentrations of ACh, choline (Ch) and (3-carboxylpropyl)-trimethylammonium (iso-ACh) in brain microdialysis samples of freely moving animals. One immediate advantage of this new method is the ability to monitor ACh in its free form without having to use a cholinesterase inhibitor in the perfusate. The separation of ACh, Ch, iso-ACh and related endogenous compounds was carried out based on cation exchange chromatography with a volatile elution buffer consisting of ammonium formate, ammonium acetate and acetonitrile. An unknown interference of ACh, which was observed in brain microdialysates from many studies, was well separated from ACh to ensure the accuracy of the measurement. Optimization of electrospray ionization conditions for these quaternary ammonium compounds achieved the limits of detection (S/N=3) of 0.2 fmol for ACh, 2 fmol for Ch and 0.6 fmol for iso-ACh using a benchtop tandem quadrupole mass spectrometer with moderate sensitivity. The limit of quantitation (S/N=10) was 1 fmol for ACh, 3 fmol for iso-ACh and 10 fmol for Ch. This method was selective, precise (<10% R.S.D.), and sensitive over a range of 0.05-10nM for ACh, 0.25-50 nM for iso-ACh and 15-3000 nM for Ch. To demonstrate that the developed method can be applied to monitoring changes in ACh concentrations in vivo, reference agents that have previously been shown to influence ACh levels were studied in rat dorsal hippocampus. This includes the 5-HT6 receptor antagonist, SB-271046, and the cholinesterase inhibitor, donepezil. Moreover, levels of ACh were demonstrated to be sensitive to infusion of tetrodotoxin (TTX) suggesting that the ACh being measured in vivo was of neuronal origin. Collectively, these biological data provided in vivo validation of this analytical method.


Asunto(s)
Acetilcolina/análisis , Química Encefálica , Neurotransmisores/análisis , Animales , Inhibidores de la Colinesterasa/farmacología , Cromatografía Líquida de Alta Presión , Interpretación Estadística de Datos , Donepezilo , Hipocampo/química , Hipocampo/metabolismo , Indanos/farmacología , Indicadores y Reactivos , Masculino , Microdiálisis , Piperidinas/farmacología , Ratas , Receptores de Serotonina/efectos de los fármacos , Estándares de Referencia , Reproducibilidad de los Resultados , Antagonistas de la Serotonina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Espectrometría de Masa por Ionización de Electrospray , Técnicas Estereotáxicas , Sulfonamidas/farmacología , Tetrodotoxina/farmacología , Tiofenos/farmacología
20.
Psychiatry Res Neuroimaging ; 270: 86-96, 2017 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-29111478

RESUMEN

The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia.


Asunto(s)
Memoria a Corto Plazo , Corteza Prefrontal/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Psicología del Esquizofrénico , Sustancia Negra/diagnóstico por imagen , Área Tegmental Ventral/diagnóstico por imagen , Adulto , Teorema de Bayes , Estudios de Casos y Controles , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Dinámicas no Lineales , Corteza Prefrontal/fisiopatología , Esquizofrenia/fisiopatología , Sustancia Negra/fisiopatología , Área Tegmental Ventral/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA