Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105475, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981208

RESUMEN

Heterozygous GRN (progranulin) mutations cause frontotemporal dementia (FTD) due to haploinsufficiency, and increasing progranulin levels is a major therapeutic goal. Several microRNAs, including miR-29b, negatively regulate progranulin protein levels. Antisense oligonucleotides (ASOs) are emerging as a promising therapeutic modality for neurological diseases, but strategies for increasing target protein levels are limited. Here, we tested the efficacy of ASOs as enhancers of progranulin expression by sterically blocking the miR-29b binding site in the 3' UTR of the human GRN mRNA. We found 16 ASOs that increase progranulin protein in a dose-dependent manner in neuroglioma cells. A subset of these ASOs also increased progranulin protein in iPSC-derived neurons and in a humanized GRN mouse model. In FRET-based assays, the ASOs effectively competed for miR-29b from binding to the GRN 3' UTR RNA. The ASOs increased levels of newly synthesized progranulin protein by increasing its translation, as revealed by polysome profiling. Together, our results demonstrate that ASOs can be used to effectively increase target protein levels by partially blocking miR binding sites. This ASO strategy may be therapeutically feasible for progranulin-deficient FTD as well as other conditions of haploinsufficiency.


Asunto(s)
Demencia Frontotemporal , MicroARNs , Oligonucleótidos Antisentido , Progranulinas , Animales , Humanos , Ratones , Regiones no Traducidas 3' , Sitios de Unión , Demencia Frontotemporal/genética , Péptidos y Proteínas de Señalización Intercelular/genética , MicroARNs/genética , Mutación , Oligonucleótidos Antisentido/genética , Progranulinas/genética , ARN Mensajero/genética
2.
Brain ; 146(11): 4532-4546, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37587097

RESUMEN

Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Células Endoteliales/metabolismo , Encéfalo/patología , Sustancia Gris/patología , Atrofia/patología , Imagen por Resonancia Magnética
3.
Brain ; 146(6): 2298-2315, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508327

RESUMEN

Huntingtin (HTT)-lowering therapies show great promise in treating Huntington's disease. We have developed a microRNA targeting human HTT that is delivered in an adeno-associated serotype 5 viral vector (AAV5-miHTT), and here use animal behaviour, MRI, non-invasive proton magnetic resonance spectroscopy and striatal RNA sequencing as outcome measures in preclinical mouse studies of AAV5-miHTT. The effects of AAV5-miHTT treatment were evaluated in homozygous Q175FDN mice, a mouse model of Huntington's disease with severe neuropathological and behavioural phenotypes. Homozygous mice were used instead of the more commonly used heterozygous strain, which exhibit milder phenotypes. Three-month-old homozygous Q175FDN mice, which had developed acute phenotypes by the time of treatment, were injected bilaterally into the striatum with either formulation buffer (phosphate-buffered saline + 5% sucrose), low dose (5.2 × 109 genome copies/mouse) or high dose (1.3 × 1011 genome copies/mouse) AAV5-miHTT. Wild-type mice injected with formulation buffer served as controls. Behavioural assessments of cognition, T1-weighted structural MRI and striatal proton magnetic resonance spectroscopy were performed 3 months after injection, and shortly afterwards the animals were sacrificed to collect brain tissue for protein and RNA analysis. Motor coordination was assessed at 1-month intervals beginning at 2 months of age until sacrifice. Dose-dependent changes in AAV5 vector DNA level, miHTT expression and mutant HTT were observed in striatum and cortex of AAV5-miHTT-treated Huntington's disease model mice. This pattern of microRNA expression and mutant HTT lowering rescued weight loss in homozygous Q175FDN mice but did not affect motor or cognitive phenotypes. MRI volumetric analysis detected atrophy in four brain regions in homozygous Q175FDN mice, and treatment with high dose AAV5-miHTT rescued this effect in the hippocampus. Like previous magnetic resonance spectroscopy studies in Huntington's disease patients, decreased total N-acetyl aspartate and increased myo-inositol levels were found in the striatum of homozygous Q175FDN mice. These neurochemical findings were partially reversed with AAV5-miHTT treatment. Striatal transcriptional analysis using RNA sequencing revealed mutant HTT-induced changes that were partially reversed by HTT lowering with AAV5-miHTT. Striatal proton magnetic resonance spectroscopy analysis suggests a restoration of neuronal function, and striatal RNA sequencing analysis shows a reversal of transcriptional dysregulation following AAV5-miHTT in a homozygous Huntington's disease mouse model with severe pathology. The results of this study support the use of magnetic resonance spectroscopy in HTT-lowering clinical trials and strengthen the therapeutic potential of AAV5-miHTT in reversing severe striatal dysfunction in Huntington's disease.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Animales , Ratones , Lactante , Enfermedad de Huntington/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cuerpo Estriado/metabolismo , Encéfalo/patología , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animales de Enfermedad
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468657

RESUMEN

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Reparación del ADN , ADN/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Inhibidoras de STAT Activados/genética , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Animales , Diferenciación Celular , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Cultivo Primario de Células , Proteínas Inhibidoras de STAT Activados/antagonistas & inhibidores , Proteínas Inhibidoras de STAT Activados/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/antagonistas & inhibidores , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Transcripción Genética
5.
Neurobiol Dis ; 182: 106138, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105261

RESUMEN

Frontotemporal dementia (FTD) is an early onset dementia characterized by neuropathology and behavioural changes. A common genetic cause of FTD is haploinsufficiency of the gene progranulin (GRN). Mouse models of progranulin deficiency have provided insight into progranulin neurobiology, but the description of phenotypes with preclinical relevance has been limited in the currently available heterozygous progranulin-null mice. The identification of robust and reproducible FTD-associated behavioural, neuropathological, and biochemical phenotypes in progranulin deficient mice is a critical step in the preclinical development of therapies for FTD. In this work, we report the generation of a novel, 'humanized' mouse model of progranulin deficiency that expresses a single, targeted copy of human GRN in the absence of mouse progranulin. We also report the in-depth, longitudinal characterization of humanized progranulin-deficient mice and heterozygous progranulin-null mice over 18 months. Our analysis yielded several novel progranulin-dependent physiological and behavioural phenotypes, including increased marble burying, open field hyperactivity, and thalamic microgliosis in both models. RNAseq analysis of cortical tissue revealed an overlapping profile of transcriptomic dysfunction. Further transcriptomic analysis offers new insights into progranulin neurobiology. In sum, we have identified several consistent phenotypes in two independent mouse models of progranulin deficiency that are expected to be useful endpoints in the development of therapies for progranulin-deficient FTD. Furthermore, the presence of the human progranulin gene in the humanized progranulin-deficient mice will expedite the development of clinically translatable gene therapy strategies.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Ratones , Humanos , Animales , Progranulinas/genética , Demencia Frontotemporal/patología , Transcriptoma , Ratones Noqueados , Mutación
6.
Hum Mol Genet ; 29(19): 3266-3284, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32969477

RESUMEN

Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disease caused by mutations in the ALDH7A1 gene leading to blockade of the lysine catabolism pathway. PDE is characterized by recurrent seizures that are resistant to conventional anticonvulsant treatment but are well-controlled by pyridoxine (PN). Most PDE patients also suffer from neurodevelopmental deficits despite adequate seizure control with PN. To investigate potential pathophysiological mechanisms associated with ALDH7A1 deficiency, we generated a transgenic mouse strain with constitutive genetic ablation of Aldh7a1. We undertook extensive biochemical characterization of Aldh7a1-KO mice consuming a low lysine/high PN diet. Results showed that KO mice accumulated high concentrations of upstream lysine metabolites including ∆1-piperideine-6-carboxylic acid (P6C), α-aminoadipic semialdehyde (α-AASA) and pipecolic acid both in brain and liver tissues, similar to the biochemical picture in ALDH7A1-deficient patients. We also observed preliminary evidence of a widely deranged amino acid profile and increased levels of methionine sulfoxide, an oxidative stress biomarker, in the brains of KO mice, suggesting that increased oxidative stress may be a novel pathobiochemical mechanism in ALDH7A1 deficiency. KO mice lacked epileptic seizures when fed a low lysine/high PN diet. Switching mice to a high lysine/low PN diet led to vigorous seizures and a quick death in KO mice. Treatment with PN controlled seizures and improved survival of high-lysine/low PN fed KO mice. This study expands the spectrum of biochemical abnormalities that may be associated with ALDH7A1 deficiency and provides a proof-of-concept for the utility of the model to study PDE pathophysiology and to test new therapeutics.


Asunto(s)
Aldehído Deshidrogenasa/fisiología , Conducta Animal , Modelos Animales de Enfermedad , Epilepsia/etiología , Lisina/deficiencia , Mutación , Piridoxina/metabolismo , Animales , Epilepsia/metabolismo , Epilepsia/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
N Engl J Med ; 380(24): 2307-2316, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31059641

RESUMEN

BACKGROUND: Huntington's disease is an autosomal-dominant neurodegenerative disease caused by CAG trinucleotide repeat expansion in HTT, resulting in a mutant huntingtin protein. IONIS-HTTRx (hereafter, HTTRx) is an antisense oligonucleotide designed to inhibit HTT messenger RNA and thereby reduce concentrations of mutant huntingtin. METHODS: We conducted a randomized, double-blind, multiple-ascending-dose, phase 1-2a trial involving adults with early Huntington's disease. Patients were randomly assigned in a 3:1 ratio to receive HTTRx or placebo as a bolus intrathecal administration every 4 weeks for four doses. Dose selection was guided by a preclinical model in mice and nonhuman primates that related dose level to reduction in the concentration of huntingtin. The primary end point was safety. The secondary end point was HTTRx pharmacokinetics in cerebrospinal fluid (CSF). Prespecified exploratory end points included the concentration of mutant huntingtin in CSF. RESULTS: Of the 46 patients who were enrolled in the trial, 34 were randomly assigned to receive HTTRx (at ascending dose levels of 10 to 120 mg) and 12 were randomly assigned to receive placebo. Each patient received all four doses and completed the trial. Adverse events, all of grade 1 or 2, were reported in 98% of the patients. No serious adverse events were seen in HTTRx-treated patients. There were no clinically relevant adverse changes in laboratory variables. Predose (trough) concentrations of HTTRx in CSF showed dose dependence up to doses of 60 mg. HTTRx treatment resulted in a dose-dependent reduction in the concentration of mutant huntingtin in CSF (mean percentage change from baseline, 10% in the placebo group and -20%, -25%, -28%, -42%, and -38% in the HTTRx 10-mg, 30-mg, 60-mg, 90-mg, and 120-mg dose groups, respectively). CONCLUSIONS: Intrathecal administration of HTTRx to patients with early Huntington's disease was not accompanied by serious adverse events. We observed dose-dependent reductions in concentrations of mutant huntingtin. (Funded by Ionis Pharmaceuticals and F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT02519036.).


Asunto(s)
Proteína Huntingtina/antagonistas & inhibidores , Enfermedad de Huntington/tratamiento farmacológico , Nucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Proteína Huntingtina/líquido cefalorraquídeo , Proteína Huntingtina/genética , Inyecciones Espinales , Masculino , Persona de Mediana Edad , Mutación , Nucleótidos/síntesis química , Oligonucleótidos/líquido cefalorraquídeo
8.
Mol Pharm ; 19(6): 1669-1686, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35594500

RESUMEN

Gene editing mediated by CRISPR/Cas9 systems is due to become a beneficial therapeutic option for treating genetic diseases and some cancers. However, there are challenges in delivering CRISPR components which necessitate sophisticated delivery systems for safe and effective genome editing. Lipid nanoparticles (LNPs) have become an attractive nonviral delivery platform for CRISPR-mediated genome editing due to their low immunogenicity and application flexibility. In this review, we provide a background of CRISPR-mediated gene therapy, as well as LNPs and their applicable characteristics for delivering CRISPR components. We then highlight the challenges of CRISPR delivery, which have driven the significant development of new, safe, and optimized LNP formulations in the past decade. Finally, we discuss considerations for using LNPs to deliver CRISPR and future perspectives on clinical translation of LNP-CRISPR gene editing.


Asunto(s)
Edición Génica , Nanopartículas , Sistemas CRISPR-Cas/genética , Técnicas de Transferencia de Gen , Lípidos , Liposomas
9.
Neurobiol Dis ; 153: 105314, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33636385

RESUMEN

The granulin protein (also known as, and hereafter referred to as, progranulin) is a secreted glycoprotein that contributes to overall brain health. Heterozygous loss-of-function mutations in the gene encoding the progranulin protein (Granulin Precursor, GRN) are a common cause of familial frontotemporal dementia (FTD). Gene therapy approaches that aim to increase progranulin expression from a single wild-type allele, an area of active investigation for the potential treatment of GRN-dependent FTD, will benefit from the availability of a mouse model that expresses a genomic copy of the human GRN gene. Here we report the development and characterization of a novel mouse model that expresses the entire human GRN gene in its native genomic context as a single copy inserted into a defined locus (Hprt) in the mouse genome. We show that human and mouse progranulin are expressed in a similar tissue-specific pattern, suggesting that the two genes are regulated by similar mechanisms. Human progranulin rescues a phenotype characteristic of progranulin-null mice, the exaggerated and early deposition of the aging pigment lipofuscin in the brain, indicating that the two proteins are functionally similar. Longitudinal behavioural and neuropathological analyses revealed no significant differences between wild-type and human progranulin-overexpressing mice up to 18 months of age, providing evidence that long-term increase of progranulin levels is well tolerated in mice. Finally, we demonstrate that human progranulin expression can be increased in the brain using an antisense oligonucleotide that inhibits a known GRN-regulating micro-RNA, demonstrating that the transgene is responsive to potential gene therapy drugs. Human progranulin-expressing mice represent a novel and valuable tool to expedite the development of progranulin-modulating therapeutics.


Asunto(s)
Encéfalo/metabolismo , Demencia Frontotemporal/genética , Expresión Génica/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Progranulinas/genética , Animales , Modelos Animales de Enfermedad , Expresión Génica/genética , Técnicas de Sustitución del Gen , Terapia Genética , Humanos , Lipofuscina/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos
10.
Hum Mol Genet ; 28(10): 1661-1670, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30624705

RESUMEN

Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene and is characterized by early and selective striatal neurodegeneration. The huntingtin (HTT) protein is ubiquitously expressed in many tissues and the cellular pathogenesis of the disease is not fully understood. Immune cell dysfunction due to mutant HTT (mHTT) expression and aberrant immune system activation in HD patients suggests that inflammatory processes may contribute to HD pathogenesis. Here we used the BACHD mouse model of HD, which carries a conditional transgene expressing full-length human mHTT, to selectively deplete mHTT expression in myeloid lineage cells, including microglia, and evaluated the effects on HD-related behavior and neuropathology. In the converse experiment, we depleted mHTT expression in the majority of cells in the brain but specifically excluding microglia and again evaluated behavior and neuropathology. In mice with myeloid-specific mHTT-depletion, we observed no significant rescue of any behavioral or neuropathological outcome measures, while neural-specific knockout mice showed significant rescue of body weight, rotarod performance and striatal volume. We conclude that mHTT expression in microglia, though clearly affecting specific aspects of microglia function, does not alter disease pathogenesis in the BACHD mouse model. This may have implications for current or future therapeutic trials testing immune-modulating drugs in HD patients.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Proteínas Mutantes/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/patología , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo
12.
Mov Disord ; 36(5): 1259-1264, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33471951

RESUMEN

BACKGROUND: The composite Unified Huntington's Disease Rating Scale (cUHDRS) is a multidimensional measure of progression in Huntington's disease (HD) being used as a primary outcome in clinical trials investigating potentially disease-modifying huntingtin-lowering therapies. OBJECTIVE: Evaluating volumetric and structural connectivity correlates of the cUHDRS. METHODS: One hundred and nineteen premanifest and 119 early-HD participants were included. Gray and white matter (WM) volumes were correlated with cUHDRS cross-sectionally and longitudinally using voxel-based morphometry. Correlations between baseline fractional anisotropy (FA); mean, radial, and axial diffusivity; and baseline cUHDRS were examined using tract-based spatial statistics. RESULTS: Worse performance in the cUHDRS over time correlated with longitudinal volume decreases in the occipito-parietal cortex and centrum semiovale, whereas lower baseline scores correlated with decreased volume in the basal ganglia and surrounding WM. Lower cUHDRS scores were also associated with reduced FA and increased diffusivity at baseline. CONCLUSION: The cUHDRS correlates with imaging biomarkers and tracks atrophy progression in HD supporting its biological relevance. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Huntington , Sustancia Blanca , Anisotropía , Atrofia/patología , Biomarcadores , Progresión de la Enfermedad , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/patología , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
13.
J Magn Reson Imaging ; 52(5): 1385-1399, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32469154

RESUMEN

BACKGROUND: Structural brain MRI measures are frequently examined in both healthy and clinical groups, so an understanding of how these measures vary over time is desirable. PURPOSE: To test the stability of structural brain MRI measures over time. POPULATION: In all, 112 healthy volunteers across four sites. STUDY TYPE: Retrospective analysis of prospectively acquired data. FIELD STRENGTH/SEQUENCE: 3 T, magnetization prepared - rapid gradient echo, and single-shell diffusion sequence. ASSESSMENT: Diffusion, cortical thickness, and volume data from the sensorimotor network were assessed for stability over time across 3 years. Two sites used a Siemens MRI scanner, two sites a Philips scanner. STATISTICAL TESTS: The stability of structural measures across timepoints was assessed using intraclass correlation coefficients (ICC) for absolute agreement, cutoff ≥0.80, indicating high reliability. Mixed-factorial analysis of variance (ANOVA) was used to examine between-site and between-scanner type differences in individuals over time. RESULTS: All cortical thickness and gray matter volume measures in the sensorimotor network, plus all diffusivity measures (fractional anisotropy plus mean, axial and radial diffusivities) for primary and premotor cortices, primary somatosensory thalamic connections, and the cortico-spinal tract met ICC. The majority of measures differed significantly between scanners, with a trend for sites using Siemens scanners to produce larger values for connectivity, cortical thickness, and volume measures than sites using Philips scanners. DATA CONCLUSION: Levels of reliability over time for all tested structural MRI measures were generally high, indicating that any differences between measurements over time likely reflect underlying biological differences rather than inherent methodological variability. LEVEL OF EVIDENCE: 4. TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Sustancia Gris , Imagen por Resonancia Magnética , Adulto , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos
14.
Proc Natl Acad Sci U S A ; 114(23): E4676-E4685, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533375

RESUMEN

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.


Asunto(s)
Enfermedad de Huntington/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Adulto , Anciano , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Enfermedad de Huntington/genética , Proteína 1 Asociada A ECH Tipo Kelch/química , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/prevención & control , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/química , Células-Madre Neurales/metabolismo , Fármacos Neuroprotectores/farmacología , Conformación Proteica/efectos de los fármacos , Ratas , Transducción de Señal
15.
Brain ; 141(7): 2156-2166, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29788038

RESUMEN

The initial stages of neurodegeneration are commonly marked by normal levels of cognitive and motor performance despite the presence of structural brain pathology. Compensation is widely assumed to account for this preserved behaviour, but despite the apparent simplicity of such a concept, it has proven incredibly difficult to demonstrate such a phenomenon and distinguish it from disease-related pathology. Recently, we developed a model of compensation whereby brain activation, behaviour and pathology, components key to understanding compensation, have specific longitudinal trajectories over three phases of progression. Here, we empirically validate our explicit mathematical model by testing for the presence of compensation over time in neurodegeneration. Huntington's disease is an ideal model for examining longitudinal compensation in neurodegeneration as it is both monogenic and fully penetrant, so disease progression and potential compensation can be monitored many years prior to diagnosis. We defined our conditions for compensation as non-linear longitudinal trajectories of brain activity and performance in the presence of linear neuronal degeneration and applied our model of compensation to a large longitudinal cohort of premanifest and early-stage Huntington's disease patients from the multisite Track-On HD study. Focusing on cognitive and motor networks, we integrated progressive volume loss, task and resting state functional MRI and cognitive and motor behaviour across three sequential phases of neurodegenerative disease progression, adjusted for genetic disease load. Multivariate linear mixed models were fitted and trajectories for each variable tested. Our conceptualization of compensation was partially realized across certain motor and cognitive networks at differing levels. We found several significant network trends that were more complex than that hypothesized in our model. These trends suggest changes to our theoretical model where the network effects are delayed relative to performance effects. There was evidence of compensation primarily in the prefrontal component of the cognitive network, with increased effective connectivity between the left and right dorsolateral prefrontal cortex. Having developed an operational model for the explicit testing of longitudinal compensation in neurodegeneration, it appears that general patterns of our framework are consistent with the empirical data. With the proposed modifications, our operational model of compensation can be used to test for both cross-sectional and longitudinal compensation in neurodegenerative disease with similar patterns to Huntington's disease.


Asunto(s)
Mapeo Encefálico/métodos , Enfermedad de Huntington/patología , Enfermedad de Huntington/terapia , Adulto , Encéfalo/patología , Cognición/fisiología , Estudios de Cohortes , Estudios Transversales , Progresión de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Teóricos , Destreza Motora/fisiología , Vías Nerviosas/fisiopatología , Enfermedades Neurodegenerativas/patología , Pruebas Neuropsicológicas
16.
Hum Mol Genet ; 25(10): 2013-2030, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26953320

RESUMEN

Despite extensive progress in Huntington's disease (HD) research, very little is known about the association of epigenetic variation and HD pathogenesis in human brain tissues. Moreover, its contribution to the tissue-specific transcriptional regulation of the huntingtin gene (HTT), in which HTT expression levels are highest in brain and testes, is currently unknown. To investigate the role of DNA methylation in HD pathogenesis and tissue-specific expression of HTT, we utilized the Illumina HumanMethylation450K BeadChip array to measure DNA methylation in a cohort of age-matched HD and control human cortex and liver tissues. In cortex samples, we found minimal evidence of HD-associated DNA methylation at probed sites after correction for cell heterogeneity but did observe an association with the age of disease onset. In contrast, comparison of matched cortex and liver samples revealed tissue-specific DNA methylation of the HTT gene region at 38 sites (FDR < 0.05). Importantly, we identified a novel differentially methylated binding site in the HTT proximal promoter for the transcription factor CTCF. This CTCF site displayed increased occupancy in cortex, where HTT expression is higher, compared with the liver. Additionally, CTCF silencing reduced the activity of an HTT promoter-reporter construct, suggesting that CTCF plays a role in regulating HTT promoter function. Overall, although we were unable to detect HD-associated DNA methylation alterations at queried sites, we found that DNA methylation may be correlated to the age of disease onset in cortex tissues. Moreover, our data suggest that DNA methylation may, in part, contribute to tissue-specific HTT transcription through differential CTCF occupancy.


Asunto(s)
Metilación de ADN/genética , Epigenómica , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Proteínas Represoras/genética , Adulto , Anciano , Sitios de Unión , Factor de Unión a CCCTC , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/patología , Proteínas de Unión al ADN/genética , Femenino , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/metabolismo
17.
Hum Brain Mapp ; 39(9): 3516-3527, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29682858

RESUMEN

Huntington's disease (HD) is a monogenic neurodegenerative disorder caused by a CAG-repeat expansion in the Huntingtin gene. Presence of this expansion signifies certainty of disease onset, but only partly explains age at which onset occurs. Genome-wide association studies have shown that naturally occurring genetic variability influences HD pathogenesis and disease onset. Investigating the influence of biological traits in the normal population, such as variability in white matter properties, on HD pathogenesis could provide a complementary approach to understanding disease modification. We have previously shown that while white matter diffusivity patterns in the left sensorimotor network were similar in controls and HD gene-carriers, they were more extreme in the HD group. We hypothesized that the influence of natural variation in diffusivity on effects of HD pathogenesis on white matter is not limited to the sensorimotor network but extends to cognitive, limbic, and visual networks. Using tractography, we investigated 32 bilateral pathways within HD-related networks, including motor, cognitive, and limbic, and examined diffusivity metrics using principal components analysis. We identified three independent patterns of diffusivity common to controls and HD gene-carriers that predicted HD status. The first pattern involved almost all tracts, the second was limited to sensorimotor tracts, and the third encompassed cognitive network tracts. Each diffusivity pattern was associated with network specific performance. The consistency in diffusivity patterns across both groups coupled with their association with disease status and task performance indicates that naturally-occurring patterns of diffusivity can become accentuated in the presence of the HD gene mutation to influence clinical brain function.


Asunto(s)
Variación Biológica Individual , Mapeo Encefálico , Imagen de Difusión Tensora , Enfermedad de Huntington/patología , Red Nerviosa/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Femenino , Genotipo , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Pruebas Neuropsicológicas , Desempeño Psicomotor , Sustancia Blanca/diagnóstico por imagen
18.
Neurobiol Dis ; 106: 14-22, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28647554

RESUMEN

Progranulin deficiency due to heterozygous null mutations in the GRN gene is a common cause of familial frontotemporal lobar degeneration (FTLD), while homozygous loss-of-function GRN mutations cause neuronal ceroid lipofuscinosis (NCL). Aged progranulin-knockout mice display highly exaggerated lipofuscinosis, microgliosis, and astrogliosis, as well as mild cell loss in specific brain regions. Progranulin is a secreted glycoprotein expressed in both neurons and microglia, but not astrocytes, in the brain. We generated conditional progranulin-knockout mice that lack progranulin in nestin-expressing cells (Nes-cKO mice), which include most neurons as well as astrocytes. We confirmed near complete knockout of progranulin in neurons in Nes-cKO mice, while microglial progranulin levels remained similar to that of wild-type animals. Overall brain progranulin levels were reduced by about 50% in Nes-cKO, and no Grn was detected in primary Nes-cKO neurons. Nes-cKO mice aged to 12months did not display any increase in lipofuscin deposition, microgliosis, or astrogliosis in the four brain regions examined, though increases were observed for most of these measures in Grn-null animals. We conclude that neuron-specific loss of progranulin is not sufficient to cause similar neuropathological changes to those seen in constitutive Grn-null animals. Our results suggest that increased lipofuscinosis and gliosis in Grn-null animals are not caused by intrinsic progranulin deficiency in neurons, and that microglia-derived progranulin may be sufficient to maintain neuronal health and homeostasis in the brain.


Asunto(s)
Encéfalo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Gliosis/metabolismo , Gliosis/patología , Granulinas , Péptidos y Proteínas de Señalización Intercelular/genética , Lipofuscina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Microglía/metabolismo , Microglía/patología , Nestina/genética , Nestina/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/patología , Fenotipo , Progranulinas , ARN Mensajero/metabolismo
19.
Hum Brain Mapp ; 38(6): 2819-2829, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28294457

RESUMEN

Depression is common in premanifest Huntington's disease (preHD) and results in significant morbidity. We sought to examine how variations in structural and functional brain networks relate to depressive symptoms in premanifest HD and healthy controls. Brain networks were constructed using diffusion tractography (70 preHD and 81 controls) and resting state fMRI (92 preHD and 94 controls) data. A sub-network associated with depression was identified in a data-driven fashion and network-based statistics was used to investigate which specific connections correlated with depression scores. A replication analysis was then performed using data from a separate study. Correlations between depressive symptoms with increased functional connectivity and decreased structural connectivity were seen for connections in the default mode network (DMN) and basal ganglia in preHD. This study reveals specific connections in the DMN and basal ganglia that are associated with depressive symptoms in preHD. Hum Brain Mapp 38:2819-2829, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Trastorno Depresivo/patología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Apatía , Estudios de Cohortes , Trastorno Depresivo/etiología , Femenino , Humanos , Enfermedad de Huntington/complicaciones , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/patología , Oxígeno/sangre , Escalas de Valoración Psiquiátrica
20.
J Neuroinflammation ; 14(1): 225, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149899

RESUMEN

BACKGROUND: Progranulin deficiency due to heterozygous null mutations in the GRN gene are a common cause of familial frontotemporal lobar degeneration (FTLD), while homozygous loss-of-function GRN mutations are thought to be a rare cause of neuronal ceroid lipofuscinosis (NCL). Aged progranulin-knockout (Grn-null) mice display highly exaggerated lipofuscinosis, microgliosis, and astrogliosis, as well as mild cell loss in specific brain regions. In the brain, progranulin is predominantly expressed in neurons and microglia, and previously, we demonstrated that neuronal-specific depletion of progranulin does not recapitulate the neuropathological phenotype of Grn-null mice. In this study, we evaluated whether selective depletion of progranulin expression in myeloid-lineage cells, including microglia, causes NCL-like neuropathology or neuroinflammation in mice. METHODS: We generated mice with progranulin depleted in myeloid-lineage cells by crossing mice homozygous for a floxed progranulin allele to mice expressing Cre recombinase under control of the LyzM promotor (Lyz-cKO). RESULTS: Progranulin expression was reduced by approximately 50-70% in isolated microglia compared to WT levels. Lyz-cKO mice aged to 12 months did not display any increase in lipofuscin deposition, microgliosis, or astrogliosis in the four brain regions examined, though increases were observed for many of these measures in Grn-null animals. To evaluate the functional effect of reduced progranulin expression in isolated microglia, primary cultures were stimulated with controlled standard endotoxin and cytokine release was measured. While Grn-null microglia display a hyper-inflammatory phenotype, Lyz-cKO and WT microglia secreted similar levels of inflammatory cytokines. CONCLUSION: We conclude that progranulin expression from either microglia or neurons is sufficient to prevent the development of NCL-like neuropathology in mice. Furthermore, microglia that are deficient for progranulin expression but isolated from a progranulin-rich environment have a normal inflammatory profile. Our results suggest that progranulin acts, at least partly, in a non-cell autonomous manner in the brain.


Asunto(s)
Encéfalo/metabolismo , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Microglía/patología , Lipofuscinosis Ceroideas Neuronales/metabolismo , Animales , Encéfalo/patología , Granulinas , Inflamación/patología , Ratones , Ratones Noqueados , Microglía/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Progranulinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA