Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 70(9): 4859-4866, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32515727

RESUMEN

Strain CA7T, a Gram-stain-negative, non-motile, non-spore-forming, aerobic and rod-shaped bacterial strain, was isolated from raw cow's milk collected from a farm affiliated with Chung-Ang University, Anseong, Korea, and characterized by a polyphasic approach. Optimal growth of strain CA7T was observed on tryptic soy agar at 30 °C and pH 7.0 with 0 % NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CA7T belonged to the genus Chryseobacterium. The most closely related strains (16S rRNA gene sequence similarity indicated in parentheses), based on the phylogenetic analysis, were Chryseobacterium rhizosphaerae KCTC 22548T (98.08 %), Chryseobacterium nakagawai CCUG 60563T (98.61 %), Chryseobacterium jejuense KACC 12501T (97.85 %) and Chryseobacterium aurantiacum KCTC 62135T (97.78 %). Whole genome sequencing indicated that the genome size was 5 125 723 bp and had a DNA G+C content of 37.4 mol%. Average nucleotide identity values for strain CA7T with C. rhizosphaerae, C. nakagawai, C. jejuense, C. aurantiacum, and the type species of the genus Chryseobacterium, C. gleum, were 80.2, 79.8, 79.8, 79.6 and 80.4 %, respectively. The digital DNA-DNA hybridization values of CA7T compared to C. rhizosphaerae, C. nakagawai, C. jejuense, C. aurantiacum and C. gleum were 24.1, 23.9, 23.9, 23.7 and 24.3 %, respectively. The major fatty acids were iso-C15 : 0, summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl), iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). Menaquinone-6 was the only respiratory quinone. The major polar lipid was phosphatidylethanolamine. Based on this polyphasic taxonomic study, strain CA7T represents a novel species of the genus Chryseobacterium for which the name Chryseobacterium vaccae sp. nov. is proposed. The type strain is CA7T (=KACC 21402T=JCM 33749T).


Asunto(s)
Chryseobacterium/clasificación , Leche/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Bovinos , Chryseobacterium/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
Int J Syst Evol Microbiol ; 68(5): 1725-1731, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29583116

RESUMEN

Strain PFL01T was isolated from traditional Korean fermented clam, jogae-jeotgal, and characterized. The strain was a facultative anaerobic, Gram-stain-negative bacterium that was rod-shaped, motile and beige-pigmented. The phylogenetic sequence analysis based on the 16S rRNA gene from PFL01T revealed that it was closely related to Lelliottia nimipressuralis LMG 10245T and Lelliottia amnigena LMG 2784T with 99.3 and 99.3 % sequence identities, respectively. Multilocus sequence type analysis of concatenated partial aptD, gyrB, infB and rpoB gene sequences showed a clear distinction of strain PFL01T from its closest related type strains. The discrimination was also supported by unique repetitive extragenic palindromic PCR (Rep-PCR, ERIC-PCR) fingerprint patterns. In addition, results from average nucleotide identity analyses with other species were less than 85 %. vitek and API analyses revealed distinct characteristics from other species of Lelliottia. The cellular fatty acid profile of the strain consisted of C16 : 0, cyclo-C17 : 0, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c as major components. The whole genome of PFL01T was 4.6 Mb with a G+C content of 55.3 mol%. Based on these results, strain PFL01T was classified as a novel species of the genus Lelliottia, for which the name Lelliottia jeotgali sp. nov. is proposed. The type strain in PFL01T (=KCCM 43247T=JCM 31901T).


Asunto(s)
Bivalvos/microbiología , Enterobacter/clasificación , Alimentos Fermentados/microbiología , Filogenia , Alimentos Marinos/microbiología , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Enterobacter/genética , Enterobacter/aislamiento & purificación , Ácidos Grasos/química , Genes Bacterianos , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN
3.
Asian-Australas J Anim Sci ; 30(7): 950-956, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28669141

