Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 137(3): 398-400, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410535

RESUMEN

Male germ cells are induced to form from the epiblast of the mouse embryo by a combination of WNT and bone morphogenetic protein signals. Ohinata et al. (2009) now clarify the steps of mouse germ cell formation and use this genetic insight to direct the specification and differentiation of germline progenitor cells in vitro.


Asunto(s)
Diferenciación Celular/fisiología , Células Germinativas/citología , Mesodermo/citología , Células Madre/citología , Animales , Proteínas Morfogenéticas Óseas/fisiología , Linaje de la Célula/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/fisiología , Células Germinativas/fisiología , Masculino , Mesodermo/fisiología , Ratones , Transducción de Señal/fisiología , Células Madre/fisiología , Proteínas Wnt/fisiología
2.
Development ; 142(11): 2069-79, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25977363

RESUMEN

Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity.


Asunto(s)
Embrión de Mamíferos/metabolismo , Cabeza/embriología , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción/metabolismo , Animales , Cadherinas/metabolismo , Endodermo/citología , Endodermo/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Proteínas con Homeodominio LIM/genética , Ratones Noqueados , Modelos Biológicos , Mutación , Fenotipo , Transducción de Señal , Factores de Transcripción/genética , Proteínas Wnt/metabolismo
3.
Dev Biol ; 418(1): 189-203, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27546376

RESUMEN

TWIST1, a basic helix-loop-helix transcription factor is essential for the development of cranial mesoderm and cranial neural crest-derived craniofacial structures. We have previously shown that, in the absence of TWIST1, cells within the cranial mesoderm adopt an abnormal epithelial configuration via a process reminiscent of a mesenchymal to epithelial transition (MET). Here, we show by gene expression analysis that loss of TWIST1 in the cranial mesoderm is accompanied by a reduction in the expression of genes that are associated with cell-extracellular matrix interactions and the acquisition of mesenchymal characteristics. By comparing the transcriptional profiles of cranial mesoderm-specific Twist1 loss-of-function mutant and control mouse embryos, we identified a set of genes that are both TWIST1-dependent and predominantly expressed in the mesoderm. ChIP-seq was used to identify TWIST1-binding sites in an in vitro model of a TWIST1-dependent mesenchymal cell state, and the data were combined with the transcriptome data to identify potential target genes. Three direct transcriptional targets of TWIST1 (Ddr2, Pcolce and Tgfbi) were validated by ChIP-PCR using mouse embryonic tissues and by luciferase assays. Our findings reveal that the mesenchymal properties of the cranial mesoderm are likely to be regulated by a network of TWIST1 targets that influences the extracellular matrix and cell-matrix interactions, and collectively they are required for the morphogenesis of the craniofacial structures.


Asunto(s)
Matriz Extracelular/genética , Mesodermo/crecimiento & desarrollo , Cresta Neural/embriología , Proteínas Nucleares/genética , Cráneo/embriología , Proteína 1 Relacionada con Twist/genética , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular , Perros , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células de Riñón Canino Madin Darby , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Morfogénesis/genética , Proteínas Nucleares/biosíntesis , Proteína 1 Relacionada con Twist/biosíntesis
4.
Hum Mol Genet ; 24(20): 5789-804, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26231217

RESUMEN

Correct morphogenesis and differentiation are critical in development and maintenance of the lens, which is a classic model system for epithelial development and disease. Through germline genomic analyses in patients with lens and eye abnormalities, we discovered functional mutations in the Signal Induced Proliferation Associated 1 Like 3 (SIPA1L3) gene, which encodes a previously uncharacterized member of the Signal Induced Proliferation Associated 1 (SIPA1 or SPA1) family, with a role in Rap1 signalling. Patient 1, with a de novo balanced translocation, 46,XY,t(2;19)(q37.3;q13.1), had lens and ocular anterior segment abnormalities. Breakpoint mapping revealed transection of SIPA1L3 at 19q13.1 and reduced SIPA1L3 expression in patient lymphoblasts. SIPA1L3 downregulation in 3D cell culture revealed morphogenetic and cell polarity abnormalities. Decreased expression of Sipa1l3 in zebrafish and mouse caused severe lens and eye abnormalities. Sipa1l3(-/-) mice showed disrupted epithelial cell organization and polarity and, notably, abnormal epithelial to mesenchymal transition in the lens. Patient 2 with cataracts was heterozygous for a missense variant in SIPA1L3, c.442G>T, p.Asp148Tyr. Examination of the p.Asp148Tyr mutation in an epithelial cell line showed abnormal clustering of actin stress fibres and decreased formation of adherens junctions. Our findings show that abnormalities of SIPA1L3 in human, zebrafish and mouse contribute to lens and eye defects, and we identify a critical role for SIPA1L3 in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization.


Asunto(s)
Catarata/fisiopatología , Polaridad Celular , Citoesqueleto/ultraestructura , Anomalías del Ojo/fisiopatología , Proteínas Activadoras de GTPasa/genética , Mutación , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Catarata/genética , Catarata/metabolismo , Polaridad Celular/genética , Análisis Mutacional de ADN , Transición Epitelial-Mesenquimal/genética , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Transducción de Señal , Pez Cebra/genética , Proteínas de Unión al GTP rap1/metabolismo
5.
Am J Pathol ; 186(7): 1847-1860, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27182643

RESUMEN

Loss of E-cadherin marks a defect in epithelial integrity and polarity during tissue injury and fibrosis. Whether loss of E-cadherin plays a causal role in fibrosis is uncertain. α3ß1 Integrin has been identified to complex with E-cadherin in cell-cell adhesion, but little is known about the details of their cross talk. Herein, E-cadherin gene (Cdh1) was selectively deleted from proximal tubules of murine kidney by Sglt2Cre. Ablation of E-cadherin up-regulated α3ß1 integrin at cell-cell adhesion. E-cadherin-deficient proximal tubular epithelial cell displayed enhanced transforming growth factor-ß1-induced α-smooth muscle actin (α-SMA) and vimentin expression, which was suppressed by siRNA silencing of α3 integrin, but not ß1 integrin. Up-regulation of transforming growth factor-ß1-induced α-SMA was mediated by an α3 integrin-dependent increase in integrin-linked kinase (ILK). Src phosphorylation of ß-catenin and consequent p-ß-catenin-Y654/p-Smad2 transcriptional complex underlies the transcriptional up-regulation of ILK. Kidney fibrosis after unilateral ureteric obstruction or ischemia reperfusion was increased in proximal tubule E-cadherin-deficient mice in comparison to that of E-cadherin intact control mice. The exacerbation of fibrosis was explained by the α3 integrin-dependent increase of ILK, ß-catenin nuclear translocation, and α-SMA/proximal tubular-specific Cre double positive staining in proximal tubular epithelial cell. These studies delineate a nonconventional integrin/ILK signaling by α3 integrin-dependent Src/p-ß-catenin-Y654/p-Smad2-mediated up-regulation of ILK through which loss of E-cadherin leads to kidney fibrosis.


Asunto(s)
Cadherinas/deficiencia , Integrina alfa3beta1/metabolismo , Enfermedades Renales/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Western Blotting , Adhesión Celular , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Fibrosis/metabolismo , Fibrosis/patología , Inmunohistoquímica , Inmunoprecipitación , Enfermedades Renales/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
6.
EMBO Rep ; 15(8): 903-10, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24916387

RESUMEN

Cytidine (C) to Uridine (U) RNA editing is a post-transcriptional modification that is accomplished by the deaminase APOBEC1 and its partnership with the RNA-binding protein A1CF. We identify and characterise here a novel RNA-binding protein, RBM47, that interacts with APOBEC1 and A1CF and is expressed in tissues where C to U RNA editing occurs. RBM47 can substitute for A1CF and is necessary and sufficient for APOBEC1-mediated editing in vitro. Editing is further impaired in Rbm47-deficient mutant mice. These findings suggest that RBM47 and APOBEC1 constitute the basic machinery for C to U RNA editing.


Asunto(s)
Citidina Desaminasa/fisiología , Edición de ARN , Proteínas de Unión al ARN/genética , Desaminasas APOBEC-1 , Animales , Células CACO-2 , Núcleo Celular/metabolismo , Citidina/metabolismo , Expresión Génica , Humanos , Ratones Transgénicos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Uridina/metabolismo
7.
Dev Biol ; 374(2): 295-307, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23261931

RESUMEN

The basic helix-loop-helix transcription factor Twist1 is a key regulator of craniofacial development. Twist1-null mouse embryos exhibit failure of cephalic neural tube closure and abnormal head development and die at E11.0. To dissect the function of Twist1 in the cranial mesoderm beyond mid-gestation, we used Mesp1-Cre to delete Twist1 in the anterior mesoderm, which includes the progenitors of the cranial mesoderm. Deletion of Twist1 in mesoderm cells resulted in loss and malformations of the cranial mesoderm-derived skeleton. Loss of Twist1 in the mesoderm also resulted in a failure to fully segregate the mesoderm and the neural crest cells, and the malformation of some cranial neural crest-derived tissues. The development of extraocular muscles was compromised whereas the differentiation of branchial arch muscles was not affected, indicating a differential requirement for Twist1 in these two types of craniofacial muscle. A striking effect of the loss of Twist1 was the inability of the mesodermal cells to maintain their mesenchymal characteristics, and the acquisition of an epithelial-like morphology. Our findings point to a role of Twist1 in maintaining the mesenchyme architecture and the progenitor state of the mesoderm, as well as mediating mesoderm-neural crest interactions in craniofacial development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Mesodermo/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética , Animales , Apoptosis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/patología , Embrión de Mamíferos/embriología , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Mesodermo/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Anatómicos , Modelos Genéticos , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas Nucleares/deficiencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cráneo/embriología , Cráneo/metabolismo , Factores de Tiempo , Proteína 1 Relacionada con Twist/deficiencia
8.
Development ; 138(20): 4511-22, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21903671

RESUMEN

Rhou encodes a Cdc42-related atypical Rho GTPase that influences actin organization in cultured cells. In mouse embryos at early-somite to early-organogenesis stages, Rhou is expressed in the columnar endoderm epithelium lining the lateral and ventral wall of the anterior intestinal portal. During foregut development, Rhou is downregulated in regions where the epithelium acquires a multilayered morphology heralding the budding of organ primordia. In embryos generated from Rhou knockdown embryonic stem (ES) cells, the embryonic foregut displays an abnormally flattened shape. The epithelial architecture of the endoderm is disrupted, the cells are depleted of microvilli and the phalloidin-stained F-actin content of their sub-apical cortical domain is reduced. Rhou-deficient cells in ES cell-derived embryos and embryoid bodies are less efficient in endoderm differentiation. Impaired endoderm differentiation of Rhou-deficient ES cells is accompanied by reduced expression of c-Jun/AP-1 target genes, consistent with a role for Rhou in regulating JNK activity. Downregulation of Rhou in individual endoderm cells results in a reduced ability of these cells to occupy the apical territory of the epithelium. Our findings highlight epithelial morphogenesis as a required intermediate step in the differentiation of endoderm progenitors. In vivo, Rhou activity maintains the epithelial architecture of the endoderm progenitors, and its downregulation accompanies the transition of the columnar epithelium in the embryonic foregut to a multilayered cell sheet during organ formation.


Asunto(s)
Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Ratones , Ratones Noqueados , Células 3T3 NIH , ARN Interferente Pequeño/genética , Transducción de Señal , Proteínas Wnt/metabolismo , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Unión al GTP rho/genética
9.
Dev Biol ; 362(2): 132-40, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22178153

RESUMEN

Development of the mouse forelimb bud depends on normal Twist1 activity. Global loss of Twist1 function before limb bud formation stops limb development and loss of Twist1 throughout the mesenchyme after limb bud initiation leads to polydactyly, the ulnarization or loss of the radius and malformations and reductions of the shoulder girdle. Here we show that conditional deletion of Twist1 by Mesp1-Cre in the mesoderm that migrates into the anterior-proximal part of the forelimb bud results in the development of supernumerary digits and carpals, the acquisition of ulna-like characteristics by the radius and malformations of the humerus and scapula. The mirror-like duplications and posteriorization of pre-axial tissues are preceded by disruptions to anterior-posterior Shh, Bmp and Fgf signaling gradients and dysregulation of transcription factors that regulate anterior-posterior limb patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Miembro Anterior/anomalías , Miembro Anterior/embriología , Morfogénesis/genética , Proteínas Nucleares/metabolismo , Transducción de Señal/genética , Proteína 1 Relacionada con Twist/metabolismo , Animales , Apoptosis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Cruzamientos Genéticos , Cartilla de ADN/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Miembro Anterior/metabolismo , Eliminación de Gen , Genotipo , Proteínas Hedgehog/metabolismo , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Morfogénesis/fisiología , beta-Galactosidasa
10.
Dev Biol ; 331(2): 176-88, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19414008

RESUMEN

Using a Cre-mediated conditional deletion approach, we have dissected the function of Twist1 in the morphogenesis of the craniofacial skeleton. Loss of Twist1 in neural crest cells and their derivatives impairs skeletogenic differentiation and leads to the loss of bones of the snout, upper face and skull vault. While no anatomically recognizable maxilla is formed, a malformed mandible is present. Since Twist1 is expressed in the tissues of the maxillary eminence and the mandibular arch, this finding suggests that the requirement for Twist1 is not the same in all neural crest derivatives. The effect of the loss of Twist1 function is not restricted to neural crest-derived bones, since the predominantly mesoderm-derived parietal and interparietal bones are also affected, presumably as a consequence of lost interactions with neural crest-derived tissues. In contrast, the formation of other mesodermal skeletal derivatives such as the occipital bones and most of the chondrocranium are not affected by the loss of Twist1 in the neural crest cells.


Asunto(s)
Morfogénesis/fisiología , Cresta Neural/embriología , Proteínas Nucleares/fisiología , Cráneo/embriología , Proteína 1 Relacionada con Twist/fisiología , Animales , Región Branquial/citología , Región Branquial/embriología , Región Branquial/fisiología , Hueso Frontal/embriología , Hueso Frontal/metabolismo , Maxilares/embriología , Maxilares/metabolismo , Ratones , Ratones Mutantes , Hueso Nasal/embriología , Hueso Nasal/metabolismo , Cresta Neural/citología , Cresta Neural/fisiología , Cráneo/citología , Cráneo/fisiología
11.
Curr Opin Genet Dev ; 16(4): 419-25, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16793258

RESUMEN

The mouse embryo is built by assembling the progenitors of various tissue types into a body plan. Early postimplantation development involves the establishment of anatomical asymmetries and regionalized gene expression in the conceptus, the specification of tissue lineages, and the coordination of cell movement for correct positioning of the lineage progenitors before and at gastrulation. Recent findings reveal that Wnt and Tgfbeta signalling function is instrumental in delineating the anterior-posterior embryonic axis by defining the site of primitive streak formation and by directing the movement of the visceral endoderm. These signalling activities are also required for the specification of anterior and posterior fates of the epiblast cells and for the induction and navigation of the primordial germ cells.


Asunto(s)
Tipificación del Cuerpo/fisiología , Gástrula/fisiología , Activinas/fisiología , Animales , Linaje de la Célula , Movimiento Celular , Endodermo/citología , Endodermo/fisiología , Células Germinativas/fisiología , Proteínas de la Membrana/fisiología , Ratones , Proteína Nodal , Transducción de Señal , Factor de Crecimiento Transformador beta/fisiología , Proteínas Wnt/fisiología
12.
Mol Cell Biol ; 40(11)2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32179550

RESUMEN

The extensive array of basic helix-loop-helix (bHLH) transcription factors and their combinations as dimers underpin the diversity of molecular function required for cell type specification during embryogenesis. The bHLH factor TWIST1 plays pleiotropic roles during development. However, which combinations of TWIST1 dimers are involved and what impact each dimer imposes on the gene regulation network controlled by TWIST1 remain elusive. In this work, proteomic profiling of human TWIST1-expressing cell lines and transcriptome analysis of mouse cranial mesenchyme have revealed that TWIST1 homodimers and heterodimers with TCF3, TCF4, and TCF12 E-proteins are the predominant dimer combinations. Disease-causing mutations in TWIST1 can impact dimer formation or shift the balance of different types of TWIST1 dimers in the cell, which may underpin the defective differentiation of the craniofacial mesenchyme. Functional analyses of the loss and gain of TWIST1-E-protein dimer activity have revealed previously unappreciated roles in guiding lineage differentiation of embryonic stem cells: TWIST1-E-protein heterodimers activate the differentiation of mesoderm and neural crest cells, which is accompanied by the epithelial-to-mesenchymal transition. At the same time, TWIST1 homodimers maintain the stem cells in a progenitor state and block entry to the endoderm lineage.


Asunto(s)
Diferenciación Celular , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Proteína 1 Relacionada con Twist/metabolismo , Animales , Línea Celular , Perros , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Humanos , Células de Riñón Canino Madin Darby , Mesodermo/citología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Mutación , Cresta Neural/citología , Cresta Neural/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Transcriptoma , Proteína 1 Relacionada con Twist/química , Proteína 1 Relacionada con Twist/genética
13.
Curr Top Dev Biol ; 117: 497-521, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26969997

RESUMEN

The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Embrión de Mamíferos/citología , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Cabeza/embriología , Animales , Embrión de Mamíferos/metabolismo , Ratones
14.
Biol Open ; 5(2): 130-9, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26772200

RESUMEN

Early development of the gut endoderm and its subsequent remodeling for the formation of organ buds are accompanied by changes to epithelial cell shape and polarity. Members of the Rho-related family of small GTPases and their interacting proteins play multiple roles in regulating epithelial morphogenesis. In this study we examined the role of Cdc42 in foregut development and organ bud formation. Ablation of Cdc42 in post-gastrulation mouse embryos resulted in a loss of apical-basal cell polarity and columnar epithelial morphology in the ventral pharyngeal endoderm, in conjunction with a loss of apical localization of the known CDC42 effector protein PARD6B. Cell viability but not proliferation in the foregut endoderm was impaired. Outgrowth of the liver, lung and thyroid buds was severely curtailed in Cdc42-deficient embryos. In particular, the thyroid bud epithelium did not display the apical constriction that normally occurs concurrently with the outgrowth of the bud into the underlying mesenchyme. SHROOM3, a protein that interacts with Rho GTPases and promotes apical constriction, was strongly expressed in the thyroid bud and its sub-cellular localization was disrupted in Cdc42-deficient embryos. In Shroom3 gene trap mutant embryos, the thyroid bud epithelium showed no apical constriction, while the bud continued to grow and protruded into the foregut lumen. Our findings indicate that Cdc42 is required for epithelial polarity and organization in the endoderm and for apical constriction in the thyroid bud. It is possible that the function of CDC42 is partly mediated by SHROOM3.

15.
Data Brief ; 9: 372-375, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27699189

RESUMEN

This article contains data related to the research article entitled "Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance" by Bildsoe et al. (2016) [1]. The data presented here are derived from: (1) a microarray-based comparison of sorted cranial mesoderm (CM) and cranial neural crest (CNC) cells from E9.5 mouse embryos; (2) comparisons of transcription profiles of head tissues from mouse embryos with a CM-specific loss-of-function of Twist1 and control mouse embryos collected at E8.5 and E9.5; (3) ChIP-seq using a TWIST1-specific monoclonal antibody with chromatin extracts from TWIST1-expressing MDCK cells, a model for a TWIST1-dependent mesenchymal state.

17.
Gene Expr Patterns ; 4(4): 467-71, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15183314

RESUMEN

In a screen for potential targets of regulation by TWIST in mouse embryos we isolated a fragment with homology to type II early transposon (ETn) and type D endogenous provirus (MusD) elements. Whole-mount in situ hybridization to E7.5-E13.5 mouse embryos reveals a tissue- and stage-specific expression pattern that contrasts with the previously reported lack of expression of ETn elements in mouse embryos beyond late gastrulation. Transcripts were detected in the epiblast at E7.5 and in the neural tube from E8.5 to E10.5. Later expression is predominantly confined to the mesodermal tissues of craniofacial structures, limb buds and somites. The tissue specificity of expression suggests tight regulation of the activity of this early transposon element during embryogenesis.


Asunto(s)
Desarrollo Embrionario/fisiología , Retrovirus Endógenos/genética , Gástrula/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones
18.
Methods Mol Biol ; 1092: 119-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24318817

RESUMEN

We are using knockdown of gene expression in mouse embryos by constitutive expression of small hairpin (sh)RNAs as a means of observing loss-of-function phenotypes more rapidly than gene targeting. Plasmid constructs that direct shRNA expression via an RNA pol III promoter are introduced into embryonic stem (ES) cells by electroporation and drug selection. Clones are propagated and the degree of knockdown assessed by quantitative protein or RNA methods. Selected ES cell clones are used to generate embryos by tetraploid complementation. Blastomeres of two cell embryos are electrofused to generate tetraploid embryos. Chimeric embryos are produced by injection of ES cells into blastocysts or aggregation with morulae. In these embryos, the tetraploid cells become excluded from the fetal tissues, resulting in ES cell-derived embryos harboring the shRNA knockdown construct. Embryos can be collected and their phenotype assessed by appropriate means.


Asunto(s)
Embrión de Mamíferos , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , ARN Interferente Pequeño/genética , Animales , Blastómeros/citología , Técnicas de Silenciamiento del Gen , Marcación de Gen , Ratones , Biología Molecular/métodos , Tetraploidía
19.
PLoS One ; 9(6): e98945, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24893291

RESUMEN

Twist1 encodes a transcription factor that plays a vital role in limb development. We have used a tamoxifen-inducible Cre transgene, Ubc-CreERT2, to generate time-specific deletions of Twist1 by inducing Cre activity in mouse embryos at different ages from embryonic (E) day 9.5 onwards. A novel forelimb phenotype of supernumerary pre-axial digits and enlargement or partial duplication of the distal radius was observed when Cre activity was induced at E9.5. Gene expression analysis revealed significant upregulation of Hoxd10, Hoxd11 and Grem1 in the anterior half of the forelimb bud at E11.5. There is also localized upregulation of Ptch1, Hand2 and Hoxd13 at the site of ectopic digit formation, indicating a posterior molecular identity for the supernumerary digits. The specific skeletal phenotypes, which include duplication of digits and distal zeugopods but no overt posteriorization, differ from those of other Twist1 conditional knockout mutants. This outcome may be attributed to the deferment of Twist1 ablation to a later time frame of limb morphogenesis, which leads to the ectopic activation of posterior genes in the anterior tissues after the establishment of anterior-posterior anatomical identities in the forelimb bud.


Asunto(s)
Esbozos de los Miembros/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Femenino , Miembro Anterior/crecimiento & desarrollo , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Receptores Patched , Receptor Patched-1 , Fenotipo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 Relacionada con Twist/deficiencia , Proteína 1 Relacionada con Twist/genética , Regulación hacia Arriba
20.
Philos Trans R Soc Lond B Biol Sci ; 369(1657)2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25349457

RESUMEN

Mouse epiblast stem cells (EpiSCs) display temporal differences in the upregulation of Mixl1 expression during the initial steps of in vitro differentiation, which can be correlated with their propensity for endoderm differentiation. EpiSCs that upregulated Mixl1 rapidly during differentiation responded robustly to both Activin A and Nodal in generating foregut endoderm and precursors of pancreatic and hepatic tissues. By contrast, EpiSCs that delayed Mixl1 upregulation responded less effectively to Nodal and showed an overall suboptimal outcome of directed differentiation. The enhancement in endoderm potency in Mixl1-early cells may be accounted for by a rapid exit from the progenitor state and the efficient response to the induction of differentiation by Nodal. EpiSCs that readily differentiate into the endoderm cells are marked by a distinctive expression fingerprint of transforming growth factor (TGF)-ß signalling pathway genes and genes related to the endoderm lineage. Nodal appears to elicit responses that are associated with transition to a mesenchymal phenotype, whereas Activin A promotes gene expression associated with maintenance of an epithelial phenotype. We postulate that the formation of definitive endoderm (DE) in embryoid bodies follows a similar process to germ layer formation from the epiblast, requiring an initial de-epithelialization event and subsequent re-epithelialization. Our results show that priming EpiSCs with the appropriate form of TGF-ß signalling at the formative phase of endoderm differentiation impacts on the further progression into mature DE-derived lineages, and that this is influenced by the initial characteristics of the cell population. Our study also highlights that Activin A, which is commonly used as an in vitro surrogate for Nodal in differentiation protocols, does not elicit the same downstream effects as Nodal, and therefore may not effectively mimic events that take place in the mouse embryo.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Endodermo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/embriología , Subunidades beta de Inhibinas/metabolismo , Proteína Nodal/metabolismo , Animales , Endodermo/citología , Regulación del Desarrollo de la Expresión Génica/genética , Estratos Germinativos/citología , Proteínas de Homeodominio/metabolismo , Ratones , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA