Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 120(19): 11028-11055, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32856892

RESUMEN

Three-dimensional bioprinting uses additive manufacturing techniques for the automated fabrication of hierarchically organized living constructs. The building blocks are often hydrogel-based bioinks, which need to be printed into structures with high shape fidelity to the intended computer-aided design. For optimal cell performance, relatively soft and printable inks are preferred, although these undergo significant deformation during the printing process, which may impair shape fidelity. While the concept of good or poor printability seems rather intuitive, its quantitative definition lacks consensus and depends on multiple rheological and chemical parameters of the ink. This review discusses qualitative and quantitative methodologies to evaluate printability of bioinks for extrusion- and lithography-based bioprinting. The physicochemical parameters influencing shape fidelity are discussed, together with their importance in establishing new models, predictive tools and printing methods that are deemed instrumental for the design of next-generation bioinks, and for reproducible comparison of their structural performance.


Asunto(s)
Bioimpresión , Tinta , Impresión Tridimensional , Ingeniería de Tejidos , Humanos
2.
Biomacromolecules ; 22(2): 855-866, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33412840

RESUMEN

Bioprinting has become an important tool for fabricating regenerative implants and in vitro cell culture platforms. However, until today, extrusion-based bioprinting processes are limited to resolutions of hundreds of micrometers, which hamper the reproduction of intrinsic functions and morphologies of living tissues. This study describes novel hydrogel-based bioinks for cell electrowriting (CEW) of well-organized cell-laden fiber structures with diameters ranging from 5 to 40 µm. Two novel photoresponsive hydrogel bioinks, that is, based on gelatin and silk fibroin, which display distinctly different gelation chemistries, are introduced. The rapid photomediated cross-linking mechanisms, electrical conductivity, and viscosity of these two engineered bioinks allow the fabrication of 3D ordered fiber constructs with small pores (down to 100 µm) with different geometries (e.g., squares, hexagons, and curved patterns) of relevant thicknesses (up to 200 µm). Importantly, the biocompatibility of the gelatin- and silk fibroin-based bioinks enables the fabrication of cell-laden constructs, while maintaining high cell viability post printing. Taken together, CEW and the two hydrogel bioinks open up fascinating opportunities to manufacture microstructured constructs for applications in regenerative medicine and in vitro models that can better resemble cellular microenvironments.


Asunto(s)
Bioimpresión , Hidrogeles , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
3.
Adv Funct Mater ; 30(44): 1910250, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34566552

RESUMEN

To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.

4.
Connect Tissue Res ; 61(2): 137-151, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30526130

RESUMEN

Bioprinting is a promising tool to fabricate organized cartilage. This study aimed to investigate the printability of gelatin-methacryloyl/gellan gum (gelMA/gellan) hydrogels with and without methacrylated hyaluronic acid (HAMA), and to explore (zone-specific) chondrogenesis of chondrocytes, articular cartilage progenitor cells (ACPCs), and multipotent mesenchymal stromal cells (MSCs) embedded in these bio-inks.The incorporating of HAMA in gelMA/gellan bio-ink increased filament stability, as measured using a filament collapse assay, but did not influence (zone-specific) chondrogenesis of any of the cell types. Highest chondrogenic potential was observed for MSCs, followed by ACPCs, which displayed relatively high proteoglycan IV mRNA levels. Therefore, two-zone constructs were printed with gelMA/gellan/HAMA containing ACPCs in the superficial region and MSCs in the middle/deep region. Chondrogenic differentiation was confirmed, however, printing influence cellular differentiation.ACPC- and MSC-laden gelMA/gellan/HAMA hydrogels are of interest for the fabrication of cartilage constructs. Nevertheless, this study underscores the need for careful evaluation of the effects of printing on cellular differentiation.


Asunto(s)
Bioimpresión , Cartílago/metabolismo , Condrocitos/metabolismo , Tinta , Impresión Tridimensional , Células Madre/metabolismo , Ingeniería de Tejidos , Animales , Cartílago/citología , Condrocitos/citología , Caballos , Células Madre/citología
5.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992847

RESUMEN

Identification of articular cartilage progenitor cells (ACPCs) has opened up new opportunities for cartilage repair. These cells may be used as alternatives for or in combination with mesenchymal stromal cells (MSCs) in cartilage engineering. However, their potential needs to be further investigated, since only a few studies have compared ACPCs and MSCs when cultured in hydrogels. Therefore, in this study, we compared chondrogenic differentiation of equine ACPCs and MSCs in agarose constructs as monocultures and as zonally layered co-cultures under both normoxic and hypoxic conditions. ACPCs and MSCs exhibited distinctly differential production of the cartilaginous extracellular matrix (ECM). For ACPC constructs, markedly higher glycosaminoglycan (GAG) contents were determined by histological and quantitative biochemical evaluation, both in normoxia and hypoxia. Differential GAG production was also reflected in layered co-culture constructs. For both cell types, similar staining for type II collagen was detected. However, distinctly weaker staining for undesired type I collagen was observed in the ACPC constructs. For ACPCs, only very low alkaline phosphatase (ALP) activity, a marker of terminal differentiation, was determined, in stark contrast to what was found for MSCs. This study underscores the potential of ACPCs as a promising cell source for cartilage engineering.


Asunto(s)
Cartílago Articular/citología , Condrogénesis , Células Madre Mesenquimatosas/citología , Células Madre/citología , Ingeniería de Tejidos , Animales , Diferenciación Celular , Células Cultivadas , Caballos
6.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202964

RESUMEN

Gelatine methacryloyl (GelMA) hydrogels are widely used in studies aimed at cartilage regeneration. However, the endotoxin content of commercially available GelMAs and gelatines used in these studies is often overlooked, even though endotoxins may influence several cellular functions. Moreover, regulations for clinical use of biomaterials dictate a stringent endotoxin limit. We determined the endotoxin level of five different GelMAs and evaluated the effect on the chondrogenic differentiation of equine mesenchymal stromal cells (MSCs). Cartilage-like matrix production was evaluated by biochemical assays and immunohistochemistry. Furthermore, equine peripheral blood mononuclear cells (PBMCs) were cultured on the hydrogels for 24 h, followed by the assessment of tumour necrosis factor (TNF)-α and C-C motif chemokine ligand (CCL)2 as inflammatory markers. The GelMAs were found to have widely varying endotoxin content (two with >1000 EU/mL and three with <10 EU/mL), however, this was not a critical factor determining in vitro cartilage-like matrix production of embedded MSCs. PBMCs did produce significantly higher TNF-α and CCL2 in response to the GelMA with the highest endotoxin level compared to the other GelMAs. Although limited effects on chondrogenic differentiation were found in this study, caution with the use of commercial hydrogels is warranted in the translation from in vitro to in vivo studies because of regulatory constraints and potential inflammatory effects of the content of these hydrogels.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Endotoxinas/toxicidad , Gelatina , Caballos/metabolismo , Hidrogeles , Células Madre Mesenquimatosas/metabolismo , Animales , Citocinas , Femenino , Gelatina/química , Gelatina/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo
7.
J Mater Sci Mater Med ; 28(5): 78, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28386854

RESUMEN

The conventional tissue engineering is based on seeding of macroporous scaffold on its surface ("top-down" approach). The main limitation is poor cell viability in the middle of the scaffold due to poor diffusion of oxygen and nutrients and insufficient vascularization. Layer-by-Layer (LBL) bioassembly is based on "bottom-up" approach, which considers assembly of small cellularized blocks. The aim of this work was to evaluate proliferation and differentiation of human bone marrow stromal cells (HBMSCs) and endothelial progenitor cells (EPCs) in two and three dimensions (2D, 3D) using a LBL assembly of polylactic acid (PLA) scaffolds fabricated by 3D printing. 2D experiments have shown maintain of cell viability on PLA, especially when a co-cuture system was used, as well as adequate morphology of seeded cells. Early osteoblastic and endothelial differentiations were observed and cell proliferation was increased after 7 days of culture. In 3D, cell migration was observed between layers of LBL constructs, as well as an osteoblastic differentiation. These results indicate that LBL assembly of PLA layers could be suitable for BTE, in order to promote homogenous cell distribution inside the scaffold and gene expression specific to the cells implanted in the case of co-culture system.


Asunto(s)
Huesos/patología , Membranas Artificiales , Poliésteres/química , Ingeniería de Tejidos/métodos , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Osteoblastos/metabolismo , Osteogénesis , Oxígeno/química , Fenotipo , Porosidad , Impresión Tridimensional , Ratas , Andamios del Tejido
8.
Mater Today Bio ; 24: 100879, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38130429

RESUMEN

Non-destructive assessments are required for the quality control of tissue-engineered constructs and the optimization of the tissue culture process. Near-infrared (NIR) spectroscopy coupled with machine learning (ML) provides a promising approach for such assessment. However, due to its nonspecific nature, each spectrum incorporates information on both neotissue and non-neotissue constituents of the construct; the effect of these constituents on the NIR-based assessments of tissue-engineered constructs has been overlooked in previous studies. This study investigates the effect of scaffolds, growth factors, and buffers on NIR-based assessments of tissue-engineered constructs. To determine if these non-neotissue constituents have a measurable effect on the NIR spectra of the constructs that can introduce bias in their assessment, nine ML algorithms were evaluated in classifying the NIR spectra of engineered cartilage according to the scaffold used to prepare the constructs, the growth factors added to the culture media, and the buffers used for storing the constructs. The effect of controlling for these constituents was also evaluated using controlled and uncontrolled NIR-based ML models for predicting tissue maturity as an example of neotissue-related properties of interest. Samples used in this study were prepared using norbornene-modified hyaluronic acid scaffolds with or without the conjugation of an N-cadherin mimetic peptide. Selected samples were supplemented with transforming growth factor-beta1 or bone morphogenetic protein-9 growth factor. Some samples were frozen in cell lysis buffer, while the remaining samples were frozen in PBS until required for NIR analysis. The ML models for classifying the spectra of the constructs according to the four constituents exhibited high to fair performances, with F1 scores ranging from 0.9 to 0.52. Moreover, controlling for the four constituents significantly improved the performance of the models for predicting tissue maturity, with improvement in F1 scores ranging from 0.09 to 0.77. In conclusion, non-neotissue constituents have measurable effects on the NIR spectra of tissue-engineered constructs that can be detected by ML algorithms and introduce bias in the assessment of the constructs by NIR spectroscopy. Therefore, controlling for these constituents is necessary for reliable NIR-based assessments of tissue-engineered constructs.

9.
Trends Biotechnol ; 42(6): 739-759, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38310021

RESUMEN

Organs-on-chips (OoCs) hold promise to engineer progressively more human-relevant in vitro models for pharmaceutical purposes. Recent developments have delivered increasingly sophisticated designs, yet OoCs still lack in reproducing the inner tissue physiology required to fully resemble the native human body. This review emphasizes the need to include microarchitectural and microstructural features, and discusses promising avenues to incorporate well-defined microarchitectures down to the single-cell level. We highlight how their integration will significantly contribute to the advancement of the field towards highly organized structural and hierarchical tissues-on-chip. We discuss the combination of state-of-the-art micropatterning technologies to achieve OoCs resembling human-intrinsic complexity. It is anticipated that these innovations will yield significant advances in realization of the next generation of OoC models.


Asunto(s)
Bioimpresión , Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos , Bioimpresión/métodos , Humanos , Ingeniería de Tejidos/métodos , Análisis de la Célula Individual/métodos , Animales
10.
Bioeng Transl Med ; 9(1): e10614, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193127

RESUMEN

In articular cartilage (AC), the collagen arcades provide the tissue with its extraordinary mechanical properties. As these structures cannot be restored once damaged, functional restoration of AC defects remains a major challenge. We report that the use of a converged bioprinted, osteochondral implant, based on a gelatin methacryloyl cartilage phase, reinforced with precisely patterned melt electrowritten polycaprolactone micrometer-scale fibers in a zonal fashion, inspired by native collagen architecture, can provide long-term mechanically stable neo-tissue in an orthotopic large animal model. The design of this novel implant was achieved via state-of-the-art converging of extrusion-based ceramic printing, melt electrowriting, and extrusion-based bioprinting. Interestingly, the cell-free implants, used as a control in this study, showed abundant cell ingrowth and similar favorable results as the cell-containing implants. Our findings underscore the hypothesis that mechanical stability is more determining for the successful survival of the implant than the presence of cells and pre-cultured extracellular matrix. This observation is of great translational importance and highlights the aptness of advanced 3D (bio)fabrication technologies for functional tissue restoration in the harsh articular joint mechanical environment.

11.
Biofabrication ; 15(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723633

RESUMEN

The integration of light-driven technologies into biofabrication has revolutionized the field of tissue engineering and regenerative medicine, with numerous breakthroughs in the last few years. Light-based bioprinting approaches (lithography, multiphoton and volumetric bioprinting) have shown the potential to fabricate large scale tissue engineering constructs of high resolution, with great flexibility and control over the cellular organization. Given the unprecedented degree of freedom in fabricating convoluted structures, key challenges in regenerative medicine, such as introducing complex channels and pre-vascular networks in 3D constructs have also been addressed. Light has also been proven as a powerful tool, leading to novel photo-chemistry in designing bioinks, but also able to impart spatial-temporal control over cellular functions through photo-responsive chemistry. For instance, smart constructs able to undergo remotely controlled shape changes, stiffening, softening and degradation can be produced. The non-invasive nature of light stimulation also enables to trigger such responses post-fabrication, during the maturation phase of a construct. Such unique ability can be used to mimic the dynamic processes occurring in tissue regeneration, as well as in disease progression and degenerative processes in vivo. Bringing together these novel multidisciplinary expertise, the present Special Issue aims to discuss the most recent trends, strategies and novel light-based technologies in the field of biofabrication. These include: 1) using light-based bioprinting to develop in vitro models for drug screening, developmental biology models, disease models, and also functional tissues for implantation; 2) novel light-based biofabrication technologies; 3) development of new photo-responsive bioinks or biomaterial inks.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Medicina Regenerativa , Materiales Biocompatibles , Tecnología , Impresión Tridimensional , Andamios del Tejido/química
12.
Trends Biotechnol ; 41(5): 604-614, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36513545

RESUMEN

Bioprinting aims to produce 3D structures from which embedded cells can receive mechanical and chemical stimuli that influence their behavior, direct their organization and migration, and promote differentiation, in a similar way to what happens within the native extracellular matrix. However, limited spatial resolution has been a bottleneck for conventional 3D bioprinting approaches. Reproducing fine features at the cellular scale, while maintaining a reasonable printing volume, is necessary to enable the biofabrication of more complex and functional tissue and organ models. In this opinion article we recount the emergence of, and discuss the most promising, high-definition (HD) bioprinting techniques to achieve this goal, discussing which obstacles remain to be overcome, and which applications are envisioned in the tissue engineering field.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Matriz Extracelular , Diferenciación Celular , Andamios del Tejido/química
13.
Acta Biomater ; 156: 250-268, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36041651

RESUMEN

The development of tissue engineering strategies for treatment of large bone defects has become increasingly relevant, given the growing demand for bone substitutes. Native bone is composed of a dense vascular network necessary for the regulation of bone development, regeneration and homeostasis. A major obstacle in fabricating living, clinically relevant-sized bone mimics (1-10 cm3) is the limited supply of nutrients, including oxygen to the core of the construct. Therefore, strategies to support vascularization are pivotal for the development of tissue engineered bone constructs. Creating a functional bone construct integrated with a vascular network, capable of delivering the necessary nutrients for optimal tissue development is imperative for translation into the clinics. The vascular system is composed of a complex network that runs throughout the body in a tree-like hierarchical branching fashion. A significant challenge for tissue engineering approaches lies in mimicking the intricate, multi-scale structures consisting of larger vessels (macro-vessels) which interconnect with multiple sprouting vessels (microvessels) in a closed network. The advent of biofabrication has enabled complex, out of plane channels to be generated and has laid the groundwork for the creation of multi-scale vasculature in recent years. This review highlights the key state-of-the-art achievements for the development of vascular networks of varying scales in the field of biofabrication with a particular focus for its application in developing a functional tissue engineered bone construct. STATEMENT OF SIGNIFICANCE: There is a growing need for bone substitutes to overcome the limited supply of patient-derived bone. Bone tissue engineering aims to overcome this by combining stem cells with scaffolds to restore missing bone. The current bottleneck in upscaling is the lack of an integrated vascular network, required for the delivery of nutrients to cells. 3D bioprinting techniques has enabled the creation of complex hollow structures of varying dimensions that resemble native blood vessels. The convergence of multiple materials, cell types and fabrication approaches, opens the possibility of developing clinically-relevant sized vascularized bone constructs. This review provides an up-to-date insight of the technologies currently available for the generation of complex vascular networks, with a focus on their application in bone tissue engineering.


Asunto(s)
Bioimpresión , Sustitutos de Huesos , Humanos , Ingeniería de Tejidos/métodos , Huesos , Impresión Tridimensional , Tecnología , Andamios del Tejido/química , Bioimpresión/métodos
14.
Mater Today Bio ; 22: 100775, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37674778

RESUMEN

Herein we show an accessible technique based on Faraday waves that assist the rapid assembly of osteoinductive ß-Tricalcium phosphate (ß-TCP) particles as well as human osteoblast pre-assembled in spheroids. The hydrodynamic forces originating at 'seabed' of the assembly chamber can be used to tightly aggregate inorganic and biological entities at packing densities that resemble those of native tissues. Additionally, following a layer-by-layer assembly procedure, centimeter scaled osteoinductive three-dimensional and cellularized constructs have been fabricated. We showed that the intimate connection between biological building blocks is essential in engineering living system able of localized mineral deposition. Our results demonstrate, for the first time, the possibility to obtain three-dimensional cellularized and acellularized anisotropic constructs using Faraday waves.

15.
J Control Release ; 360: 747-758, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451546

RESUMEN

Pathological angiogenesis is a crucial attribute of several chronic diseases such as cancer, age-related macular degeneration, and osteoarthritis (OA). In the case of OA, pathological angiogenesis mediated by the vascular endothelial growth factor (VEGF), among other factors, contributes to cartilage degeneration and to implants rejection. In line with this, the use of the anti-VEGF bevacizumab (BVZ) has been shown to prevent OA progression and support cartilage regeneration. The aim of this work was to functionalize a medical grade collagen with poly (lactic-co-glycolic acid) (PLGA) microparticles containing BVZ via three-dimensional (3D) printing to target pathological angiogenesis. First, the effect of several formulation parameters on the encapsulation and release of BVZ from PLGA microparticles was studied. Then, the anti-angiogenic activity of released BVZ was tested in a 3D cell model. The 3D printability of the microparticle-loaded collagen ink was tested by evaluating the shape fidelity of 3D printed structures. Results showed that the release and the encapsulation efficiency of BVZ could be tuned as a function of several formulation parameters. In addition, the released BVZ was observed to reduce vascularization by human umbilical vein endothelial cells. Finally, the collagen ink with embedded BVZ microparticles was successfully printed, leading to shape-stable meniscus-, nose- and auricle-like structures. Taken altogether, we defined the conditions for the successful combination of BVZ-loaded microparticles with the 3D printing of a medical grade collagen to target pathological angiogenesis.


Asunto(s)
Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular , Humanos , Bevacizumab , Factor A de Crecimiento Endotelial Vascular/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Neovascularización Patológica/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana , Colágeno , Impresión Tridimensional
16.
Adv Mater ; 35(32): e2300756, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37099802

RESUMEN

Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication. This ultrafast, light-based technique sculpts cell-laden hydrogel bioresins into 3D structures in a layerless fashion, providing enhanced design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell-friendly hydrogels are used. Herein, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel-based composites with enhanced mechanical behavior. Despite including non-transparent melt electrowritten scaffolds in the volumetric printing process, high-resolution bioprinted structures are successfully achieved. Tensile, burst, and bending mechanical properties of printed tubes are tuned altering the electrowritten mesh design, resulting in complex, multi-material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof-of-concept, engineered tubular structures are obtained by building trilayered cell-laden vessels, and features (valves, branches, fenestrations) that can be rapidly printed using this hybrid approach. This multi-technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi-material living structures.


Asunto(s)
Bioimpresión , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Hidrogeles/química , Impresión Tridimensional , Bioimpresión/métodos
17.
Elife ; 122023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38009703

RESUMEN

During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.


Asunto(s)
Cartílago Articular , Mamíferos , Animales , Matriz Extracelular , Piel
18.
Int J Bioprint ; 9(5): 775, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457945

RESUMEN

The surgical repair of articular cartilage remains an ongoing challenge in orthopedics. Tissue engineering is a promising approach to treat cartilage defects; however, scaffolds must (i) possess the requisite material properties to support neocartilage formation, (ii) exhibit sufficient mechanical integrity for handling during implantation, and (iii) be reliably fixed within cartilage defects during surgery. In this study, we demonstrate the reinforcement of soft norbornene-modified hyaluronic acid (NorHA) hydrogels via the melt electrowriting (MEW) of polycaprolactone to fabricate composite scaffolds that support encapsulated porcine mesenchymal stromal cell (pMSC, three donors) chondrogenesis and cartilage formation and exhibit mechanical properties suitable for handling during implantation. Thereafter, acellular MEW-NorHA composites or MEW-NorHA composites with encapsulated pMSCs and precultured for 28 days were implanted in full-thickness cartilage defects in porcine knees using either bioresorbable pins or fibrin glue to assess surgical fixation methods. Fixation of composites with either biodegradable pins or fibrin glue ensured implant retention in most cases (80%); however, defects treated with pinned composites exhibited more subchondral bone remodeling and inferior cartilage repair, as evidenced by micro-computed tomography (micro-CT) and safranin O/fast green staining, respectively, when compared to defects treated with glued composites. Interestingly, no differences in repair tissue were observed between acellular and cellularized implants. Additional work is required to assess the full potential of these scaffolds for cartilage repair. However, these results suggest that future approaches for cartilage repair with MEW-reinforced hydrogels should be carefully evaluated with regard to their fixation approach for construct retention and surrounding cartilage tissue damage.

19.
Adv Mater ; 35(36): e2301673, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37269532

RESUMEN

In living tissues, cells express their functions following complex signals from their surrounding microenvironment. Capturing both hierarchical architectures at the micro- and macroscale, and anisotropic cell patterning remains a major challenge in bioprinting, and a bottleneck toward creating physiologically-relevant models. Addressing this limitation, a novel technique is introduced, termed Embedded Extrusion-Volumetric Printing (EmVP), converging extrusion-bioprinting and layer-less, ultra-fast volumetric bioprinting, allowing spatially pattern multiple inks/cell types. Light-responsive microgels are developed for the first time as bioresins (µResins) for light-based volumetric bioprinting, providing a microporous environment permissive for cell homing and self-organization. Tuning the mechanical and optical properties of gelatin-based microparticles enables their use as support bath for suspended extrusion printing, in which features containing high cell densities can be easily introduced. µResins can be sculpted within seconds with tomographic light projections into centimeter-scale, granular hydrogel-based, convoluted constructs. Interstitial microvoids enhanced differentiation of multiple stem/progenitor cells (vascular, mesenchymal, neural), otherwise not possible with conventional bulk hydrogels. As proof-of-concept, EmVP is applied to create complex synthetic biology-inspired intercellular communication models, where adipocyte differentiation is regulated by optogenetic-engineered pancreatic cells. Overall, EmVP offers new avenues for producing regenerative grafts with biological functionality, and for developing engineered living systems and (metabolic) disease models.


Asunto(s)
Bioimpresión , Microgeles , Ingeniería de Tejidos/métodos , Hidrogeles , Bioimpresión/métodos , Impresión Tridimensional , Andamios del Tejido
20.
Adv Mater Technol ; 8(15)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37811162

RESUMEN

Conventional additive manufacturing and biofabrication techniques are unable to edit the chemicophysical properties of the printed object postprinting. Herein, a new approach is presented, leveraging light-based volumetric printing as a tool to spatially pattern any biomolecule of interest in custom-designed geometries even across large, centimeter-scale hydrogels. As biomaterial platform, a gelatin norbornene resin is developed with tunable mechanical properties suitable for tissue engineering applications. The resin can be volumetrically printed within seconds at high resolution (23.68 ± 10.75 µm). Thiol-ene click chemistry allows on-demand photografting of thiolated compounds postprinting, from small to large (bio)molecules (e.g., fluorescent dyes or growth factors). These molecules are covalently attached into printed structures using volumetric light projections, forming 3D geometries with high spatiotemporal control and ≈50 µm resolution. As a proof of concept, vascular endothelial growth factor is locally photografted into a bioprinted construct and demonstrated region-dependent enhanced adhesion and network formation of endothelial cells. This technology paves the way toward the precise spatiotemporal biofunctionalization and modification of the chemical composition of (bio)printed constructs to better guide cell behavior, build bioactive cue gradients. Moreover, it opens future possibilities for 4D printing to mimic the dynamic changes in morphogen presentation natively experienced in biological tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA