RESUMEN
Bilateral perisylvian polymicrogyria (BPP) is a structural malformation of the cerebral cortex that can be caused by several genetic abnormalities. The most common clinical manifestations of BPP include intellectual disability and epilepsy. Cytoplasmic FMRP-interacting protein 2 (CYFIP2) is a protein that interacts with the fragile X mental retardation protein (FMRP). CYFIP2 variants can cause various brain structural abnormalities with the most common clinical manifestations of intellectual disability, epileptic encephalopathy and dysmorphic features. We present a girl with multiple disabilities and BPP caused by a heterozygous, novel, likely pathogenic variant (c.1651G>C: p.(Val551Leu) in the CYFIP2 gene. Our case report broadens the spectrum of genetic diversity associated with BPP by incorporating CYFIP2.
Asunto(s)
Anomalías Múltiples , Encefalopatías , Discapacidad Intelectual , Malformaciones del Desarrollo Cortical , Polimicrogiria , Femenino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Polimicrogiria/genética , Polimicrogiria/complicaciones , Anomalías Múltiples/genética , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/complicaciones , Encefalopatías/complicaciones , Proteínas Adaptadoras Transductoras de Señales/genéticaRESUMEN
BACKGROUND: Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. METHODS: Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. RESULTS: We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. CONCLUSION: We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.
Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Ubiquitina-Proteína Ligasas , Genotipo , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Trastornos del Neurodesarrollo/genética , Fenotipo , Convulsiones/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
The genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case.
Asunto(s)
Exoma/genética , Discapacidad Intelectual/genética , Familia , Femenino , Finlandia , Genes Recesivos/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Homocigoto , Humanos , Masculino , Linaje , Secuenciación del Exoma/métodosRESUMEN
PURPOSE: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. METHODS: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. RESULTS: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. CONCLUSION: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.
Asunto(s)
Epilepsia , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Epilepsia/diagnóstico , Epilepsia/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Convulsiones/diagnóstico , Convulsiones/genéticaRESUMEN
OBJECTIVE: Music practice and listening have been reported to have favorable effects on human health, but empirical data are largely missing about these effects. To obtain more information about the effect of exposure to music from early childhood, we examined the causes of death of professional musicians in the classical genre. METHODS: We used standardized mortality ratios (SMR) for Finnish performing artists (n=5,780) and church musicians (n=22,368) during 1981-2016. We examined deaths from cardiovascular diseases, cancers, and neurodegenerative and alcohol-related diseases. The diagnoses were based on the ICD-10, with data obtained from Statistics of Finland. RESULTS: Overall, SMR for all-cause mortality was 0.59 (95% CI 0.57-0.61) for church musicians and 0.75 (95% CI 0.70-0.80) for performing artists, suggesting a protective effect of music for health. In contrast, we found increased mortality in alcohol-related diseases among female performing artists (SMR 1.85, 95% CI 1.06-2.95) and in neurodegenerative diseases among male performing artists (1.46, 95% CI 1.13-1.84). Additionally, we found higher SMRs for female than male church musicians for cancers (SMRfemales 0.90, 95% CI 0.83-0.97; SMRmales 0.60, 95% CI 0.54-0.67) and cardiovascular diseases (SMRfemales 0.75, 95% CI 0.68-0.82; SMRmales 0.58, 95% CI 0.54-0.64). CONCLUSIONS: Our results show that the causes of death in performers differ from those in church musicians. Performing artists are not protected from neurodegenerative diseases or alcohol-related deaths. The findings call for further study on the life-long effects of music in musicians.
Asunto(s)
Causas de Muerte , Música , Enfermedades Profesionales , Femenino , Finlandia , Humanos , Masculino , OcupacionesRESUMEN
Although music and other forms of art can develop in diverse directions, they are linked to the genetic profiles of populations. Hearing music is a strong environmental trigger that serves as an excellent model to study the crosstalk between genes and the environment. We propose that the ability to enjoy and practice music requires musical aptitude, which is a common and innate trait facilitating the enjoyment and practice of music. The innate drive for music can only have arisen by exposure to music, and it develops with motivation and training in musically rich environments. Recent genomic approaches have shown that the genes responsible for inner ear development, auditory pathways and neurocognitive processes may underlay musical aptitude. It is expected that genomic approaches can be applied to musical traits and will reveal new biological mechanisms that affect human evolution, brain function, and civilisation.
Asunto(s)
Aptitud/fisiología , Cognición/fisiología , Genómica , Música/psicología , Vías Auditivas/embriología , Vías Auditivas/crecimiento & desarrollo , Oído Interno/embriología , Oído Interno/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Humanos , Gemelos Monocigóticos/genéticaRESUMEN
Variants in cullin 4B (CUL4B) are a known cause of syndromic X-linked intellectual disability. Here, we describe an additional 25 patients from 11 families with variants in CUL4B. We identified nine different novel variants in these families and confirmed the pathogenicity of all nontruncating variants. Neuroimaging data, available for 15 patients, showed the presence of cerebral malformations in ten patients. The cerebral anomalies comprised malformations of cortical development (MCD), ventriculomegaly, and diminished white matter volume. The phenotypic heterogeneity of the cerebral malformations might result from the involvement of CUL-4B in various cellular pathways essential for normal brain development. Accordingly, we show that CUL-4B interacts with WDR62, a protein in which variants were previously identified in patients with microcephaly and a wide range of MCD. This interaction might contribute to the development of cerebral malformations in patients with variants in CUL4B.
Asunto(s)
Encéfalo/patología , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Malformaciones del Desarrollo Cortical/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas del Tejido Nervioso/metabolismo , Adolescente , Adulto , Proteínas de Ciclo Celular , Células Cultivadas , Niño , Preescolar , Estudios de Asociación Genética , Células HEK293 , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical/metabolismo , Malformaciones del Desarrollo Cortical/patología , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/patología , Persona de Mediana Edad , Linaje , Análisis de Secuencia de ADN , Adulto JovenRESUMEN
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (nâ=â396 patients and nâ=â659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (Pâ=â0.004, ORâ=â2.37, 95% CIâ=â1.23-4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (Pâ=â0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Proteínas del Tejido Nervioso/genética , Eliminación de Secuencia/genética , Sinapsis/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Empalme Alternativo/genética , Línea Celular , Niño , Preescolar , Femenino , Dosificación de Gen/genética , Regulación de la Expresión Génica , Humanos , Masculino , Neuronas/citología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sitios de Empalme de ARN/genética , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Sinapsis/patología , Distribución Tisular , Receptor Nicotínico de Acetilcolina alfa 7RESUMEN
Streptococcus pyogenes (or group A streptococcus [GAS]) is a major human pathogen causing infections, such as tonsillitis, erysipelas, and sepsis. Several GAS strains bind host complement regulator factor H (CFH) via its domain 7 and, thereby, evade complement attack and C3b-mediated opsonophagocytosis. Importance of CFH binding for survival of GAS has been poorly studied because removal of CFH from plasma or blood causes vigorous complement activation, and specific inhibitors of the interaction have not been available. In this study, we found that activation of human complement by different GAS strains (n = 38) correlated negatively with binding of CFH via its domains 5-7. The importance of acquisition of host CFH for survival of GAS in vitro was studied next by blocking the binding with recombinant CFH5-7 lacking the regulatory domains 1-4. Using this fragment in full human blood resulted in death or radically reduced multiplication of all of the studied CFH-binding GAS strains. To study the importance of CFH binding in vivo (i.e., for pathogenesis of streptococcal infections), we used our recent finding that GAS binding to CFH is diminished in vitro by polymorphism 402H, which is also associated with age-related macular degeneration. We showed that allele 402H is suggested to be associated with protection from erysipelas (n = 278) and streptococcal tonsillitis (n = 209) compared with controls (n = 455) (p < 0.05). Taken together, the bacterial in vitro survival data and human genetic association revealed that binding of CFH is important for pathogenesis of GAS infections and suggested that inhibition of CFH binding can be a novel therapeutic approach in GAS infections.
Asunto(s)
Activación de Complemento , Polimorfismo de Nucleótido Simple/inmunología , Infecciones Estreptocócicas , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/patogenicidad , Activación de Complemento/genética , Activación de Complemento/inmunología , Factor H de Complemento/genética , Factor H de Complemento/inmunología , Erisipela/genética , Erisipela/inmunología , Erisipela/microbiología , Estudio de Asociación del Genoma Completo , Humanos , Degeneración Macular/genética , Degeneración Macular/inmunología , Estructura Terciaria de Proteína , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/inmunología , Tonsilitis/genética , Tonsilitis/inmunología , Tonsilitis/microbiologíaRESUMEN
Normal function of the thyroid gland is the cornerstone of a child's mental development and physical growth. We describe a Finnish family, in which the diagnosis of three brothers became clear after investigations that lasted for more than 30 years. Two of the sons have already died. DNA analysis of the third one, a 16-year-old boy, revealed in exome sequencing of the complete X chromosome a mutation in the SLC16A2 gene, i.e. MCT8, coding for a thyroid hormone transport protein. Allan-Herndon-Dudley syndrome was thus shown to be the cause of multiple disabilities.
Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonía Muscular/genética , Atrofia Muscular/genética , Adolescente , Cromosomas Humanos X , Exoma , Finlandia , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/mortalidad , Hipotonía Muscular/mortalidad , Atrofia Muscular/mortalidad , Mutación , Linaje , Análisis de Secuencia de ADN , SimportadoresRESUMEN
Bilateral perisylvian polymicrogyria is the most common form of regional polymicrogyria within malformations of cortical development, constituting 20% of all malformations of cortical development. Bilateral perisylvian polymicrogyria is characterized by an excessive folding of the cerebral cortex and abnormal cortical layering. Notable clinical features include upper motoneuron dysfunction, dysarthria and asymmetric quadriparesis. Cognitive impairment and epilepsy are frequently observed. To identify genetic variants underlying bilateral perisylvian polymicrogyria in Finland, we examined 21 families using standard exome sequencing, complemented by optical genome mapping and/or deep exome sequencing. Pathogenic or likely pathogenic variants were identified in 5/21 (24%) of families, of which all were confirmed as de novo. These variants were identified in five genes, i.e. DDX23, NUS1, SCN3A, TUBA1A and TUBB2B, with NUS1 and DDX23 being associated with bilateral perisylvian polymicrogyria for the first time. In conclusion, our results confirm the previously reported genetic heterogeneity of bilateral perisylvian polymicrogyria and underscore the necessity of more advanced methods to elucidate the genetic background of bilateral perisylvian polymicrogyria.
RESUMEN
While short-read sequencing currently dominates genetic research and diagnostics, it frequently falls short of capturing certain structural variants (SVs), which are often implicated in the etiology of neurodevelopmental disorders (NDDs). Optical genome mapping (OGM) is an innovative technique capable of capturing SVs that are undetectable or challenging-to-detect via short-read methods. This study aimed to investigate NDDs using OGM, specifically focusing on cases that remained unsolved after standard exome sequencing. OGM was performed in 47 families using ultra-high molecular weight DNA. Single-molecule maps were assembled de novo, followed by SV and copy number variant calling. We identified 7 variants of interest, of which 5 (10.6%) were classified as likely pathogenic or pathogenic, located in BCL11A, OPHN1, PHF8, SON, and NFIA. We also identified an inversion disrupting NAALADL2, a gene which previously was found to harbor complex rearrangements in two NDD cases. Variants in known NDD genes or candidate variants of interest missed by exome sequencing mainly consisted of larger insertions (> 1kbp), inversions, and deletions/duplications of a low number of exons (1-4 exons). In conclusion, in addition to improving molecular diagnosis in NDDs, this technique may also reveal novel NDD genes which may harbor complex SVs often missed by standard sequencing techniques.
Asunto(s)
Mapeo Cromosómico , Variaciones en el Número de Copia de ADN , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Femenino , Masculino , Mapeo Cromosómico/métodos , Secuenciación del Exoma/métodos , Niño , Variación Estructural del Genoma , PreescolarRESUMEN
PURPOSE: To study the association of single-nucleotide polymorphisms of interleukin 8, vascular endothelial growth factor, erythropoietin, complement factor H, complement component C3, and LOC387715 genes with the response to bevacizumab treatment in exudative age-related macular degeneration. METHODS: Clinical records, smoking history, optical coherence tomography, and angiographies of 96 bevacizumab-treated exudative age-related macular degeneration patients were analyzed retrospectively. Blood DNA was collected. Based on the disappearance of intra- or subretinal fluid in optical coherence tomography, patients were graded as responders, partial responders, or nonresponders after 3 initial treatment visits and a median time of 3.5 months. RESULTS: Interleukin 8 promoter polymorphism -251A/T was significantly associated with persisting fluid in optical coherence tomography. The A allele was more frequent in nonresponders than in responders (P = 0.033). In multivariate modeling, the AA genotype of -251A/T (P = 0.043) and occult (P = 0.042) or predominantly classic (P = 0.040) lesions predicted poorer outcome. Visual acuity change was better in responders than in nonresponders (P = 0.006). Baseline lesion size (P = 0.006) and retinal cysts after the treatment (P < 0.001) correlated with less visual acuity gain. CONCLUSION: The A allele and the homozygous AA genotype of interleukin 8 -251A/T were associated with anatomical nonresponse to bevacizumab treatment.
Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Interleucina-8/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas/genética , Degeneración Macular Húmeda/tratamiento farmacológico , Degeneración Macular Húmeda/genética , Anciano , Anciano de 80 o más Años , Alelos , Bevacizumab , Complemento C3/genética , Factor H de Complemento/genética , Exudados y Transudados , Femenino , Genotipo , Humanos , Inyecciones Intravítreas , Masculino , Persona de Mediana Edad , Farmacogenética , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Proteínas/genética , Tomografía de Coherencia Óptica , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Agudeza Visual/fisiología , Degeneración Macular Húmeda/diagnósticoRESUMEN
Adult-type hypolactasia, also known as lactase non-persistence (lactose intolerance), is a common autosomal recessive condition resulting from the physiological decline in activity of the lactase-phlorizin hydrolase (LPH) in intestinal cells after weaning. LPH hydrolyzes lactose into glucose and galactose. Sequence analyses of the coding and promoter regions of LCT, the gene encoding LPH, has revealed no DNA variations correlating with lactase non-persistence. An associated haplotype spanning LCT, as well as a distinct difference in the transcript levels of 'non-persistence' and 'persistence' alleles in heterozygotes, suggest that a cis-acting element contributes to the lactase non-persistence phenotype. Using linkage disequilibrium (LD) and haplotype analysis of nine extended Finnish families, we restricted the locus to a 47-kb interval on 2q21. Sequence analysis of the complete region and subsequent association analyses revealed that a DNA variant, C/T-13910, roughly 14 kb upstream from the LCT locus, completely associates with biochemically verified lactase non-persistence in Finnish families and a sample set of 236 individuals from four different populations. A second variant, G/A-22018, 8 kb telomeric to C/T-13910, is also associated with the trait in 229 of 236 cases. Prevalence of the C/T-13910 variant in 1,047 DNA samples is consistent with the reported prevalence of adult-type hypolactasia in four different populations. That the variant (C/T-13910) occurs in distantly related populations indicates that it is very old.
Asunto(s)
Variación Genética , Intolerancia a la Lactosa/genética , Adulto , Alelos , Mapeo Cromosómico , Femenino , Finlandia , Ligamiento Genético , Genética de Población , Haplotipos , Humanos , Lactasa , Lactasa-Florizina Hidrolasa/genética , Intolerancia a la Lactosa/enzimología , Masculino , Datos de Secuencia Molecular , Linaje , beta-Galactosidasa/genéticaRESUMEN
BACKGROUND: The genetic architecture of hearing impairment in Finland is largely unknown. Here, we investigated two Finnish families with autosomal recessive nonsyndromic symmetrical moderate-to-severe hearing impairment. METHODS: Exome and custom capture next-generation sequencing were used to detect the underlying cause of hearing impairment. RESULTS: In both Finnish families, we identified a homozygous pathogenic splice site variant c.637+1G>T in CAPB2 that is known to cause autosomal recessive nonsyndromic hearing impairment. Four CABP2 variants have been reported to underlie autosomal recessive nonsyndromic hearing impairment in eight families from Iran, Turkey, Pakistan, Italy, and Denmark. Of these variants, the pathogenic splice site variant c.637+1G>T is the most prevalent. The c.637+1G>T variant is enriched in the Finnish population, which has undergone multiple bottlenecks that can lead to the higher frequency of certain variants including those involved in disease. CONCLUSION: We report two Finnish families with hearing impairment due to the CABP2 splice site variant c.637+1G>T.
Asunto(s)
Sordera , Pérdida Auditiva , Sordera/genética , Finlandia , Genes Recesivos , Pérdida Auditiva/genética , HumanosRESUMEN
Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype-phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.
Asunto(s)
Investigación Biomédica Traslacional , Finlandia/epidemiología , FenotipoRESUMEN
Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too.
Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/genética , Cromosomas Humanos X/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Ubiquitina-Proteína Ligasas/genética , Secuencia de Bases , Western Blotting , Análisis Mutacional de ADN , ADN Complementario/genética , Dosificación de Gen/genética , Duplicación de Gen , Humanos , Hibridación Fluorescente in Situ , Análisis por Micromatrices , Datos de Secuencia Molecular , Mutación/genética , Linaje , Proteínas Supresoras de TumorRESUMEN
Inflammation and activation of the complement system predispose to intracranial artery aneurysm (IA) rupture. Because disturbances in complement regulation may lead to increased susceptibility to complement activation and inflammation, we looked for evidence for dysregulation of the complement system in 26 unruptured and 26 ruptured IAs resected intraoperatively. Immunohistochemical and immunofluorescence results of parallel IA sections showed that deposition of the complement activation end-product C5b-9 was lacking from the luminal part of the IA wall that contained complement inhibitors factor H, C4b binding protein, and protectin as well as glycosaminoglycans. In contrast, the outer, less cellular part of the IA wall lacked protectin and had enabled full complement activation and C5b-9 formation. Decay accelerating factor and membrane cofactor protein had less evident roles in complement regulation. The Factor H Y402H variant, studied in 97 IA patients, was seen as often in aneurysm patients with or without aneurysm rupture as in the control population. The regulatory capacity of the complement system thus appears disturbed in the outer part of the IA wall, allowing full proinflammatory complement activation to occur before aneurysm rupture. Insufficient complement control might be due to matrix remodeling and cell loss by mechanical hemodynamics and/or inflammatory stress. Apparently, disturbed complement regulation leads to an increased susceptibility to complement activation, inflammation, and tissue damage in the IA wall.
Asunto(s)
Arterias Cerebrales/metabolismo , Arterias Cerebrales/patología , Proteínas Inactivadoras de Complemento/metabolismo , Vía Clásica del Complemento/inmunología , Aneurisma Intracraneal/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Aneurisma Roto/inmunología , Aneurisma Roto/metabolismo , Aneurisma Roto/patología , Arterias Cerebrales/inmunología , Activación de Complemento/inmunología , Proteínas Inactivadoras de Complemento/inmunología , Vía Clásica del Complemento/fisiología , Regulación hacia Abajo/inmunología , Femenino , Humanos , Aneurisma Intracraneal/inmunología , Aneurisma Intracraneal/patología , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Music is listened in all cultures. We hypothesize that willingness to produce and perceive sound and music is social communication that needs musical aptitude. Here, listening to music was surveyed using a web-based questionnaire and musical aptitude using the auditory structuring ability test (Karma Music test) and Carl Seashores tests for pitch and for time. Three highly polymorphic microsatellite markers (RS3, RS1 and AVR) of the arginine vasopressin receptor 1A (AVPR1A) gene, previously associated with social communication and attachment, were genotyped and analyzed in 31 Finnish families (n=437 members) using family-based association analysis. A positive association between the AVPR1A haplotype (RS1 and AVR) and active current listening to music (permuted P=0.0019) was observed. Other AVPR1A haplotype (RS3 and AVR) showed association with lifelong active listening to music (permuted P=0.0022). In addition to AVPR1A, two polymorphisms (5-HTTLPR and variable number of tandem repeat) of human serotonin transporter gene (SLC6A4), a candidate gene for many neuropsychiatric disorders and previously associated with emotional processing, were analyzed. No association between listening to music and the polymorphisms of SLC6A4 were detected. The results suggest that willingness to listen to music is related to neurobiological pathways affecting social affiliation and communication.
Asunto(s)
Aptitud/fisiología , Música , Receptores de Vasopresinas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Atención , Niño , Femenino , Finlandia , Genotipo , Haplotipos/genética , Humanos , Internet , Masculino , Repeticiones de Microsatélite/genética , Persona de Mediana Edad , Linaje , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Conducta Social , Encuestas y CuestionariosRESUMEN
BACKGROUND: Fulani are a widely spread African ethnic group characterized by lower susceptibility to Plasmodium falciparum, clinical malaria morbidity and higher rate of lactase persistence compared to sympatric tribes. Lactase non-persistence, often called lactose intolerance, is the normal condition where lactase activity in the intestinal wall declines after weaning. Lactase persistence, common in Europe, and in certain African people with traditions of raising cattle, is caused by polymorphisms in the enhancer region approximately 14 kb upstream of the lactase gene. METHODS: To evaluate the relationship between malaria and lactase persistence genotypes, a 400 bp region surrounding the main European C/T-13910 polymorphism upstream of the lactase gene was sequenced. DNA samples used in the study originated from 162 Fulani and 79 Dogon individuals from Mali. RESULTS: Among 79 Dogon only one heterozygote of the lactase enhancer polymorphism was detected, whereas all others were homozygous for the ancestral C allele. Among the Fulani, the main European polymorphism at locus C/T-13910 was by far the most common polymorphism, with an allele frequency of 37%. Three other single-nucleotide polymorphisms were found with allele frequencies of 3.7%, 1.9% and 0.6% each. The novel DNA polymorphism T/C-13906 was seen in six heterozygous Fulani. Among the Fulani with lactase non-persistence CC genotypes at the C/T-13910 locus, 24% had malaria parasites detectable by microscopy compared to 18% for lactase persistent genotypes (P = 0.29). Pooling the lactase enhancer polymorphisms to a common presumptive genotype gave 28% microscopy positives for non-persistent and 17% for others (P = 0.11). CONCLUSIONS: Plasmodium falciparum parasitaemia in asymptomatic Fulani is more common in individuals with lactase non-persistence genotypes, but this difference is not statistically significant. The potential immunoprotective properties of dietary cow milk as a reason for the partial malaria resistance of Fulani warrant further investigation.