RESUMEN

OBJECTIVE: Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. METHODS: Lactic acid bacteria (LAB) from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821) were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841), two commercial inoculants (HM/F and P1132) and no additive as a control. RESULTS: After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p<0.05). Acidity (pH) was lowest, and lactic acid highest, in 1821-treated silage (p<0.05). The NH3-N content decreased significantly in inoculant-treated silage (p<0.05) and the NH3-N content in 1821-treated silage was lowest among the treatments. The dry matter (DM) content of the control silage was lower than that of fresh rice straw (p<0.05), while that of the 1841- and p1174-inoculant-treated silages was significantly higher than that of HM/F-treated silage. Microbial additives did not have any significant (p>0.05) effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP) content and in vitro DM digestibility (IVDMD) increased after inoculation of LAB 1821 (p<0.05). CONCLUSION: LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, NH3-N, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

4.
Asian-Australas J Anim Sci ; 30(11): 1643-1650, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28935851

RESUMEN

OBJECTIVE: The control of psychrotrophic bacteria causing milk spoilage and illness due to toxic compounds is an important issue in the dairy industry. In South Korea, Gangwon-do province is one of the coldest terrains in which eighty percent of the area is mountainous regions, and mainly plays an important role in the agriculture and dairy industries. The purposes of this study were to analyze the indigenous microbiota of raw milk in Gangwon-do and accurately investigate a putative microbial group causing deterioration in milk quality. METHODS: We collected raw milk from the bulk tank of 18 dairy farms in the Hoengseong and Pyeongchang regions of Gangwon-do. Milk components were analyzed and the number of viable bacteria was confirmed. The V3 and V4 regions of 16S rRNA gene were amplified and sequenced on an Illumina Miseq platform. Sequences were then assigned to operational taxonomic units, followed by the selection of representative sequences using the QIIME software package. RESULTS: The milk samples from Pyeongchang were higher in fat, protein, lactose, total solid, and solid non-fat, and bacterial cell counts were observed only for the Hoengseong samples. The phylum Proteobacteria was detected most frequently in both the Hoengseong and Pyeongchang samples, followed by the phyla Firmicutes and Actinobacteria. Notably, Corynebacterium, Pediococcus, Macrococcus, and Acinetobacter were significantly different from two regions. CONCLUSION: Although the predominant phylum in raw milk is same, the abundances of major genera in milk samples were different between Hoengseong and Pyeongchang. We assumed that these differences are caused by regional dissimilar farming environments such as soil, forage, and dairy farming equipment so that the quality of milk raw milk from Pyeongchang is higher than that of Hoengseong. These results could provide the crucial information for identifying the microbiota in raw milk of South Korea.

5.
Appl Microbiol Biotechnol ; 100(23): 10043-10054, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27633101

RESUMEN

Enforced restrictions on the use of antibiotics as growth promoters (AGPs) in animal production have prompted investigations into alternative feed additives in recent decades. Probiotics are currently the main feed additive used in livestock. However, the selection of probiotic candidates relies on human-based methods and little is known about the verification criteria for host-specific selection. We investigated the probiotic potential of Lactobacillus salivarius strains isolated from fed pig feces for their use as porcine feed additives. Two methods were developed that simulated the pig gastrointestinal (GI) tract and the intestinal epithelium, and these were compared with human-based in vitro methods and used for selecting porcine probiotics. Lactobacillus salivarius strain LS6 was identified as a promising probiotic strain for potential use as a porcine feed additive. This strain prevented disruption of the epithelial integrity of pig small intestine (PSI) cells by inhibiting the adherence of enterotoxigenic Escherichia coli K88. It also showed high survival rates in the in vitro pig GI tract model and good adhesion to PSI cells. We propose that host target-specific screening and validation methods are important tools in the development of effective probiotic feed additives, and this approach may support future-oriented agriculture.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Tracto Gastrointestinal/microbiología , Ligilactobacillus salivarius/fisiología , Probióticos/administración & dosificación , Animales , Antibiosis , Adhesión Bacteriana , Células Epiteliales/microbiología , Escherichia coli/fisiología , Viabilidad Microbiana , Modelos Biológicos , Porcinos
6.
BMC Microbiol ; 15: 49, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25887483

RESUMEN

BACKGROUND: To understand differences in the gut microbiota between elderly people of urbanized town communities (UTC) and longevity village communities (LVC), we analyzed fecal microbiota collected from individuals living in 2 UTC (Seoul and Chuncheon) and 3 LVC (Gurye, Damyang, and Soonchang) selected on the basis of indices for superlongevity (the ratio of centenarians to the total population) and longevity (the ratio of those aged 85 years or greater to those aged 65 years or greater) in South Korea by 454 pyrosequencing. RESULTS: Taxonomy-based analysis showed that The relative abundance of Firmicutes, Tenericutes, and Actinobacteria was significantly lower in LVC than in UTC. Due to an increase of Firmicutes and a reduction of Bacteroidetes, the ratio of Firmicutes to Bacteroidetes in the gut microbiota was greater in UTC adults than in UTC children or LVC adults. The population levels of Bacteroides, Prevotella, and Lachnospira were significantly higher in LVC than in UTC, but the levels of Dialister, Subdoligranulum, Megamonas, EF401882_g, and AM275436_g were lower in LVC than in UTC. Although most of the species detected in LVC were detected in UTC, some Bacteroides spp. and Faecalibacterium spp. were detected only in LVC. Among Bacteroides spp., ACWH_s, EF403317_s, and EF403722_s were detected in children and LVC samples only but FJ363527_s, 4P000677_s, and 4P000015_s were detected in UTC samples. EF402172_s and EF404388_s, members of Faecalibacterium spp., which are known to have anti-inflammatory properties, were detected in LVC and children only (>3.9% of total sequence). In addition, the fecal lipopolysaccharides (LPS) content was significantly higher in UTC than in LVC. CONCLUSIONS: These findings suggest that maintaining gut microbiota, including Faecalibacterium spp. EF402172_s and EF404388_s, as well as low LPS levels may play an important role in preserving residents' health in LVC.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Microbioma Gastrointestinal , Longevidad , Microbiota , Adulto , Anciano , Anciano de 80 o más Años , Heces/microbiología , Femenino , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , República de Corea , Población Rural , Análisis de Secuencia de ADN , Población Urbana
7.
J Dairy Sci ; 98(6): 3568-76, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25864056

RESUMEN

We investigated the effect of consuming probiotic fermented milk (PFM) on the microbial community structure in the human intestinal tract by using high-throughput barcoded pyrosequencing. Six healthy adults ingested 2 servings of PFM daily for 3 wk, and their fecal microbiota were analyzed before and after 3 wk of PFM ingestion period and for another 3 wk following the termination of PFM ingestion (the noningestion period). Fecal microbial communities were characterized by sequencing of the V1-V3 hypervariable regions of the 16S rRNA gene. All subjects showed a similar pattern of microbiota at the phylum level, where the relative abundance of Bacteriodetes species increased during the PFM ingestion period and decreased during the noningestion period. The increase in Bacteroidetes was found to be due to an increase in members of the families Bacteroidaceae or Prevotellaceae. In contrast to PFM-induced adaptation at the phylum level, the taxonomic composition at the genus level showed a considerable alteration in fecal microbiota induced by PFM ingestion. As revealed by analysis of operational taxonomic units (OTU), the numbers of shared OTU were low among the 3 different treatments (before, during, and after PFM ingestion), but the abundance of the shared OTU was relatively high, indicating that the majority (>77.8%) of total microbiota was maintained by shared OTU during PFM ingestion and after its termination. Our results suggest that PFM consumption could alter microbial community structure in the gastrointestinal tract of adult humans while maintaining the stability of microbiota.


Asunto(s)
Productos Lácteos Cultivados/química , Tracto Gastrointestinal/microbiología , Probióticos , Adulto , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Heces/química , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/metabolismo , ARN Ribosómico 16S/genética
8.
Gut Microbes ; 16(1): 2319889, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38391178

RESUMEN

The gut microbiota plays a pivotal role in metabolic disorders, notably type 2 diabetes mellitus (T2DM). In this study, we investigated the synergistic potential of combining the effects of Bifidobacterium longum NBM7-1 (CKD1) with anti-diabetic medicines, LobeglitazoneⓇ (LO), SitagliptinⓇ (SI), and MetforminⓇ (Met), to alleviate hyperglycemia in a diabetic mouse model. CKD1 effectively mitigated insulin resistance, hepatic steatosis, and enhanced pancreatic ß-cell function, as well as fortifying gut-tight junction integrity. In the same way, SI-CKD1 and Met- CKD1 synergistically improved insulin sensitivity and prevented hepatic steatosis, as evidenced by the modulation of key genes associated with insulin signaling, ß-oxidation, gluconeogenesis, adipogenesis, and inflammation by qRT-PCR. The comprehensive impact on modulating gut microbiota composition was observed, particularly when combined with MetforminⓇ. This combination induced an increase in the abundance of Rikenellaceae and Alistipes related negatively to the T2DM incidence while reducing the causative species of Cryptosporangium, Staphylococcaceae, and Muribaculaceae. These alterations intervene in gut microbiota metabolites to modulate the level of butyrate, indole-3-acetic acid, propionate, and inflammatory cytokines and to activate the IL-22 pathway. However, it is meaningful that the combination of B. longum NBM7-1(CKD1) reduced the medicines' dose to the level of the maximal inhibitory concentrations (IC50). This study advances our understanding of the intricate relationship between gut microbiota and metabolic disorders. We expect this study to contribute to developing a prospective therapeutic strategy modulating the gut microbiota.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Metformina , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Regulación hacia Arriba , Diabetes Mellitus Experimental/tratamiento farmacológico , Metformina/farmacología , Metformina/uso terapéutico
9.
Immunopharmacol Immunotoxicol ; 35(3): 396-402, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23672525

RESUMEN

Lactic acid bacteria (LAB) have recently attracted considerable attention as treatment options for immune diseases, the incidence of which has been increasing worldwide. The ability of tumor necrosis factor-α producing LAB isolated from cheese to inhibit NF-κB activation in lipopolysaccharide (LPS)-stimulated peritoneal macrophages was investigated. Among the tested LAB, Lactobacillus casei HY7213 inhibited NF-κB activation most potently. Therefore, we measured its immunopotentiating effect in cyclophosphamide (CP)-immunosuppressed mice. When HY7213 was orally administered for 5 or 15 d, it reversed the CP immunosuppressant effect by increasing body and spleen weights, blood red and white blood cells levels, and splenocyte and bone marrow cells counts. Treatment with CP in mice markedly reduced concanavalin A (ConA)-induced T cell proliferation to 54% compared to the normal group. Oral administration of HY7213 in CP-immunosuppressed mice reversed that value to 95% of the normal group on day 15. Furthermore, oral administration of HY7213 to CP-treated mice significantly enhanced the expression of IL-2 and IFN-γ in ConA-induced splenic cytotoxic T cells, restored the CP-impaired phagocytosis of macrophage, and increased the cytotoxicity of natural killer (NK) and cytotoxic T cells derived from spleen and bone marrow against YAC-1. Based on these findings, we suggest that HY7213 may promote the recovery of immunosuppression caused by chemotherapeutic agents, such as CP, by activating NK cells, cytotoxic T cells and macrophages.


Asunto(s)
Antineoplásicos Alquilantes/efectos adversos , Ciclofosfamida/efectos adversos , Tolerancia Inmunológica/efectos de los fármacos , Células Asesinas Naturales/efectos de los fármacos , Lacticaseibacillus casei/inmunología , Macrófagos Peritoneales/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/inmunología , Ensayo de Inmunoadsorción Enzimática , Tolerancia Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Macrófagos Peritoneales/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Bazo/citología , Bazo/efectos de los fármacos , Bazo/inmunología , Linfocitos T Citotóxicos/inmunología
10.
Sci Rep ; 13(1): 14835, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684335

RESUMEN

The human gut microbiota is a complex ecology comprising approximately 10 to 100 trillion microbial cells. Most of the bacteria detected by 16s rRNA sequencing have yet to be cultured, but intensive attempts to isolate the novel bacteria have improved our knowledge of the gut microbiome composition and its roles within human host. In our culturomics study, a novel gram-negative, motile, obligately anaerobic, rod-shaped bacteria, designated as strain ICN-92133T, was isolated from a fecal sample of a 26-year-old patient with Crohn's disease. Based on the 16s rRNA sequence of strain ICN-92133T, the phylogeny analysis placed the strain into the family Selenomonadaceae, showing 93.91% similarity with the closely related Massilibacillus massiliensis strain DSM 102838T. Strain ICN-92133T exhibited a genome size of 2,679,003 bp with a GC content of 35.5% which was predicted to contain 26 potential virulence factors and five antimicrobial resistance genes. In comparative genomic analysis, strain ICN-92133T showed digital DNA-DNA Hybridization and OrthoANI values lower than 21.9% and 71.9% with the closest type strains, respectively. In addition, comparing phenotypic, biochemical, and cellular fatty acids with those of closely related strains revealed the distinctiveness of strain ICN-92133T. Based on the taxonogenomic results, strain ICN-92133T is proposed as a novel species belonging to a new genus. Therefore, we suggest the name of the new genus Selenobaculum gen. nov. within the family Selenomonadaceae and strain ICN-92133T (= KCTC 25622T = JCM 36070T) as a type strain of new species Selenobaculum gbiensis sp. nov.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Humanos , Adulto , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias , Firmicutes , ADN
11.
Food Sci Anim Resour ; 43(5): 723-750, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701742

RESUMEN

The gut microbiome is critical in human health, and various dietary factors influence its composition and function. Among these factors, animal products, such as meat, dairy, and eggs, represent crucial sources of essential nutrients for the gut microbiome. However, the correlation and characteristics of livestock consumption with the gut microbiome remain poorly understood. This review aimed to delineate the distinct effects of meat, dairy, and egg products on gut microbiome composition and function. Based on the previous reports, the impact of red meat, white meat, and processed meat consumption on the gut microbiome differs from that of milk, yogurt, cheese, or egg products. In particular, we have focused on animal-originated proteins, a significant nutrient in each livestock product, and revealed that the major proteins in each food elicit diverse effects on the gut microbiome. Collectively, this review highlights the need for further insights into the interactions and mechanisms underlying the impact of animal products on the gut microbiome. A deeper understanding of these interactions would be beneficial in elucidating the development of dietary interventions to prevent and treat diseases linked to the gut microbiome.

12.
Sci Rep ; 13(1): 6687, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095161

RESUMEN

Recently, several probiotic products have been developed; however, most probiotic applications focused on prokaryotic bacteria whereas eukaryotic probiotics have received little attention. Saccharomyces cerevisiae yeast strains are eukaryotes notable for their fermentation and functional food applications. The present study investigated the novel yeast strains isolated from Korean fermented beverages and examined their potential probiotic characteristics. We investigated seven strains among 100 isolates with probiotic characteristics further. The strains have capabilities such as auto-aggregation tendency, co-aggregation with a pathogen, hydrophobicity with n-hexadecane,1,1-diphenyl-2-picrylhydrazyl scavenging effect, survival in simulated gastrointestinal tract conditions and the adhesion ability of the strains to the Caco-2 cells. Furthermore, all the strains contained high cell wall glucan content, a polysaccharide with immunological effects. Internal transcribed spacer sequencing identified the Saccharomyces strains selected in the present study as probiotics. To examine the effects of alleviating inflammation in cells, nitric oxide generation in raw 264.7 cells with S. cerevisiae showed that S. cerevisiae GILA could be a potential probiotic strain able to alleviate inflammation. Three probiotics of S. cerevisiae GILA strains were chosen by in vivo screening with a dextran sulfate sodium-induced colitis murine model. In particular, GILA 118 down-regulates neutrophil-lymphocyte ratio and myeloperoxidase in mice treated with DSS. The expression levels of genes encoding tight junction proteins in the colon were upregulated, cytokine interleukin-10 was significantly increased, and tumor necrosis factor-α was reduced in the serum.


Asunto(s)
Colitis , Probióticos , Humanos , Animales , Ratones , Saccharomyces cerevisiae/metabolismo , Sulfato de Dextran/efectos adversos , Células CACO-2 , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Inflamación , Probióticos/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-37804432

RESUMEN

Type 2 diabetes (T2D) is known as adult-onset diabetes, but recently, T2D has increased in the number of younger people, becoming a major clinical burden in human society. The objective of this study was to determine the effects of Bifidobacterium and Lactiplantibacillus strains derived from the feces of 20 healthy humans on T2D development and to understand the mechanism underlying any positive effects of probiotics. We found that Bifidobacterium longum NBM7-1 (Chong Kun Dang strain 1; CKD1) and Lactiplantibacillus rhamnosus NBM17-4 (Chong Kun Dang strain 2; CKD2) isolated from the feces of healthy Korean adults (n = 20) have anti-diabetic effects based on the insulin sensitivity. During the oral gavage for 8 weeks, T2D mice were supplemented with anti-diabetic drugs (1.0-10 mg/kg body weight) to four positive and negative control groups or four probiotics (200 uL; 1 × 109 CFU/mL) to groups separately or combined to the four treatment groups (n = 6 per group). While acknowledging the relatively small sample size, this study provides valuable insights into the potential benefits of B. longum NBM7-1 and L. rhamnosus NBM17-4 in mitigating T2D development. The animal gene expression was assessed using a qRT-PCR, and metabolic parameters were assessed using an ELISA assay. We demonstrated that B. longum NBM7-1 in the CKD1 group and L. rhamnosus NBM17-4 in the CKD2 group alleviate T2D development through the upregulation of IL-22, which enhances insulin sensitivity and pancreatic functions while reducing liver steatosis. These findings suggest that B. longum NBM7-1 and L. rhamnosus NBM17-4 could be the candidate probiotics for the therapeutic treatments of T2D patients as well as the prevention of type 2 diabetes.

14.
Biomed Res Int ; 2022: 8145462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502335

RESUMEN

Objective: The role of the gut microbiome in the onset and development of atopic dermatitis (AD) has been postulated. Thus, we investigated the gut microbial compositions in infants with and without AD and compared the gut bacterial flora of their mothers. Methods: The prospective and cross-sectional study participated in 44 pairs of mothers and children. We selected infants born via full-term normal vaginal delivery and no history of antibiotic or probiotic use and infection during the first three months of life. The 15 pairs, consisting of nine healthy infants and six AD infants, were included in this study. Fecal samples of mothers and infants were analyzed within 30 days of delivery and at 12 months, respectively. Microbes in the fecal samples of mothers and infants were subjected to analysis of 16S rRNA amplicon sequencing. Results: The abundance of specific taxonomic groups was notably different, but microbial diversity and phylogenetic distances were not significantly different in either maternal or infant groups according to the presence of infant AD. A total of 12 species were selected as differential species in infants with AD compared to healthy infants. Six species were significantly different in the mothers of infants with AD compared to the mothers of healthy infants. Akkermansia muciniphila was only detected in healthy infants and their mothers. Conclusion: The presence of Akkermansia muciniphila in mothers and children after vaginal delivery is associated with the onset and development of AD.


Asunto(s)
Dermatitis Atópica , Microbioma Gastrointestinal , Akkermansia , Niño , Estudios Transversales , Dermatitis Atópica/microbiología , Femenino , Microbioma Gastrointestinal/genética , Humanos , Lactante , Madres , Filogenia , Estudios Prospectivos , ARN Ribosómico 16S/genética
15.
J Anim Sci Technol ; 64(2): 197-217, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530406

RESUMEN

As the number of households that raise dogs and cats is increasing, there is growing interest in animal health. The gut plays an important role in animal health. In particular, the microbiome in the gut is known to affect both the absorption and metabolism of nutrients and the protective functions of the host. Using probiotics on pets has beneficial effects, such as modulating the immune system, helping to reduce stress, protecting against pathogenic bacteria and developing growth performance. The goals of this review are to summarize the relationship between probiotics/the gut microbiome and animal health, to feature technology used for identifying the diversity of microbiota composition of canine and feline microbiota, and to discuss recent reports on probiotics in canines and felines and the safety issues associated with probiotics and the gut microbiome in companion animals.

16.
J Microbiol Biotechnol ; 32(9): 1146-1153, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168203

RESUMEN

Many probiotic species have been used as a fermentation starter for manufacturing functional food materials. We have isolated Bifidobacterium animalis subsp. lactis LDTM 8102 from the feces of infants as a novel strain for fermentation. While Glycine max has been known to display various bioactivities including anti-oxidant, anti-skin aging, and anti-cancer effects, the immune-modulatory effect of Glycine max has not been reported. In the current study, we have discovered that the extract of Glycine max fermented with B. animalis subsp. lactis LDTM 8102 (GFB 8102), could exert immuno-modulatory properties. GFB 8102 treatment increased the production of immune-stimulatory cytokines in RAW264.7 macrophages without any noticeable cytotoxicity. Analysis of the molecular mechanism revealed that GFB 8102 could upregulate MAPK2K and MAPK signaling pathways including ERK, p38, and JNK. GFB 8102 also increased the proliferation rate of splenocytes isolated from mice. In an animal study, administration of GFB 8102 partially recovered cyclophosphamide-mediated reduction in thymus and spleen weight. Moreover, splenocytes from the GFB 8102-treated group exhibited increased TNF-α, IL-6, and IL-1ß production. Based on these findings, GFB 8102 could be a promising functional food material for enhancing immune function.


Asunto(s)
Bifidobacterium animalis , Probióticos , Animales , Antioxidantes/metabolismo , Ciclofosfamida , Citocinas/metabolismo , Humanos , Inmunidad , Interleucina-6/metabolismo , Ratones , Extractos Vegetales/metabolismo , Glycine max/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
J Clin Gastroenterol ; 45(5): 415-25, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21494186

RESUMEN

GOALS: This study was undertaken to evaluate the effects of probiotics on adult patients with irritable bowel syndrome (IBS) through clinical parameters and H nuclear magnetic resonance (NMR)-based metabonomics. BACKGROUND: As systematic effect of probiotics on inflammatory bowel disease through metabonomics approach has been extensively studied to date, metabonomic characterization of the probiotics effect on IBS is also needed for better understanding the effect with respect to host metabolic mechanism. STUDY: Seventy-four IBS patients meeting Rome criteria were randomized to receive probiotics and placebo through a parallel-group, double-blind, randomized, placebo-controlled clinical study. Probiotic fermented milk and placebo were administered 3 times daily for 8 weeks. Improvements of IBS were assessed according to Rome III questionnaires and H NMR metabolic profiling of serum and fecal samples from all participants was used to characterize a significant change in serum and fecal metabolome before and after probiotics. RESULTS: Fecal counts of the Lactobacilli, but not Bifidobacteria species, which included in the probiotic milk, were increased significantly in feces of IBS patients receiving treatment (P=0.014). NMR data set coupled with multivariate statistical analysis identified intrinsically elevated serum levels of glucose (P=0.0265) and tyrosine (P=0.0016) in IBS patients. These levels normalized to those of healthy individuals in the probiotic administration group, but not the placebo group. CONCLUSIONS: This metabonomic study suggests that in a subset of IBS patients there exists a potential dysregulation in energy homeostasis (serum glucose) and liver function (serum tyrosine) that may be improved through probiotics supplementation. Moreover, global metabolic profiling highlights the potential of metabonomic approach for assessing bowel diseases or symptoms with respect to host metabolic perturbation.


Asunto(s)
Bifidobacterium/fisiología , Heces/microbiología , Síndrome del Colon Irritable/terapia , Lactobacillus/fisiología , Metabolómica/métodos , Probióticos/uso terapéutico , Adulto , Bifidobacterium/aislamiento & purificación , Método Doble Ciego , Femenino , Humanos , Síndrome del Colon Irritable/microbiología , Lactobacillus/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Resultado del Tratamiento , Yogur/microbiología , Adulto Joven
18.
Microorganisms ; 9(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673349

RESUMEN

The role of the gut microbiota in the pathogenesis of inflammatory bowel disease (IBD) has been in focus for decades. Although metagenomic observations in patients/animal colitis models have been attempted, the microbiome results were still indefinite and broad taxonomic presumptions were made due to the cross-sectional studies. Herein, we conducted a longitudinal microbiome analysis in a dextran sulfate sodium (DSS)-induced colitis mouse model with a two-factor design based on serial DSS dose (0, 1, 2, and 3%) and duration for 12 days, and four mice from each group were sacrificed at two-day intervals. During the colitis development, a transition of the cecal microbial diversity from the normal state to dysbiosis and dynamic changes of the populations were observed. We identified genera that significantly induced or depleted depending on DSS exposure, and confirmed the correlations of the individual taxa to the colitis severity indicated by inflammatory biomarkers (intestinal bleeding and neutrophil-derived indicators). Of note, each taxonomic population showed its own susceptibility to the changing colitis status. Our findings suggest that an understanding of the individual susceptibility to colitis conditions may contribute to identifying the role of the gut microbes in the pathogenesis of IBD.

19.
Sci Rep ; 11(1): 16269, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381083

RESUMEN

The interest in skin microbiome differences by ethnicity, age, and gender is increasing. Compared to other ethnic groups, studies on the skin microbiome of Koreans remains insufficient; we investigated facial skin microbiome characteristics according to gender and age among Koreans. Fifty-one healthy participants were recruited, the facial skin characteristics of each donor were investigated, their skin bacterial DNA was isolated and metagenomic analysis was performed. The donors were divided into two groups for age and sex each to analyze their skin microbiomes. Moreover, we investigated the correlation between the skin microbiome and clinical characteristics. The alpha diversity of the skin microbiome was significantly higher in the elderly, and beta diversity was significantly different according to age. The comparative skin microbials showed that the genus Lawsonella was more abundant in the younger age group, and Enhydrobacter was predominant in the older age group. Staphylococcus and Corynebacterium were more abundant in males, while Lactobacillus was more abundant in females. Lawsonella had a negative correlation with skin moisture and brown spots. Staphylococcus and Corynebacterium both had negative correlations with the number of UV spots and positive correlations with transepidermal water loss (TEWL). Furthermore, Staphylococcus aureus had a negative correlation with skin moisture parameters.


Asunto(s)
Bacterias/clasificación , Cara/microbiología , Voluntarios Sanos , Piel/microbiología , Adulto , Factores de Edad , Anciano , Pueblo Asiatico , Bacterias/genética , Código de Barras del ADN Taxonómico , Femenino , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Pérdida Insensible de Agua , Adulto Joven
20.
Antioxidants (Basel) ; 10(2)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672035

RESUMEN

Yak-Kong is a type of black soybean that is colloquially referred to as the "medicinal bean" and it elicits several beneficial effects that are relevant to human health, including attenuating the formation of skin wrinkles. It has previously been shown that soybean extracts elicit additional bioactivity that is fermented by lactic acid bacteria. In this study of lactic acid bacteria strains that were isolated from the stools of breast-feeding infants (<100 days old), we selected Bifidobacterium animalis subsp. Lactis LDTM 8102 (LDTM 8102) as the lead strain for the fermentation of Yak-Kong. We investigated the effects of LDTM 8102-fermented Yak-Kong on solar-ultraviolet irradiation (sUV)-induced wrinkle formation. In HaCaT cells, the ethanol extract of LDTM 8102-fermented Yak-Kong (EFY) effectively reduced sUV-induced matrix metalloproteinase-1 (MMP-1) secretion. The effect of EFY was superior to that of unfermented (UFY)- and Lactis KCTC 5854 (another Bifidobacterium animalis species)-fermented Yak-Kong. Additionally, EFY reduced sUV-induced MMP-1 mRNA expression and promoter activity, as well as the transactivation of AP-1 and phosphorylation of ERK1/2 and JNK1/2. Furthermore, EFY alleviated sUV-induced MMP-1 secretion, the destruction of the epidermis, and degradation of collagen in a three-dimensional (3D) skin culture model. EFY had a higher total polyphenol content and anti-oxidative activity than UFY. Twelve metabolites were significantly (≥2-fold) increased in Yak-Kong extract after fermentation by LDTM 8102. Among them, the metabolites of major isoflavones, such as 6,7,4'-trihydroxyisoflavone (THIF), exerted the reducing effect of MMP-1, which indicated that the isoflavone metabolites contributed to the effect of EFY on MMP-1 expression as active compounds. These findings suggest that EFY is a potent natural material that can potentially prevent sUV-induced wrinkle formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA