Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 62(11): 1689-1705, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37163663

RESUMEN

Misfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in PrPC misfolding. PrPC is a combined Cu(II) and Zn(II) metal-binding protein, where the main metal-binding site is located in the octarepeat (OR) region. Thus, the biological function of PrPC may involve the transport of divalent metal ions across membranes or buffering concentrations of divalent metal ions in the synaptic cleft. Recent studies have shown that an excess of Cu(II) ions can result in PrPC instability, oligomerization, and/or neuroinflammation. Here, we have used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region of PrPC. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Binding of the first metal ion results in a structural transition from the polyproline II helix to the ß-turn structure, while the binding of additional metal ions induces the formation of ß-sheet structures. Fluorescence spectroscopy data indicate that the OR region can bind both Cu(II) and Zn(II) ions at neutral pH, but under acidic conditions, it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of either metal ion to the OR region results in the formation of ß-hairpin structures. As the formation of ß-sheet structures can be a first step toward amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSE diseases.


Asunto(s)
Priones , Priones/metabolismo , Proteínas Priónicas/metabolismo , Unión Proteica , Cobre/metabolismo , Conformación Proteica en Lámina beta , Dicroismo Circular , Metales , Zinc , Sitios de Unión
2.
Mycorrhiza ; 33(1-2): 45-58, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36637489

RESUMEN

Tuber wenchuanense ascomata (Ascomycota, Pezizales), a species originally described from Sichuan (China), were found in the Tatra Mountains in southern Poland. The purpose of this work was to (i) report and assess the first case of the holarctic natural distribution of a Tuber species, (ii) amend the original description of the species, (iii) summarize data on its host plants and (iv) describe its ectomycorrhiza. Specimens of Tuber wenchuanense from the Tatra Mountains were studied morphologically and molecularly. The ectomycorrhiza of this truffle with Picea abies was described for the first time. The distribution of T. wenchuanense, which is reconstructed based on sequences deposited in the publicly available nucleotide sequence databases, makes it the first holarctic Tuber species and the one with the northernmost habitat. In fact, its habitat is confined mainly to mountain coniferous forests and alpine and arctic tundra; although, according to known observations, the fruiting bodies of T. wenchuanense can be produced only under conifers. Based on the sequences of the internal transcribed spacer, this species appears to have low genetic variability over the entire distribution range. The phylogenetic tree showed that some of the unidentified phylotypes from the Rufum clade found by other researchers belong to T. wenchuanense. The ecological implications of these findings are discussed.


Asunto(s)
Ascomicetos , Micorrizas , Picea , Filogenia , Micorrizas/genética , Ascomicetos/genética
3.
Int J Mol Sci ; 23(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35628610

RESUMEN

Amyloid fibrils have been known for many years. Unfortunately, their fame stems from negative aspects related to amyloid diseases. Nevertheless, due to their properties, they can be used as interesting nanomaterials. Apart from their remarkable stability, amyloid fibrils may be regarded as a kind of a storage medium and as a source of active peptides. In many cases, their structure may guarantee a controlled and slow release of peptides in their active form; therefore, they can be used as a potential nanomaterial in drug delivery systems. In addition, amyloid fibrils display controllable stiffness, flexibility, and satisfactory mechanical strength. In addition, they can be modified and functionalized very easily. Understanding the structure and genesis of amyloid assemblies derived from a broad range of amyloidogenic proteins could help to better understand and use this unique material. One of the factors responsible for amyloid aggregation is the steric zipper. Here, we report the discovery of steric zipper-forming peptides in the sequence of the amyloidogenic protein, human cystatin C (HCC). The ability of short peptides derived from this fragment of HCC to form fibrillar structures with defined self-association characteristics and the factors influencing this aggregation are also presented in this paper.


Asunto(s)
Amiloide , Amiloidosis , Amiloide/química , Proteínas Amiloidogénicas/química , Cistatina C/química , Humanos , Péptidos/química
4.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362228

RESUMEN

Human cystatin C (HCC), an amyloidogenic protein, forms dimers and higher oligomers (trimers, tetramers and donut like large oligomers) via a domain-swapping mechanism. The aim of this study was the characterization of the HCC oligomeric states observed within the pH range from 2.2 to 10.0 and also in conditions promoting oligomerization. The HCC oligomeric forms obtained in different conditions were characterized using size exclusion chromatography, dynamic light scattering and small-angle X-ray scattering. The marked ability of HCC to form tetramers at low pH (2.3 or 3.0) and dimers at pH 4.0-5.0 was observed. HCC remains monomeric at pH levels above 6.0. Based on the SAXS data, the structure of the HCC tetramer was proposed. Changes in the environment (from acid to neutral) induced a breakdown of the HCC tetramers to dimers. The tetrameric forms of human cystatin C are formed by the association of the dimers without a domain-swapping mechanism. These observations were confirmed by their dissociation to dimers at pH 7.4.


Asunto(s)
Proteínas Amiloidogénicas , Cistatina C , Humanos , Cistatina C/química , Proteínas Amiloidogénicas/metabolismo , Dispersión del Ángulo Pequeño , Dimerización , Difracción de Rayos X
5.
J Nanobiotechnology ; 19(1): 168, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082768

RESUMEN

BACKGROUND: Lipid liquid crystalline nanoparticles (LLCNPs) emerge as a suitable system for drug and contrast agent delivery. In this regard due to their unique properties, they offer a solubility of a variety of active pharmaceutics with different polarities increasing their stability and the possibility of controlled delivery. Nevertheless, the most crucial aspect underlying the application of LLCNPs for drug or contrast agent delivery is the unequivocal assessment of their biocompatibility, including cytotoxicity, genotoxicity, and related aspects. Although studies regarding the cytotoxicity of LLCNPs prepared from various lipids and surfactants were conducted, the actual mechanism and its impact on the cells (both cancer and normal) are not entirely comprehended. Therefore, in this study, LLCNPs colloidal formulations were prepared from two most popular structure-forming lipids, i.e., glyceryl monooleate (GMO) and phytantriol (PHT) with different lipid content of 2 and 20 w/w%, and the surfactant Pluronic F-127 using the top-down approach for further comparison of their properties. Prepared formulations were subjected to physicochemical characterization and followed with in-depth biological characterization, which included cyto- and genotoxicity towards cervical cancer cells (HeLa) and human fibroblast cells (MSU 1.1), the evaluation of cytoskeleton integrity, intracellular reactive oxygen species (ROS) generation upon treatment with prepared LLCNPs and finally the identification of internalization pathways. RESULTS: Results denote the higher cytotoxicity of PHT-based nanoparticles on both cell lines on monolayers as well as cellular spheroids, what is in accordance with evaluation of ROS activity level and cytoskeleton integrity. Detected level of ROS in cells upon the treatment with LLCNPs indicates their insignificant contribution to the cellular redox balance for most concentrations, however distinct for GMO- and PHT-based LLCNPs. The disintegration of cytoskeleton after administration of LLCNPs implies the relation between LLCNPs and F-actin filaments. Additionally, the expression of four genes involved in DNA damage and important metabolic processes was analyzed, indicating concentration-dependent differences between PHT- and GMO-based LLCNPs. CONCLUSIONS: Overall, GMO-based LLCNPs emerge as potentially more viable candidates for drug delivery systems as their impact on cells is not as deleterious as PHT-based as well as they were efficiently internalized by cell monolayers and 3D spheroids.


Asunto(s)
Alcoholes Grasos/toxicidad , Glicéridos/toxicidad , Nanopartículas/química , Química Farmacéutica , Portadores de Fármacos/química , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Alcoholes Grasos/química , Glicéridos/química , Humanos , Lípidos/química , Pruebas de Mutagenicidad , Tamaño de la Partícula , Poloxámero/química , Poloxámero/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Solubilidad , Tensoactivos
6.
Biochem J ; 477(7): 1345-1362, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32207815

RESUMEN

We report the identification and characterization of a bacteriophage λ-encoded protein, NinH. Sequence homology suggests similarity between NinH and Fis, a bacterial nucleoid-associated protein (NAP) involved in numerous DNA topology manipulations, including chromosome condensation, transcriptional regulation and phage site-specific recombination. We find that NinH functions as a homodimer and is able to bind and bend double-stranded DNA in vitro. Furthermore, NinH shows a preference for a 15 bp signature sequence related to the degenerate consensus favored by Fis. Structural studies reinforced the proposed similarity to Fis and supported the identification of residues involved in DNA binding which were demonstrated experimentally. Overexpression of NinH proved toxic and this correlated with its capacity to associate with DNA. NinH is the first example of a phage-encoded Fis-like NAP that likely influences phage excision-integration reactions or bacterial gene expression.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Bacterianas/química , Secuencia de Bases , Sitios de Unión , Simulación por Computador , ADN/metabolismo , ADN Viral/metabolismo , Proteínas de Unión al ADN/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Factor Proteico para Inverción de Estimulación/química , Factor Proteico para Inverción de Estimulación/genética , Expresión Génica , Proteínas Mutantes/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Multimerización de Proteína/genética , Proteínas Virales/química
7.
Sensors (Basel) ; 21(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808665

RESUMEN

The development of modern measurement methods for ship systems has occurred due to economic changes and increasingly stringent environmental requirements [...].

8.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207682

RESUMEN

Nanotechnology has introduced a new quality and has definitely developed the possibilities of treating and diagnosing various diseases. One of the scientists' interests is liposomes and metallic nanoparticles (LipoMNPs)-the combination of which has introduced new properties and applications. However, the field of creating hybrid nanostructures consisting of liposomes and metallic nanoparticles is relatively little understood. The purpose of this review was to compile the latest reports in the field of treatment and medical imaging using of LipoMNPs. The authors focused on presenting this issue in the direction of improving the used conventional treatment and imaging methods. Most of all, the nature of bio-interactions between nanostructures and cells is not sufficiently taken into account. As a result, overcoming the existing limitations in the implementation of such solutions in the clinic is difficult. We concluded that hybrid nanostructures are used in a very wide range, especially in the treatment of cancer and magnetic resonance imaging. There were also solutions that combine treatments with simultaneous imaging, creating a theragnostic approach. In the future, researchers should focus on the description of the biological interactions and the long-term effects of the nanostructures to use LipoMNPs in the treatment of patients.


Asunto(s)
Medios de Contraste/uso terapéutico , Imagen por Resonancia Magnética , Nanopartículas del Metal/uso terapéutico , Neoplasias , Humanos , Liposomas , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
9.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299360

RESUMEN

Nonviral vectors for gene therapy such as lipoplexes are characterized by low toxicity, high biocompatibility, and good transfection efficiency. Specifically, lipoplexes based on polymeric surfactants and phospholipids have great potential as gene carriers due to the increased ability to bind genetic material (multiplied positive electric charge) while lowering undesirable effects (the presence of lipids makes the system more like natural membranes). This study aimed to test the ability to bind and release genetic material by lipoplexes based on trimeric surfactants and lipid formulations of different compositions and to characterize formed complexes by circular dichroism (CD) spectroscopy and atomic force microscopy (AFM). The cytotoxicity of studied lipoplexes was tested on HeLa cells by the MTT cell viability assay and the dye exclusion test (trypan blue). The presence of lipids in the system lowered the surfactant concentration required for complexation (higher efficiency) and reduced the cytotoxicity of lipoplexes. Surfactant/lipids/DNA complexes were more stable than surfactant/DNA complexes. Surfactant molecules induced the genetic material condensation, but the presence of lipids significantly intensified this process. Systems based on trimeric surfactants and lipid formulations, particularly TRI_N and TRI_IMI systems, could be used as delivery carrier, and have proven to be highly effective, nontoxic, and universal for DNA of various lengths.


Asunto(s)
Vectores Genéticos/genética , Fosfolípidos/química , Tensoactivos/química , Línea Celular Tumoral , Dicroismo Circular/métodos , ADN/química , Técnicas de Transferencia de Gen , Células HeLa , Humanos , Lípidos/química , Microscopía de Fuerza Atómica/métodos
10.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34681586

RESUMEN

Nudt16 is a member of the NUDIX family of hydrolases that show specificity towards substrates consisting of a nucleoside diphosphate linked to another moiety X. Several substrates for hNudt16 and various possible biological functions have been reported. However, some of these reports contradict each other and studies comparing the substrate specificity of the hNudt16 protein are limited. Therefore, we quantitatively compared the affinity of hNudt16 towards a set of previously published substrates, as well as identified novel potential substrates. Here, we show that hNudt16 has the highest affinity towards IDP and GppG, with Kd below 100 nM. Other tested ligands exhibited a weaker affinity of several orders of magnitude. Among the investigated compounds, only IDP, GppG, m7GppG, AppA, dpCoA, and NADH were hydrolyzed by hNudt16 with a strong substrate preference for inosine or guanosine containing compounds. A new identified substrate for hNudt16, GppG, which binds the enzyme with an affinity comparable to that of IDP, suggests another potential regulatory role of this protein. Molecular docking of hNudt16-ligand binding inside the hNudt16 pocket revealed two binding modes for representative substrates. Nucleobase stabilization by Π stacking interactions with His24 has been associated with strong binding of hNudt16 substrates.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Pirofosfatasas/metabolismo , Sitios de Unión , Dicroismo Circular , Humanos , Hidrólisis , Cinética , Simulación del Acoplamiento Molecular , Estabilidad Proteica , Especificidad por Sustrato , Termodinámica
11.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919582

RESUMEN

Piperine is an alkaloid that has extensive pharmacological activity and impacts other active substances bioavailability due to inhibition of CYP450 enzymes, stimulation of amino acid transporters and P-glycoprotein inhibition. Low solubility and the associated low bioavailability of piperine limit its potential. The combination of piperine with 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) causes a significant increase in its solubility and, consequently, an increase in permeability through gastrointestinal tract membranes and the blood-brain barrier. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) were used to characterize interactions between piperine and HP-ß-CD. The observed physicochemical changes should be combined with the process of piperine and CD system formation. Importantly, with an increase in solubility and permeability of piperine as a result of interaction with CD, it was proven to maintain its biological activity concerning the antioxidant potential (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay), inhibition of enzymes essential for the inflammatory process and for neurodegenerative changes (hyaluronidase, acetylcholinesterase, butyrylcholinesterase).


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Alcaloides/química , Benzodioxoles/química , Piperidinas/química , Alcamidas Poliinsaturadas/química , Animales , Barrera Hematoencefálica/metabolismo , Rastreo Diferencial de Calorimetría , Humanos , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
12.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917000

RESUMEN

Technological developments in the field of biologically active peptide applications in medicine have increased the need for new methods for peptide delivery. The disadvantage of peptides as drugs is their low biological stability. Recently, great attention has been paid to self-assembling peptides that can form fibrils. Such a formulation makes bioactive peptides more resistant to enzymatic degradation and druggable. Peptide fibrils can be carriers for peptides with interesting biological activities. These features open up prospects for using the peptide fibrils as long-acting drugs and are a valid alternative to conventional peptidic therapies. In our study, we designed new peptide scaffolds that are a hybrid of three interconnected amino acid sequences and are: pro-regenerative, cleavable by neutrophilic elastase, and fibril-forming. We intended to obtain peptides that are stable in the wound environment and that, when applied, would release a biologically active sequence. Our studies showed that the designed hybrid peptides show a high tendency toward regular fibril formation and are able to release the pro-regenerative sequence. Cytotoxicity studies showed that all the designed peptides were safe, did not cause cytotoxic effects and revealed a pro-regenerative potential in human fibroblast and keratinocyte cell lines. In vivo experiments in a dorsal skin injury model in mice indicated that two tested peptides moderately promote tissue repair in their free form. Our research proves that peptide fibrils can be a druggable form and a scaffold for active peptides.


Asunto(s)
Portadores de Fármacos/química , Péptidos/química , Péptidos/farmacología , Andamios del Tejido/química , Cicatrización de Heridas/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Fenómenos Químicos , Fibroblastos , Humanos , Queratinocitos , Ratones , Microscopía de Fuerza Atómica , Microscopía Electrónica , Proteolisis , Medicina Regenerativa , Análisis Espectral
13.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925955

RESUMEN

The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of the study was to characterize the relationships between the structure and activity of FTO. The effect of cofactors (Fe2+/Mn2+ and 2-OG), Ca2+ that do not bind at the catalytic site, and protein concentration on FTO properties expressed in either E. coli (ECFTO) or baculovirus (BESFTO) system were determined using biophysical methods (DSF, MST, SAXS) and biochemical techniques (size-exclusion chromatography, enzymatic assay). We found that BESFTO carries three phosphoserines (S184, S256, S260), while there were no such modifications in ECFTO. The S256D mutation mimicking the S256 phosphorylation moderately decreased FTO catalytic activity. In the presence of Ca2+, a slight stabilization of the FTO structure was observed, accompanied by a decrease in catalytic activity. Size exclusion chromatography and MST data confirmed the ability of FTO from both expression systems to form homodimers. The MST-determined dissociation constant of the FTO homodimer was consistent with their in vivo formation in human cells. Finally, a low-resolution structure of the FTO homodimer was built based on SAXS data.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/fisiología , Catálisis , Dominio Catalítico , Dioxigenasas/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Procesamiento Proteico-Postraduccional/genética , ARN Mensajero/genética , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Difracción de Rayos X/métodos
14.
Cell Commun Signal ; 18(1): 180, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33153474

RESUMEN

The Drosophila melanogaster Germ cell-expressed protein (GCE) is a paralog of the juvenile hormone (JH) receptor - Methoprene tolerant protein (MET). Both proteins mediate JH function, preventing precocious differentiation during D. melanogaster development. Despite that GCE and MET are often referred to as equivalent JH receptors, their functions are not fully redundant and show tissue specificity. Both proteins belong to the family of bHLH-PAS transcription factors. The similarity of their primary structure is limited to defined bHLH and PAS domains, while their long C-terminal fragments (GCEC, METC) show significant differences and are expected to determine differences in GCE and MET protein activities. In this paper we present the structural characterization of GCEC as a coil-like intrinsically disordered protein (IDP) with highly elongated and asymmetric conformation. In comparison to previously characterized METC, GCEC is less compacted, contains more molecular recognition elements (MoREs) and exhibits a higher propensity for induced folding. The NMR shifts perturbation experiment and pull-down assay clearly demonstrated that the GCEC fragment is sufficient to form an interaction interface with the ligand binding domain (LBD) of the nuclear receptor Fushi Tarazu factor-1 (FTZ-F1). Significantly, these interactions can force GCEC to adopt more fixed structure that can modulate the activity, structure and functions of the full-length receptor. The discussed relation of protein functionality with the structural data of inherently disordered GCEC fragment is a novel look at this protein and contributes to a better understanding of the molecular basis of the functions of the C-terminal fragments of the bHLH-PAS family. Video abstract.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Área Bajo la Curva , Células COS , Chlorocebus aethiops , Simulación por Computador , Fluorescencia , Hidrodinámica , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
15.
J Enzyme Inhib Med Chem ; 35(1): 1811-1821, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32967477

RESUMEN

The nutraceutical system of curcumin-piperine in 2-hydroxypropyl-ß-cyclodextrin was prepared by using the kneading technique. Interactions between the components of the system were defined by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR). Application of hydroxypropyl-ß-cyclodextrin as a carrier-solubiliser improved solubility of the curcumin-piperine system, its permeability through biological membranes (gastrointestinal tract, blood-brain barrier) as well as the antioxidant, antimicrobial and enzyme inhibitory activities against acetylcholinesterase and butyrylcholinesterase.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Acetilcolinesterasa/metabolismo , Alcaloides/química , Benzodioxoles/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Curcumina/química , Portadores de Fármacos/química , Piperidinas/química , Alcamidas Poliinsaturadas/química , Alcaloides/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Benzodioxoles/farmacología , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Inhibidores de la Colinesterasa/farmacología , Curcumina/farmacología , Suplementos Dietéticos , Composición de Medicamentos , Tracto Gastrointestinal/metabolismo , Humanos , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Solubilidad
16.
Sensors (Basel) ; 21(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374427

RESUMEN

Modern seagoing ships are often equipped with converters which utilize semiconductor power electronics devices like thyristors or power transistors. Most of them are used in driving applications such as powerful main propulsion plants, auxiliary podded drives and thrusters. When it comes to main propulsion drives the power gets seriously high, thus the need for use of medium voltage power electronics devices arises. As it turns out, power electronic parts are the most susceptible to faults or failures in the whole electric drive system. These devices require efficient cooling, so manufacturers design housings in a way that best dissipates heat from the inside of the chips to the metal housing. This results in susceptibility to damage due to the heterogeneity of combined materials and the difference in temperature expansion of elements inside the power device. Currently used methods of prediction of damage and wear of semiconductor elements are limited to measurements of electrical quantities generated by devices during operation and not quite effective in case of early-stage damage to semiconductor layers. The article presents an introduction and preliminary tests of a method utilizing an acoustic emission sensor which can be used in detecting early stage damages of the gate turn-off thyristor. Theoretical considerations and chosen experimental results of initial measurements of acoustic emission signals of the medium voltage gate turn-off thyristor are presented.

17.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374960

RESUMEN

To increase the efficiency of therapy via enhancing its selectivity, the usage of gold nanorods (GNR) as a factor sensitizing cancer cells to radiation was proposed. Due to gold nanoparticles' characteristics, the smaller doses of radiation would be sufficient in the treatment, protecting the healthy tissue around the tumor. The aim of this study was to investigate the effect of gold nanorods on cancer and normal prostate cells and the role of nanorods in the cell response to ionizing radiation. The effect was evaluated by measuring the toxicity, cell cycle, cell granularity, reactive oxygen species (ROS) level, and survival fractions. Nanorods showed a strong toxicity dependent on the concentration and incubation time toward all used cell lines. A slight effect of nanorods on the cycle distribution was observed. The results demonstrated that the administration of nanorods at higher concentrations resulted in an increased level of generated radicals. The results of cellular proliferation after irradiation are ambiguous; however, there are noticeable differences after the application of nanorods before irradiation. The obtained results lead to the conclusion that nanorods affect the physiology of both normal and cancer cells. Nanorods might become a potential tool used to increase the effectiveness of radiation treatment.


Asunto(s)
Oro/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Oro/química , Humanos , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Nanotubos/química , Nanotubos/ultraestructura , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Fármacos Sensibilizantes a Radiaciones/química , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
18.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824145

RESUMEN

Human cystatin C (HCC), a cysteine-protease inhibitor, exists as a folded monomer under physiological conditions but has the ability to self-assemble via domain swapping into multimeric states, including oligomers with a doughnut-like structure. The structure of the monomeric HCC has been solved by X-ray crystallography, and a covalently linked version of HCC (stab-1 HCC) is able to form stable oligomeric species containing 10-12 monomeric subunits. We have performed molecular modeling, and in conjunction with experimental parameters obtained from atomic force microscopy (AFM), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements, we observe that the structures are essentially flat, with a height of about 2 nm, and the distance between the outer edge of the ring and the edge of the central cavity is ~5.1 nm. These dimensions correspond to the height and diameter of one stab-1 HCC subunit and we present a dodecamer model for stabilized cystatin C oligomers using molecular dynamics simulations and experimentally measured parameters. Given that oligomeric species in protein aggregation reactions are often transient and very highly heterogeneous, the structural information presented here on these isolated stab-1 HCC oligomers may be useful to further explore the physiological relevance of different structural species of cystatin C in relation to protein misfolding disease.


Asunto(s)
Cistatina C/química , Simulación de Dinámica Molecular , Humanos , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica
19.
Biochem Biophys Res Commun ; 518(4): 706-711, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31472953

RESUMEN

For several years cationic surfactants have been the subjects of extensive studies as potential transgene carriers to be used in gene therapy. We report the formation of stable complexes between 21 base pairs oligonucleotides - siRNA, enhancing DMPK gene, and dsDNA and two tricationic surfactants (1,2,3-propanetri[oxymethyl-3-(1-dodecylimidazolium)]chloride and 1,2,3-propanetri[(oxymethyl)dimethyldodecylammonium]chloride. Structural studies by SAXS and TEM have shown that the dominant structure of the obtained lipoplexes is based on hexagonal, lamellar and cubic phases, packed in highly ordered aggregates. It has been established that tricationic surfactants can be used as siRNA carriers in gene therapy.


Asunto(s)
Cationes/química , Portadores de Fármacos/química , Nanoestructuras/química , Nanotecnología/métodos , Oligonucleótidos/química , Tensoactivos/química , ADN/química , ADN/genética , Terapia Genética/métodos , Humanos , Microscopía Electrónica de Transmisión , Nanoestructuras/ultraestructura , Oligonucleótidos/genética , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Dispersión del Ángulo Pequeño , Transfección , Difracción de Rayos X
20.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703275

RESUMEN

Dimeric cationic surfactants (gemini-type) are a group of amphiphilic compounds with potential use in gene therapy as effective carriers for nucleic acid transfection (i.e., siRNA, DNA, and plasmid DNA). Our studies have shown the formation of lipoplexes composed of alkanediyl-α,ω-bis[(oxymethyl)dimethyldodecylammonium] chlorides and selected 21-base-pair nucleic acid (dsDNA and siRNA) oligomers. To examine the structure and physicochemical properties of these systems, optical microscopy, circular dichroism spectroscopy (CD), small-angle X-ray scattering of synchrotron radiation (SR-SAXS), and agarose gel electrophoresis (AGE) were used. The lengths of spacer groups of the studied surfactants had a significant influence on the surfactants' complexing properties. The lowest charge ratio (p/n) at which stable lipoplexes were observed was 1.5 and the most frequently occurring microstructure of these lipoplexes were cubic and micellar phases for dsDNA and siRNA, respectively. The cytotoxicity tests on HeLa cells indicated the non-toxic concentration of surfactants to be at approximately 10 µM. The dicationic gemini surfactants studied form complexes with siRNA and dsDNA oligomers; however, the complexation process is more effective towards siRNA. Therefore these systems could be applied as transfection systems for therapeutic nucleic acids.


Asunto(s)
Compuestos de Amonio , ADN , Técnicas de Transferencia de Gen , Terapia Genética , Micelas , ARN Interferente Pequeño , Tensoactivos , Compuestos de Amonio/química , Compuestos de Amonio/farmacología , ADN/química , ADN/farmacología , Células HeLa , Humanos , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacología , Tensoactivos/química , Tensoactivos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA