Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(4): 835-848.e8, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31378462

RESUMEN

Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.


Asunto(s)
Codón de Terminación , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Deficiencias en la Proteostasis/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo
2.
Dev Biol ; 507: 11-19, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142805

RESUMEN

Notch signaling controls numerous key cellular processes including cell fate determination and cell proliferation. Its malfunction has been linked to many developmental abnormalities and human disorders. Overactivation of Notch signaling is shown to be oncogenic. Retention of excess Notch protein in the endoplasmic reticulum (ER) can lead to altered Notch signaling and cell fate, but the mechanism is not well understood. In this study, we show that V5-tagged or untagged exogenous Notch is retained in the ER when overexpressed in fly tissues. Furthermore, we show that Notch retention in the ER leads to robust ER enlargement and elicits a rough eye phenotype. Gain-of-function of unfolded protein response (UPR) factors IRE1 or spliced Xbp1 (Xbp1-s) alleviates Notch accumulation in the ER, restores ER morphology and ameliorates the rough eye phenotype. Our results uncover a pivotal role of the IRE1/Xbp1 axis in regulating the detrimental effect of ER-localized excess Notch protein during development and tissue homeostasis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Homeostasis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Respuesta de Proteína Desplegada
3.
J Biol Chem ; 300(3): 105719, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311171

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by dysregulation of the expression and processing of the amyloid precursor protein (APP). Protein quality control systems are dedicated to remove faulty and deleterious proteins to maintain cellular protein homeostasis (proteostasis). Identidying mechanisms underlying APP protein regulation is crucial for understanding AD pathogenesis. However, the factors and associated molecular mechanisms regulating APP protein quality control remain poorly defined. In this study, we show that mutant APP with its mitochondrial-targeting sequence ablated exhibited predominant endoplasmic reticulum (ER) distribution and led to aberrant ER morphology, deficits in locomotor activity, and shortened lifespan. We searched for regulators that could counteract the toxicity caused by the ectopic expression of this mutant APP. Genetic removal of the ribosome-associated quality control (RQC) factor RACK1 resulted in reduced levels of ectopically expressed mutant APP. By contrast, gain of RACK1 function increased mutant APP level. Additionally, overexpression of the ER stress regulator (IRE1) resulted in reduced levels of ectopically expressed mutant APP. Mechanistically, the RQC related ATPase VCP/p97 and the E3 ubiquitin ligase Hrd1 were required for the reduction of mutant APP level by IRE1. These factors also regulated the expression and toxicity of ectopically expressed wild type APP, supporting their relevance to APP biology. Our results reveal functions of RACK1 and IRE1 in regulating the quality control of APP homeostasis and mitigating its pathogenic effects, with implications for the understanding and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Proteínas de Drosophila , Endorribonucleasas , Receptores de Cinasa C Activada , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Drosophila melanogaster , Modelos Animales de Enfermedad , Endorribonucleasas/genética , Endorribonucleasas/metabolismo
4.
EMBO Rep ; 24(4): e55548, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36794623

RESUMEN

Mechanisms underlying the depletion of NAD+ and accumulation of reactive oxygen species (ROS) in aging and age-related disorders remain poorly defined. We show that reverse electron transfer (RET) at mitochondrial complex I, which causes increased ROS production and NAD+ to NADH conversion and thus lowered NAD+ /NADH ratio, is active during aging. Genetic or pharmacological inhibition of RET decreases ROS production and increases NAD+ /NADH ratio, extending the lifespan of normal flies. The lifespan-extending effect of RET inhibition is dependent on NAD+ -dependent Sirtuin, highlighting the importance of NAD+ /NADH rebalance, and on longevity-associated Foxo and autophagy pathways. RET and RET-induced ROS and NAD+ /NADH ratio changes are prominent in human induced pluripotent stem cell (iPSC) model and fly models of Alzheimer's disease (AD). Genetic or pharmacological inhibition of RET prevents the accumulation of faulty translation products resulting from inadequate ribosome-mediated quality control, rescues relevant disease phenotypes, and extends the lifespan of Drosophila and mouse AD models. Deregulated RET is therefore a conserved feature of aging, and inhibition of RET may open new therapeutic opportunities in the context of aging and age-related diseases including AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Ratones , Animales , Humanos , NAD , Especies Reactivas de Oxígeno/metabolismo , Electrones , Células Madre Pluripotentes Inducidas/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Enfermedad de Alzheimer/genética , Drosophila/genética , Drosophila/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(42): e2202322119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36170200

RESUMEN

An overarching goal of aging and age-related neurodegenerative disease research is to discover effective therapeutic strategies applicable to a broad spectrum of neurodegenerative diseases. Little is known about the extent to which targetable pathogenic mechanisms are shared among these seemingly diverse diseases. Translational control is critical for maintaining proteostasis during aging. Gaining control of the translation machinery is also crucial in the battle between viruses and their hosts. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Here, we show that overexpression of SARS-CoV-2-encoded nonstructural protein 1 (Nsp1) robustly rescued neuromuscular degeneration and behavioral phenotypes in Drosophila models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These diseases share a common mechanism: the accumulation of aberrant protein species due to the stalling and collision of translating ribosomes, leading to proteostasis failure. Our genetic and biochemical analyses revealed that Nsp1 acted in a multipronged manner to resolve collided ribosomes, abort stalled translation, and remove faulty translation products causative of disease in these models, at least in part through the ribosome recycling factor ABCE1, ribosome-associated quality-control factors, autophagy, and AKT signaling. Nsp1 exhibited exquisite specificity in its action, as it did not modify other neurodegenerative conditions not known to be associated with ribosome stalling. These findings uncover a previously unrecognized mechanism of Nsp1 in manipulating host translation, which can be leveraged for combating age-related neurodegenerative diseases that are affecting millions of people worldwide and currently without effective treatment.


Asunto(s)
COVID-19 , Enfermedades Neurodegenerativas , ARN Polimerasa Dependiente del ARN , Ribosomas , Proteínas no Estructurales Virales , Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Animales , COVID-19/genética , Drosophila , Humanos , Enfermedades Neurodegenerativas/genética , Pandemias , Enfermedad de Parkinson , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo
6.
J Biol Chem ; 299(3): 102995, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764521

RESUMEN

Expansion of G4C2 hexanucleotide repeats in the chromosome 9 ORF 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (C9-ALS/FTD). Dipeptide repeats generated by unconventional translation, especially the R-containing poly(GR), have been implicated in C9-ALS/FTD pathogenesis. Mutations in other genes, including TAR DNA-binding protein 43 KD (TDP-43), fused in sarcoma (FUS), and valosin-containing protein, have also been linked to ALS/FTD, and upregulation of amyloid precursor protein (APP) is observed at the early stage of ALS and FTD. Fundamental questions remain as to the relationships between these ALS/FTD genes and whether they converge on similar cellular pathways. Here, using biochemical, cell biological, and genetic analyses in Drosophila disease models, patient-derived fibroblasts, and mammalian cell culture, we show that mechanistic target of rapamycin complex 2 (mTORC2)/AKT signaling is activated by APP, TDP-43, and FUS and that mTORC2/AKT and its downstream target valosin-containing protein mediate the effect of APP, TDP-43, and FUS on the quality control of C9-ALS/FTD-associated poly(GR) translation. We also find that poly(GR) expression results in reduction of global translation and that the coexpression of APP, TDP-43, and FUS results in further reduction of global translation, presumably through the GCN2/eIF2α-integrated stress response pathway. Together, our results implicate mTORC2/AKT signaling and GCN2/eIF2α-integrated stress response as common signaling pathways underlying ALS/FTD pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipéptidos/metabolismo , Expansión de las Repeticiones de ADN , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Demencia Frontotemporal/patología , Mamíferos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Control de Calidad , Proteína que Contiene Valosina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(40): 25104-25115, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958650

RESUMEN

Maintaining the fidelity of nascent peptide chain (NP) synthesis is essential for proteome integrity and cellular health. Ribosome-associated quality control (RQC) serves to resolve stalled translation, during which untemplated Ala/Thr residues are added C terminally to stalled peptide, as shown during C-terminal Ala and Thr addition (CAT-tailing) in yeast. The mechanism and biological effects of CAT-tailing-like activity in metazoans remain unclear. Here we show that CAT-tailing-like modification of poly(GR), a dipeptide repeat derived from amyotrophic lateral sclerosis with frontotemporal dementia (ALS/FTD)-associated GGGGCC (G4C2) repeat expansion in C9ORF72, contributes to disease. We find that poly(GR) can act as a mitochondria-targeting signal, causing some poly(GR) to be cotranslationally imported into mitochondria. However, poly(GR) translation on mitochondrial surface is frequently stalled, triggering RQC and CAT-tailing-like C-terminal extension (CTE). CTE promotes poly(GR) stabilization, aggregation, and toxicity. Our genetic studies in Drosophila uncovered an important role of the mitochondrial protease YME1L in clearing poly(GR), revealing mitochondria as major sites of poly(GR) metabolism. Moreover, the mitochondria-associated noncanonical Notch signaling pathway impinges on the RQC machinery to restrain poly(GR) accumulation, at least in part through the AKT/VCP axis. The conserved actions of YME1L and noncanonical Notch signaling in animal models and patient cells support their fundamental involvement in ALS/FTD.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas de Drosophila/genética , Demencia Frontotemporal/genética , Metaloendopeptidasas/genética , Proteínas Mitocondriales/genética , Proteoma/genética , Receptores Notch/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Arginina/genética , Expansión de las Repeticiones de ADN/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Células HEK293 , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Biosíntesis de Proteínas , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal/genética
8.
Hum Mol Genet ; 29(4): 541-553, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31628467

RESUMEN

Missense mutations in the RNA exosome component exosome component 2 (EXOSC2), also known as ribosomal RNA-processing protein 4 (RRP4), were recently identified in two unrelated families with a novel syndrome known as Short stature, Hearing loss, Retinitis pigmentosa and distinctive Facies (SHRF, #OMIM 617763). Little is known about the mechanism of the SHRF pathogenesis. Here we have studied the effect of mutations in EXOSC2/RRP4 in patient-derived lymphoblasts, clustered regularly interspaced short palindromic repeats (CRISPR)-generated mutant fetal keratinocytes and Drosophila. We determined that human EXOSC2 is an essential gene and that the pathogenic G198D mutation prevents binding to other RNA exosome components, resulting in protein and complex instability and altered expression and/or activities of critical genes, including those in the autophagy pathway. In parallel, we generated multiple CRISPR knockouts of the fly rrp4 gene. Using these flies, as well as rrp4 mutants with Piggy Bac (PBac) transposon insertion in the 3'UTR and RNAi flies, we determined that fly rrp4 was also essential, that fly rrp4 phenotypes could be rescued by wild-type human EXOSC2 but not the pathogenic form and that fly rrp4 is critical for eye development and maintenance, muscle ultrastructure and wing vein development. We found that overexpression of the transcription factor MITF was sufficient to rescue the small eye and adult lethal phenotypes caused by rrp4 inhibition. The autophagy genes ATG1 and ATG17, which are regulated by MITF, had similar effect. Pharmacological stimulation of autophagy with rapamycin also rescued the lethality caused by rrp4 inactivation. Our results implicate defective autophagy in SHRF pathogenesis and suggest therapeutic strategies.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Proteínas de Unión al ARN/genética , Animales , Autofagia/genética , Modelos Animales de Enfermedad , Drosophila/genética , Enanismo/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/metabolismo , Femenino , Genómica/métodos , Células HEK293 , Pérdida Auditiva/genética , Humanos , Masculino , Mutación Missense/genética , Fenotipo , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Retinitis Pigmentosa/genética , Síndrome
9.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35161547

RESUMEN

Thin-film silicon (Si)-based transient electronics represents an emerging technology that enables spontaneous dissolution, absorption and, finally, physical disappearance in a controlled manner under physiological conditions, and has attracted increasing attention in pertinent clinical applications such as biomedical implants for on-body sensing, disease diagnostics, and therapeutics. The degradation behavior of thin-film Si materials and devices is critically dependent on the device structure as well as the environment. In this work, we experimentally investigated the dissolution of planar Si thin films and micropatterned Si pillar arrays in a cell culture medium, and systematically analyzed the evolution of their topographical, physical, and chemical properties during the hydrolysis. We discovered that the cell culture medium significantly accelerates the degradation process, and Si pillar arrays present more prominent degradation effects by creating rougher surfaces, complicating surface states, and decreasing the electrochemical impedance. Additionally, the dissolution process leads to greatly reduced mechanical strength. Finally, in vitro cell culture studies demonstrate desirable biocompatibility of corroded Si pillars. The results provide a guideline for the use of thin-film Si materials and devices as transient implants in biomedicine.


Asunto(s)
Electrónica , Silicio , Técnicas de Cultivo de Célula , Indicadores y Reactivos
10.
Proc Natl Acad Sci U S A ; 115(38): E8844-E8853, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30185553

RESUMEN

Calcium (Ca2+) homeostasis is essential for neuronal function and survival. Altered Ca2+ homeostasis has been consistently observed in neurological diseases. How Ca2+ homeostasis is achieved in various cellular compartments of disease-relevant cell types is not well understood. Here we show in Drosophila Parkinson's disease (PD) models that Ca2+ transport from the endoplasmic reticulum (ER) to mitochondria through the ER-mitochondria contact site (ERMCS) critically regulates mitochondrial Ca2+ (mito-Ca2+) homeostasis in dopaminergic (DA) neurons, and that the PD-associated PINK1 protein modulates this process. In PINK1 mutant DA neurons, the ERMCS is strengthened and mito-Ca2+ level is elevated, resulting in mitochondrial enlargement and neuronal death. Miro, a well-characterized component of the mitochondrial trafficking machinery, mediates the effects of PINK1 on mito-Ca2+ and mitochondrial morphology, apparently in a transport-independent manner. Miro overexpression mimics PINK1 loss-of-function effect, whereas inhibition of Miro or components of the ERMCS, or pharmacological modulation of ERMCS function, rescued PINK1 mutant phenotypes. Mito-Ca2+ homeostasis is also altered in the LRRK2-G2019S model of PD and the PAR-1/MARK model of neurodegeneration, and genetic or pharmacological restoration of mito-Ca2+ level is beneficial in these models. Our results highlight the importance of mito-Ca2+ homeostasis maintained by Miro and the ERMCS to mitochondrial physiology and neuronal integrity. Targeting this mito-Ca2+ homeostasis pathway holds promise for a therapeutic strategy for neurodegenerative diseases.


Asunto(s)
Calcio/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Enfermedad de Parkinson/patología , Animales , Animales Modificados Genéticamente , Quelantes/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación con Pérdida de Función , Mitocondrias/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
11.
Genes Dev ; 27(2): 157-62, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23348839

RESUMEN

Eukaryotes employ elaborate mitochondrial quality control (MQC) to maintain the function of the power-generating organelle. Parkinson's disease-associated PINK1 and Parkin actively participate in MQC. However, the signaling events involved are largely unknown. Here we show that mechanistic target of rapamycin 2 (mTORC2) and Tricornered (Trc) kinases act downstream from PINK1 to regulate MQC. Trc is phosphorylated in mTORC2-dependent and mTORC2-independent manners and is specifically localized to mitochondria in response to PINK1, which regulates mTORC2 through mitochondrial complex-I activity. Genetically, mTORC2 and Trc act upstream of Parkin. Thus, multiplex kinase signaling is acting between PINK1 and Parkin to regulate MQC, a process highly conserved in mammals.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Proteínas de Drosophila/genética , Humanos , Masculino , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
12.
Genes Dev ; 27(24): 2642-7, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24352421

RESUMEN

The self-renewal versus differentiation choice of Drosophila and mammalian neural stem cells (NSCs) requires Notch (N) signaling. How N regulates NSC behavior is not well understood. Here we show that canonical N signaling cooperates with a noncanonical N signaling pathway to mediate N-directed NSC regulation. In the noncanonical pathway, N interacts with PTEN-induced kinase 1 (PINK1) to influence mitochondrial function, activating mechanistic target of rapamycin complex 2 (mTORC2)/AKT signaling. Importantly, attenuating noncanonical N signaling preferentially impaired the maintenance of Drosophila and human cancer stem cell-like tumor-forming cells. Our results emphasize the importance of mitochondria to N and NSC biology, with important implications for diseases associated with aberrant N signaling.


Asunto(s)
Mitocondrias/metabolismo , Complejos Multiproteicos/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Quinasas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Neoplasias Encefálicas/fisiopatología , Línea Celular Tumoral , Proliferación Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina , Microscopía Electrónica de Transmisión , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Complejos Multiproteicos/genética , Mutación , Proteínas Quinasas/genética , Interferencia de ARN , Serina-Treonina Quinasas TOR/genética
13.
PLoS Genet ; 13(5): e1006785, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28520736

RESUMEN

Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila/genética , Hormonas Juveniles/genética , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Receptores Notch/metabolismo , Animales , Encéfalo/citología , Diferenciación Celular , Procesos de Crecimiento Celular , Drosophila/citología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Retroalimentación Fisiológica , Hormonas Juveniles/metabolismo , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Receptores Notch/genética , Transducción de Señal
14.
Int J Hyperthermia ; 36(1): 632-639, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244349

RESUMEN

Purpose: Microwave ablation (MWA) has become increasingly popular as a minimally invasive treatment for benign and malignant liver tumors. However, few studies have demonstrated the benefits and disadvantages of MWA compared to surgical resection (SR) for large hepatic hemangiomas. This study aimed to evaluate the safety and effectiveness of MWA compared to SR for large (5-10 cm) hepatic hemangiomas. Methods and materials: This retrospective comparative study included 112 patients with large, symptomatic hepatic hemangiomas who had been treated with MWA (n = 44) or SR (n = 68) and followed up for a median of 44 months using enhanced computed tomography (CT) or magnetic resonance imaging (MRI). Intraoperative information, postoperative recovery time, postoperative discomfort and complications and treatment effectiveness between groups were compared using a chi-square test or an independent t-test. Results: The operative time was significantly shorter (31.3 ± 21.76 versus 148.1 ± 59.3 min, p < .001) and the blood loss (10.2 ± 60.6 versus 227.9 ± 182.9 mL, p < .0001) and rate of prophylactic abdominal drainage [1 (2.3%) versus 57 (83.8%), p < .001] were significantly lower in the MWA group than in the SR group. Postoperative recovery of the MWA group in regard to indwelling catheter time, normal diet time, incision cicatrization time and hospital stay (p < .001) was significantly better than the SR group. However, no statistically significant difference in effectiveness was noted between the groups (p = .58). Conclusions: MWA may be as effective as SR, and potentially safer for treating large, symptomatic hepatic hemangiomas. To confirm our findings, large-sample, multicentered, randomized controlled trials are needed.


Asunto(s)
Ablación por Catéter/métodos , Hemangioma/cirugía , Neoplasias Hepáticas/cirugía , Microondas/uso terapéutico , Femenino , Hemangioma/diagnóstico por imagen , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Ultrasonografía
15.
Genes Dev ; 25(24): 2644-58, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22190460

RESUMEN

Cancer stem cells (CSCs) are postulated to be a small subset of tumor cells with tumor-initiating ability that shares features with normal tissue-specific stem cells. The origin of CSCs and the mechanisms underlying their genesis are poorly understood, and it is uncertain whether it is possible to obliterate CSCs without inadvertently damaging normal stem cells. Here we show that a functional reduction of eukaryotic translation initiation factor 4E (eIF4E) in Drosophila specifically eliminates CSC-like cells in the brain and ovary without having discernable effects on normal stem cells. Brain CSC-like cells can arise from dedifferentiation of transit-amplifying progenitors upon Notch hyperactivation. eIF4E is up-regulated in these dedifferentiating progenitors, where it forms a feedback regulatory loop with the growth regulator dMyc to promote cell growth, particularly nucleolar growth, and subsequent ectopic neural stem cell (NSC) formation. Cell growth regulation is also a critical component of the mechanism by which Notch signaling regulates the self-renewal of normal NSCs. Our findings highlight the importance of Notch-regulated cell growth in stem cell maintenance and reveal a stronger dependence on eIF4E function and cell growth by CSCs, which might be exploited therapeutically.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Receptores Notch/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Tamaño de la Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Receptores Notch/genética , Transducción de Señal
16.
Hum Mol Genet ; 25(23): 5059-5068, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27794540

RESUMEN

Dysregulation of Fused in Sarcoma (FUS) gene expression is associated with fronto-temporal lobar degeneration (FTLD), and missense mutations in the FUS gene have been identified in patients affected by amyotrophic lateral sclerosis (ALS). However, molecular and cellular defects underlying FUS proteinopathy remain to be elucidated. Here, we examined whether genes important for mitochondrial quality control play a role in FUS proteinopathy. In our genetic screening, Pink1 and Park genes were identified as modifiers of neurodegeneration phenotypes induced by wild type (Wt) or ALS-associated P525L-mutant human FUS. Down-regulating expression of either Pink1 or Parkin genes ameliorated FUS-induced neurodegeneration phenotypes. The protein levels of PINK1 and Parkin were elevated in cells overexpressing FUS. Remarkably, ubiquitinylation of Miro1 protein, a downstream target of the E3 ligase activity of Parkin, was also increased in cells overexpressing FUS protein. In fly motor neurons expressing FUS, both motility and processivity of mitochondrial axonal transport were reduced by expression of either Wt- or P525L-mutant FUS. Finally, down-regulating PINK1 or Parkin partially rescued the locomotive defects and enhanced the survival rate in transgenic flies expressing FUS. Our data indicate that PINK1 and Parkin play an important role in FUS-induced neurodegeneration. This study has uncovered a previously unknown link between FUS proteinopathy and PINK1/Parkin genes, providing new insights into the pathogenesis of FUS proteinopathy.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Drosophila/genética , Degeneración Lobar Frontotemporal/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Degeneración Nerviosa/genética , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Transporte Axonal/genética , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/fisiopatología , Regulación de la Expresión Génica , Genes Modificadores/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación Missense , Degeneración Nerviosa/patología , Fenotipo , Proteínas de Unión al GTP rho/genética
17.
Proc Natl Acad Sci U S A ; 111(5): 1927-32, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449853

RESUMEN

Here, we report advanced materials and devices that enable high-efficiency mechanical-to-electrical energy conversion from the natural contractile and relaxation motions of the heart, lung, and diaphragm, demonstrated in several different animal models, each of which has organs with sizes that approach human scales. A cointegrated collection of such energy-harvesting elements with rectifiers and microbatteries provides an entire flexible system, capable of viable integration with the beating heart via medical sutures and operation with efficiencies of ∼2%. Additional experiments, computational models, and results in multilayer configurations capture the key behaviors, illuminate essential design aspects, and offer sufficient power outputs for operation of pacemakers, with or without battery assist.


Asunto(s)
Diafragma/fisiología , Suministros de Energía Eléctrica , Fenómenos Electrofisiológicos , Corazón/fisiología , Pulmón/fisiología , Movimiento (Física) , Animales , Bovinos , Humanos , Ratas , Ovinos
18.
Cell Biol Int ; 40(6): 671-85, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27005844

RESUMEN

Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been demonstrated as an ideal autologous stem cells source for cell-based therapy for myocardial infarction (MI). However, poor viability of donor stem cells after transplantation limits their therapeutic efficiency, whereas the underlying mechanism is still poorly understood. Autophagy, a highly conserved process of cellular degradation, is required for maintaining homeostasis and normal function. Here, we investigated the potential role of autophagy on apoptosis in BM-MSCs induced by hypoxic injury. BM-MSCs, isolated from male C57BL/6 mice, were subjected to hypoxia and serum deprivation (H/SD) injury for 6, 12, and 24 h, respectively. The autophagy state was regulated by 3-methyladenine (3MA) and rapamycin administration. Furthermore, compound C was administrated to inhibit AMPK. The apoptosis induced by H/SD was determined by TUNEL assays. Meanwhile, autophagy was measured by GFP-LC3 plasmids transfection and transmission electron microscope. Moreover, protein expressions were evaluated by Western blot assay. In the present study, we found that hypoxic stress increased autophagy and apoptosis in BM-MSCs time dependently. Meanwhile, hypoxia increased the activity of AMPK/mTOR signal pathway. Moreover, increased apoptosis in BM-MSCs under hypoxia was abolished by 3-MA, whereas was aggravated by rapamycin. Furthermore, the increased autophagy and apoptosis in BM-MSCs induced by hypoxia were abolished by AMPK inhibitor compound C. These data provide evidence that hypoxia induced AMPK/mTOR signal pathway activation which regulated the apoptosis and autophagy in BM-MSCs. Furthermore, the apoptosis of BM-MSCs under hypoxic condition was regulated by autophagy via AMPK/mTOR pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/fisiología , Células Madre Mesenquimatosas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia/fisiología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Hipoxia de la Célula/fisiología , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
19.
Nature ; 466(7306): 637-41, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20671708

RESUMEN

Gain-of-function mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial as well as sporadic Parkinson's disease characterized by age-dependent degeneration of dopaminergic neurons. The molecular mechanism of LRRK2 action is not known. Here we show that LRRK2 interacts with the microRNA (miRNA) pathway to regulate protein synthesis. Drosophila e2f1 and dp messenger RNAs are translationally repressed by let-7 and miR-184*, respectively. Pathogenic LRRK2 antagonizes these miRNAs, leading to the overproduction of E2F1/DP, previously implicated in cell cycle and survival control and shown here to be critical for LRRK2 pathogenesis. Genetic deletion of let-7, antagomir-mediated blockage of let-7 and miR-184* action, transgenic expression of dp target protector, or replacement of endogenous dp with a dp transgene non-responsive to let-7 each had toxic effects similar to those of pathogenic LRRK2. Conversely, increasing the level of let-7 or miR-184* attenuated pathogenic LRRK2 effects. LRRK2 associated with Drosophila Argonaute-1 (dAgo1) or human Argonaute-2 (hAgo2) of the RNA-induced silencing complex (RISC). In aged fly brain, dAgo1 protein level was negatively regulated by LRRK2. Further, pathogenic LRRK2 promoted the association of phospho-4E-BP1 with hAgo2. Our results implicate deregulated synthesis of E2F1/DP caused by the miRNA pathway impairment as a key event in LRRK2 pathogenesis and suggest novel miRNA-based therapeutic strategies.


Asunto(s)
Regulación hacia Abajo , MicroARNs/genética , MicroARNs/metabolismo , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas Argonautas , Línea Celular , Dopamina/metabolismo , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Factor de Transcripción E2F1/biosíntesis , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/biosíntesis , Factores Eucarióticos de Iniciación/metabolismo , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , MicroARNs/antagonistas & inhibidores , Neuronas/citología , Neuronas/metabolismo , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/antagonistas & inhibidores , Complejo Silenciador Inducido por ARN/química , Complejo Silenciador Inducido por ARN/metabolismo , Transactivadores/biosíntesis , Transactivadores/genética , Transactivadores/metabolismo , Regulación hacia Arriba
20.
J Cell Sci ; 126(Pt 3): 838-49, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23264732

RESUMEN

Axon degeneration is observed at the early stages of many neurodegenerative conditions and this often leads to subsequent neuronal loss. We previously showed that inactivating the c-Jun N-terminal kinase (JNK) pathway leads to axon degeneration in Drosophila mushroom body (MB) neurons. To understand this process, we screened candidate suppressor genes and found that the Wallerian degeneration slow (Wld(S)) protein blocked JNK axonal degeneration. Although the nicotinamide mononucleotide adenylyltransferase (Nmnat1) portion of Wld(S) is required, we found that its nicotinamide adenine dinucleotide (NAD(+)) enzyme activity and the Wld(S) N-terminus (N70) are dispensable, unlike axotomy models of neurodegeneration. We suggest that Wld(S)-Nmnat protects against axonal degeneration through chaperone activity. Furthermore, ectopically expressed heat shock proteins (Hsp26 and Hsp70) also protected against JNK and Nmnat degeneration phenotypes. These results suggest that molecular chaperones are key in JNK- and Nmnat-regulated axonal protective functions.


Asunto(s)
Axones/metabolismo , Drosophila melanogaster/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Degeneración Walleriana/metabolismo , ADP Ribosa Transferasas/metabolismo , Animales , Axones/patología , Proteínas de Drosophila/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Proteínas de Choque Térmico/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Cuerpos Pedunculados/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Transducción de Señal , Degeneración Walleriana/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA