Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8018): 878-883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718837

RESUMEN

The properties of polycrystalline materials are often dominated by defects; two-dimensional (2D) crystals can even be divided and disrupted by a line defect1-3. However, 2D crystals are often required to be processed into films, which are inevitably polycrystalline and contain numerous grain boundaries, and therefore are brittle and fragile, hindering application in flexible electronics, optoelectronics and separation1-4. Moreover, similar to glass, wood and plastics, they suffer from trade-off effects between mechanical strength and toughness5,6. Here we report a method to produce highly strong, tough and elastic films of an emerging class of 2D crystals: 2D covalent organic frameworks (COFs) composed of single-crystal domains connected by an interwoven grain boundary on water surface using an aliphatic bi-amine as a sacrificial go-between. Films of two 2D COFs have been demonstrated, which show Young's moduli and breaking strengths of 56.7 ± 7.4 GPa and 73.4 ± 11.6 GPa, and 82.2 ± 9.1 N m-1 and 29.5 ± 7.2 N m-1, respectively. We predict that the sacrificial go-between guided synthesis method and the interwoven grain boundary will inspire grain boundary engineering of various polycrystalline materials, endowing them with new properties, enhancing their current applications and paving the way for new applications.

2.
Nano Lett ; 24(10): 3014-3020, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427697

RESUMEN

Knowledge of the atomic structure of layer-stacked two-dimensional conjugated metal-organic frameworks (2D c-MOFs) is an essential prerequisite for establishing their structure-property correlation. For this, atomic resolution imaging is often the method of choice. In this paper, we gain a better understanding of the main properties contributing to the electron beam resilience and the achievable resolution in the high-resolution TEM images of 2D c-MOFs, which include chemical composition, density, and conductivity of the c-MOF structures. As a result, sub-angstrom resolution of 0.95 Å has been achieved for the most stable 2D c-MOF of the considered structures, Cu3(BHT) (BHT = benzenehexathiol), at an accelerating voltage of 80 kV in a spherical and chromatic aberration-corrected TEM. Complex damage mechanisms induced in Cu3(BHT) by the elastic interactions with the e-beam have been explained using detailed ab initio molecular dynamics calculations. Experimental and calculated knock-on damage thresholds are in good agreement.

3.
J Am Chem Soc ; 146(4): 2574-2582, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38231138

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have attracted increasing interest in electronics due to their (semi)conducting properties. Charge-neutral 2D c-MOFs also possess persistent organic radicals that can be viewed as spin-concentrated arrays, affording new opportunities for spintronics. However, the strong π-interaction between neighboring layers of layer-stacked 2D c-MOFs annihilates active spin centers and significantly accelerates spin relaxation, severely limiting their potential as spin qubits. Herein, we report the precise tuning of the charge transport and spin dynamics in 2D c-MOFs via the control of interlayer stacking. The introduction of bulky side groups on the conjugated ligands enables a significant dislocation of the 2D c-MOFs layers from serrated stacking to staggered stacking, thereby spatially weakening the interlayer interactions. As a consequence, the electrical conductivity of 2D c-MOFs decreases by 6 orders of magnitude, while the spin density achieves more than a 30-fold increase and the spin-lattice relaxation time (T1) is increased up to ∼60 µs, hence being superior to the reference 2D c-MOFs with compact stackings whose spin relaxation is too fast to be detected. Spin dynamics results also reveal that spinless polaron pairs or bipolarons play critical roles in the charge transport of these 2D c-MOFs. Our strategy provides a bottom-up approach for enlarging spin dynamics in 2D c-MOFs, opening up pathways for developing MOF-based spintronics.

4.
Small ; 20(24): e2307285, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225688

RESUMEN

Gated adsorption is one of the unique physical properties of flexible metal-organic frameworks with high application potential in selective adsorption and sensing of molecules. Despite recent studies that have provided some guidelines in understanding and designing structural flexibility for controlling gate opening by chemical modification of the secondary building units, currently, there is no established strategy to design a flexible MOF showing selective gated adsorption for a specific guest molecule. In a present contribution it is demonstrated for the first time, that the selectivity in the gate opening of a particular compound can be tuned, changed, and even reversed using particle size engineering DUT-8(Zn) ([Zn2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane, DUT = Dresden University of Technology) experiences phase transition from open (op) to closed (cp) pore phase upon removal of solvent from the pores. Microcrystals show selective reopening in the presence of dichloromethane (DCM) over alcohols. Crystal downsizing to micron size unexpectedly reverses the gate opening selectivity, causing DUT-8(Zn) to open its nanosized pores for alcohols but suppressing the responsivity toward DCM.

5.
Nanotechnology ; 35(14)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096582

RESUMEN

Among two-dimensional (2D) transition metal dichalcogenides (TMDs), MoTe2is predestined for phase-engineering applications due to the small difference in free energy between the semiconducting H-phase and metallic 1T'-phase. At the same time, the complete picture of the phase evolution originating from point defects in single-layer of semiconducting H-MoTe2via Mo6Te6nanowires to cubic molybdenum has not yet been reported so far, and it is the topic of the present study. The occurring phase transformations in single-layer H-MoTe2were initiated by 40-80 kV electrons in the spherical and chromatic aberration-corrected high-resolution transmission electron microscope and/or when subjected to high temperatures. We analyse the damage cross-section at voltages between 40 kV and 80 kV and relate the results to previously published values for other TMDs. Then we demonstrate that electron beam irradiation offers a route to locally transform freestanding single-layer H-MoTe2into one-dimensional (1D) Mo6Te6nanowires. Combining the experimental data with the results of first-principles calculations, we explain the transformations in MoTe2single-layers and Mo6Te6nanowires by an interplay of electron-beam-induced energy transfer, atom ejection, and oxygen absorption. Further, the effects emerging from electron irradiation are compared with those produced byin situannealing in a vacuum until pure molybdenum crystals are obtained at temperatures of about 1000 °C. A detailed understanding of high-temperature solid-to-solid phase transformation in the 2D limit can provide insights into the applicability of this material for future device fabrication.

6.
Nature ; 564(7735): 234-239, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30478294

RESUMEN

Many carbon allotropes can act as host materials for reversible lithium uptake1,2, thereby laying the foundations for existing and future electrochemical energy storage. However, insight into how lithium is arranged within these hosts is difficult to obtain from a working system. For example, the use of in situ transmission electron microscopy3-5 to probe light elements (especially lithium)6,7 is severely hampered by their low scattering cross-section for impinging electrons and their susceptibility to knock-on damage8. Here we study the reversible intercalation of lithium into bilayer graphene by in situ low-voltage transmission electron microscopy, using both spherical and chromatic aberration correction9 to enhance contrast and resolution to the required levels. The microscopy is supported by electron energy-loss spectroscopy and density functional theory calculations. On their remote insertion from an electrochemical cell covering one end of the long but narrow bilayer, we observe lithium atoms to assume multi-layered close-packed order between the two carbon sheets. The lithium storage capacity associated with this superdense phase far exceeds that expected from formation of LiC6, which is the densest configuration known under normal conditions for lithium intercalation within bulk graphitic carbon10. Our findings thus point to the possible existence of distinct storage arrangements of ions in two-dimensional layered materials as compared to their bulk parent compounds.

7.
Microsc Microanal ; 30(2): 294-305, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38507652

RESUMEN

We present an efficient approach for electron ptychography based on a mathematical relationship that differs from that underlying the established algorithms of the ptychography iterative engine or the noniterative algorithms like the Wigner-distribution-deconvolution or the single-side-band method. Three variables are handled in this method-the transfer function of the objective lens, the object spectrum, and the diffraction wave whose phase is unknown. In the case of an aberration-corrected electron microscope, one is able to obtain a well-estimated transfer function of the lens. After reducing the number of three variables down to two, we construct an iterative loop between the object spectrum and the diffraction wave, which retrieves the object spectrum within a small number of iterations. We tested this object spectrum retrieval method on both a calculated and an experimental 4D-STEM datasets. By applying this method, we explore the influence of sampling, dose, and the size of illumination aperture on the reconstructed phase images.

8.
Angew Chem Int Ed Engl ; 63(24): e202316299, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38422222

RESUMEN

Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3 Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI-)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI--intercalation stage and promoting its specific capacity (from ~83 to 124 mAh g-1) and cycling life (>1000 cycles, 95 % capacity retention).

9.
Angew Chem Int Ed Engl ; 63(20): e202402417, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38489608

RESUMEN

Functionalizing single-walled carbon nanotubes (SWCNTs) in a robust way that does not affect the sp2 carbon framework is a considerable research challenge. Here we describe how triiodide salts of positively charged macrocycles can be used not only to functionalize SWCNTs from the outside, but simultaneously from the inside. We employed disulfide exchange in aqueous solvent to maximize the solvophobic effect and therefore achieve a high degree of macrocycle immobilization. Characterization by Raman spectroscopy, EDX-STEM and HR-TEM clearly showed that serendipitously this wet-chemical functionalization procedure also led to the encapsulation of polyiodide chains inside the nanotubes. The resulting three-shell composite materials are redox-active and experience an intriguing interplay of electrostatic, solvophobic and mechanical effects that could be of interest for applications in energy storage.

10.
Angew Chem Int Ed Engl ; 63(3): e202313591, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38011010

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging as a unique subclass of layer-stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c-MOFs, the controlled synthesis of hierarchically nanostructured 2D c-MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c-MOFs with controlled morphologies and dimensions via insulating MOFs-to-c-MOFs transformations. The resultant hierarchically nanostructured 2D c-MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk-type 2D c-MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof-of-concept applications, the hierarchically nanostructured 2D c-MOFs exhibit a superior performance for electrical properties related applications (hollow Cu-BHT nanocubes-based supercapacitor and Cu-HHB nanoflowers-based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c-MOFs, respectively.

11.
J Am Chem Soc ; 145(43): 23630-23638, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852932

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a new class of crystalline layered conducting materials that hold significant promise for applications in electronics and spintronics. However, current 2D c-MOFs are mainly made from organic planar ligands, whereas layered 2D c-MOFs constructed by curved or twisted ligands featuring novel orbital structures and electronic states remain less developed. Herein, we report a Cu-catecholate wavy 2D c-MOF (Cu3(HFcHBC)2) based on a fluorinated core-twisted contorted hexahydroxy-hexa-cata-hexabenzocoronene (HFcHBC) ligand. We show that the resulting film is composed of rod-like single crystals with lengths up to ∼4 µm. The crystal structure is resolved by high-resolution transmission electron microscopy (HRTEM) and continuous rotation electron diffraction (cRED), indicating a wavy honeycomb lattice with AA-eclipsed stacking. Cu3(HFcHBC)2 is predicted to be metallic based on theoretical calculation, while the crystalline film sample with numerous grain boundaries apparently exhibits semiconducting behavior at the macroscopic scale, characterized by obvious thermally activated conductivity. Temperature-dependent electrical conductivity measurements on the isolated single-crystal devices indeed demonstrate the metallic nature of Cu3(HFcHBC)2, with a very weak thermally activated transport behavior and a room-temperature conductivity of 5.2 S cm-1. Furthermore, the 2D c-MOFs can be utilized as potential electrode materials for energy storage, which display decent capacity (163.3 F g-1) and excellent cyclability in an aqueous 5 M LiCl electrolyte. Our work demonstrates that wavy 2D c-MOF using contorted ligands are capable of intrinsic metallic transport, marking the emergence of new conductive MOFs for electronic and energy applications.

12.
Small ; : e2306732, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38073322

RESUMEN

Currently, most reported 2D conjugated metal-organic frameworks (2D c-MOFs) are based on planar polycyclic aromatic hydrocarbons (PAHs) with symmetrical functional groups, limiting the possibility of introducing additional substituents to fine-tune the crystallinity and electrical properties. Herein, a novel class of wavy 2D c-MOFs with highly substituted, core-twisted hexahydroxy-hexa-cata-benzocoronenes (HH-cHBCs) as ligands is reported. By tailoring the substitution of the c-HBC ligands with electron-withdrawing groups (EWGs), such as fluorine, chlorine, and bromine, it is demonstrated that the crystallinity and electrical conductivity at the molecular level can be tuned. The theoretical calculations demonstrate that F-substitution leads to a more reversible coordination bonding between HH-cHBCs and copper metal center, due to smaller atomic size and stronger electron-withdrawing effect. As a result, the achieved F-substituted 2D c-MOF exhibits superior crystallinity, comprising ribbon-like single crystals up to tens of micrometers in length. Moreover, the F-substituted 2D c-MOF displays higher electrical conductivity (two orders of magnitude) and higher charge carrier mobility (almost three times) than the Cl-substituted one. This work provides a new molecular design strategy for the development of wavy 2D c-MOFs and opens a new route for tailoring the coordination reversibility by ligand substitution toward increased crystallinity and superior electric conductivity.

13.
Chemistry ; 29(13): e202203220, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458818

RESUMEN

The design of efficient and stable oxygen evolution reaction (OER) catalysts based on noble-metal-free materials is crucial for energy conversion and storage. In this work, it was demonstrated how polyoxometalate (POM)-doped ZIF-67 can be converted into a stable oxygen evolution electrocatalyst by chemical etching, cation exchange, and thermal annealing steps. Characterization by X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and Raman spectroscopy indicate that POM-doped ZIF-67 derived carbon-supported metal oxides were synthesized. The resulting composite shows structural and compositional advantages which lead to low overpotential (306 mV at j=10 mA ⋅ cm-2 ) and long-term stability under harsh OER conditions (1.0 M aqueous KOH).

14.
Nano Lett ; 22(7): 2881-2888, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35289621

RESUMEN

Nanodiamonds (NDs) with color centers are excellent emitters for various bioimaging and quantum biosensing applications. In our work, we explore new applications of NDs with silicon-vacancy centers (SiV) obtained by high-pressure high-temperature (HPHT) synthesis based on metal-catalyst-free growth. They are coated with a polypeptide biopolymer, which is essential for efficient cellular uptake. The unique optical properties of NDs with SiV are their high photostability and narrow emission in the near-infrared region. Our results demonstrate for the first time that NDs with SiV allow live-cell dual-color imaging and intracellular tracking. Also, intracellular thermometry and challenges associated with SiV atomic defects in NDs are investigated and discussed for the first time. NDs with SiV nanoemitters provide new avenues for live-cell bioimaging, diagnostic (SiV as a nanosized thermometer), and theranostic (nanodiamonds as drug carrier) applications.


Asunto(s)
Nanodiamantes , Termometría , Diagnóstico por Imagen , Portadores de Fármacos , Nanodiamantes/química , Silicio
15.
J Am Chem Soc ; 144(7): 3233-3241, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35147035

RESUMEN

It has been a longstanding challenge to rationally synthesize thin films of organic two-dimensional (2D) crystals with large single-crystalline domains. Here, we present a general strategy for the creation of 2D crystals of covalent organic frameworks (COFs) on the water surface, assisted by a charged polymer. The morphology of the preorganized monomers underneath the charged polymer on the water surface and their diffusion were crucial for the formation of the organic 2D crystals. Thin films of 2D COFs with an average single-crystalline domain size of around 3.57 ± 2.57 µm2 have been achieved, and their lattice structure, molecular structure, and grain boundaries were identified with a resolution down to 3 Å. The swing of chain segments and lattice distortion were revealed as key factors in compensating for the misorientation between adjacent grains and facilitating error corrections at the grain boundaries, giving rise to larger single-crystalline domains. The generality of the synthesis method was further proved with three additional 2D COFs. The oriented single-crystalline domains and clear grain boundaries render the films as model materials to study the dependence of the vertical conductivity of organic 2D crystals on domain sizes and chemical structures, and significant grain boundary effects were illustrated. This study presents a breakthrough in the controlled synthesis of organic 2D crystals with structural control at the molecular level. We envisage that this work will inspire further investigation into the microstructure-intrinsic property correlation of 2D COFs and boost their application in electronics.

16.
J Am Chem Soc ; 144(23): 10291-10300, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35657204

RESUMEN

As covalent organic frameworks (COFs) are coming of age, the lack of effective approaches to achieve crystalline and centimeter-scale-homogeneous COF films remains a significant bottleneck toward advancing the application of COFs in optoelectronic devices. Here, we present the synthesis of colloidal COF nanoplates, with lateral sizes of ∼200 nm and average heights of 35 nm, and their utilization as photocathodes for solar hydrogen evolution. The resulting COF nanoplate colloid exhibits a unimodal particle-size distribution and an exceptional colloidal stability without showing agglomeration after storage for 10 months and enables smooth, homogeneous, and thickness-tunable COF nanofilms via spin coating. Photoelectrodes comprising COF nanofilms were fabricated for photoelectrochemical (PEC) solar-to-hydrogen conversion. By rationally designing multicomponent photoelectrode architectures including a polymer donor/COF heterojunction and a hole-transport layer, charge recombination in COFs is mitigated, resulting in a significantly increased photocurrent density and an extremely positive onset potential for PEC hydrogen evolution (over +1 V against the reversible hydrogen electrode), among the best of classical semiconductor-based photocathodes. This work thus paves the way toward fabricating solution-processed large-scale COF nanofilms and heterojunction architectures and their use in solar-energy-conversion devices.

17.
J Am Chem Soc ; 144(27): 12219-12228, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35729777

RESUMEN

Nanostructure-based functions are omnipresent in nature and essential for the diversity of life. Unlike small molecules, which are often inhibitors of enzymes or biomimetics with established methods of elucidation, we show that functions of nanoscale structures in cells are complex and can implicate system-level effects such as the regulation of energy and redox homeostasis. Herein, we design a platinum(II)-containing tripeptide that assembles into intracellular fibrillar nanostructures upon molecular rearrangement in the presence of endogenous H2O2. The formed nanostructures blocked metabolic functions, including aerobic glycolysis and oxidative phosphorylation, thereby shutting down ATP production. As a consequence, ATP-dependent actin formation and glucose metabolite-dependent histone deacetylase activity are downregulated. We demonstrate that assembly-driven nanomaterials offer a rich avenue to achieve broad-spectrum bioactivities that could provide new opportunities in drug discovery.


Asunto(s)
Nanoestructuras , Platino (Metal) , Adenosina Trifosfato/metabolismo , Metabolismo Energético , Homeostasis , Peróxido de Hidrógeno , Nanoestructuras/química
18.
Microsc Microanal ; : 1-11, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35249588

RESUMEN

The integrated differential phase contrast (IDPC) method is useful for generating the potential map of a thin sample. We evaluate theoretically the potential of IDPC imaging for thick samples by varying the focus at different sample thicknesses. Our calculations show that high defocus values result in enhanced anisotropy of the contrast transfer function (CTF) and uninterpretable images, if a quadrant detector is applied. We further show that applying a multi-sector detector can result in an almost isotropic CTF. By sector number-dependent calculations for both Cc/C3-corrected and C3-corrected scanning transmission electron microscopy (STEM), we show that the increase of detector sectors not only removes the anisotropy of the CTF, but also improves image contrast and resolution. For a proof-of-principle IDPC-STEM (uncorrected) experiment, we realize the functionality of a 12-sector detector from a physical quadrant detector and demonstrate the improvement in contrast and resolution on the example of InGaN/GaN quantum well structure.

19.
Microsc Microanal ; : 1-9, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36104826

RESUMEN

We introduce a novel method to improve the computational efficiency for (S)TEM image simulation by employing matrix diagonalization of the mixed envelope function (MEF). The MEF is derived by taking the finite size and the energy spread of the effective electron source into account, and is a component of the transmission cross-coefficient that accounts for the correlation between partially coherent waves. Since the MEF is a four-dimensional array and its application in image calculations is time-consuming, we reduce the computation time by using its eigenvectors. By incorporating the aperture function into the matrix diagonalization, only a small number of eigenvectors are required to approximate the original matrix with high accuracy. The diagonalization enables for each eigenvector the calculation of the corresponding image by employing the coherent model. The individual images are weighted by the corresponding eigenvalues and then summed up, resulting in the total partially coherent image.

20.
Angew Chem Int Ed Engl ; 61(22): e202117730, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35285126

RESUMEN

Clean air is an indispensable prerequisite for human health. The capture of small toxic molecules requires the development of advanced materials for air filtration. Two-dimensional nanomaterials offer highly accessible surface areas but for real-world applications their assembly into well-defined hierarchical mesostructures is essential. DUT-134(Cu) ([Cu2 (dttc)2 ]n , dttc=dithieno[3,2-b : 2',3'-d]thiophene-2,6-dicarboxylate]) is a metal-organic framework forming platelet-shaped particles, that can be organized into complex structures, such as millimeter large free-standing layers (carpets) and tubes. The structured material demonstrates enhanced accessibility of open metal sites and significantly enhanced H2 S adsorption capacity in gas filtering tests compared with traditional bulk analogues.


Asunto(s)
Estructuras Metalorgánicas , Nanoestructuras , Adsorción , Pisos y Cubiertas de Piso , Humanos , Estructuras Metalorgánicas/química , Metales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA