Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944512

RESUMEN

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Biología Sintética , ARN de Transferencia/genética , Cromosomas Artificiales de Levadura/genética
2.
Nucleic Acids Res ; 43(13): e88, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-25956650

RESUMEN

It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using ß-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts.


Asunto(s)
Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , beta Caroteno/biosíntesis
3.
Cell Genom ; 3(11): 100364, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020968

RESUMEN

Aneuploidy compromises genomic stability, often leading to embryo inviability, and is frequently associated with tumorigenesis and aging. Different aneuploid chromosome stoichiometries lead to distinct transcriptomic and phenotypic changes, making it helpful to study aneuploidy in tightly controlled genetic backgrounds. By deploying the engineered SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) system to the newly synthesized megabase Sc2.0 chromosome VII (synVII), we constructed a synthetic disomic yeast and screened hundreds of SCRaMbLEd derivatives with diverse chromosomal rearrangements. Phenotypic characterization and multi-omics analysis revealed that fitness defects associated with aneuploidy could be restored by (1) removing most of the chromosome content or (2) modifying specific regions in the duplicated chromosome. These findings indicate that both chromosome copy number and specific chromosomal regions contribute to the aneuploidy-related phenotypes, and the synthetic chromosome resource opens new paradigms in studying aneuploidy.

4.
ACS Synth Biol ; 11(2): 579-586, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35050610

RESUMEN

Computational design tools are the cornerstone of synthetic biology and have underpinned its rapid development over the past two decades. As the field has matured, the scale of biological investigation has expanded dramatically, and researchers often must rely on computational tools to operate in the high-throughput investigational space. This is especially apparent in the modular design of DNA expression circuits, where complexity is accumulated rapidly. Alongside our automated pipeline for the high-throughput construction of Extensible Modular Mammalian Assembly (EMMA) expression vectors, we recognized the need for an integrated software solution for EMMA vector design. Here we present EMMA-CAD (https://emma.cailab.org), a powerful web-based computer-aided design tool for the rapid design of bespoke mammalian expression vectors. EMMA-CAD features a variety of functionalities, including a user-friendly design interface, automated connector selection underpinned by rigorous computer optimization algorithms, customization of part libraries, and personalized design spaces. Capable of translating vector assembly designs into human- and machine-readable protocols for vector construction, EMMA-CAD integrates seamlessly into our automated EMMA pipeline, hence completing an end-to-end design to production workflow.


Asunto(s)
Programas Informáticos , Biología Sintética , Algoritmos , Animales , Automatización , ADN/genética , Humanos , Mamíferos/genética , Biología Sintética/métodos
5.
ACS Synth Biol ; 11(2): 587-595, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35061373

RESUMEN

With applications from functional genomics to the production of therapeutic biologics, libraries of mammalian expression vectors have become a cornerstone of modern biological investigation and engineering. Multiple modular vector platforms facilitate the rapid design and assembly of vectors. However, such systems approach a technical bottleneck when a library of bespoke vectors is required. Utilizing the flexibility and robustness of the Extensible Mammalian Modular Assembly (EMMA) toolkit, we present an automated workflow for the library-scale design, assembly, and verification of mammalian expression vectors. Vector design is simplified using our EMMA computer-aided design tool (EMMA-CAD), while the precision and speed of acoustic droplet ejection technology are applied in vector assembly. Our pipeline facilitates significant reductions in both reagent usage and researcher hands-on time compared with manual assembly, as shown by system Q-metrics. To demonstrate automated EMMA performance, we compiled a library of 48 distinct plasmid vectors encoding either CRISPR interference or activation modalities. Characterization of the workflow parameters shows that high assembly efficiency is maintained across vectors of various sizes and design complexities. Our system also performs strongly compared with manual assembly efficiency benchmarks. Alongside our automated pipeline, we present a straightforward strategy for integrating gRNA and Cas modules into the EMMA platform, enabling the design and manufacture of valuable genome editing resources.


Asunto(s)
Edición Génica , ARN Guía de Kinetoplastida , Animales , Automatización , Sistemas CRISPR-Cas , Biblioteca de Genes , Vectores Genéticos/genética , Mamíferos/genética , ARN Guía de Kinetoplastida/genética
6.
ACS Synth Biol ; 6(12): 2362-2365, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29020772

RESUMEN

Genetic Constructor is a cloud Computer Aided Design (CAD) application developed to support synthetic biologists from design intent through DNA fabrication and experiment iteration. The platform allows users to design, manage, and navigate complex DNA constructs and libraries, using a new visual language that focuses on functional parts abstracted from sequence. Features like combinatorial libraries and automated primer design allow the user to separate design from construction by focusing on functional intent, and design constraints aid iterative refinement of designs. A plugin architecture enables contributions from scientists and coders to leverage existing powerful software and connect to DNA foundries. The software is easily accessible and platform agnostic, free for academics, and available in an open-source community edition. Genetic Constructor seeks to democratize DNA design, manufacture, and access to tools and services from the synthetic biology community.


Asunto(s)
ADN/genética , Ingeniería Genética/instrumentación , Programas Informáticos
7.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280154

RESUMEN

We describe design, rapid assembly, and characterization of synthetic yeast Sc2.0 chromosome VI (synVI). A mitochondrial defect in the synVI strain mapped to synonymous coding changes within PRE4 (YFR050C), encoding an essential proteasome subunit; Sc2.0 coding changes reduced Pre4 protein accumulation by half. Completing Sc2.0 specifies consolidation of 16 synthetic chromosomes into a single strain. We investigated phenotypic, transcriptional, and proteomewide consequences of Sc2.0 chromosome consolidation in poly-synthetic strains. Another "bug" was discovered through proteomic analysis, associated with alteration of the HIS2 transcription start due to transfer RNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-synthetic strain "omics" analyses. This work sets the stage for completion of a designer, synthetic eukaryotic genome.


Asunto(s)
Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Células Artificiales/metabolismo , Mapeo Físico de Cromosoma , Complejo de la Endopetidasa Proteasomal/genética , Proteómica , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
8.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280150

RESUMEN

Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) strains.


Asunto(s)
Cromosomas Artificiales de Levadura/ultraestructura , Genoma Fúngico , Saccharomyces cerevisiae/genética , Biología Sintética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Centrómero/ultraestructura , Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , ADN Ribosómico/genética , Conformación de Ácido Nucleico , Secuencias Repetitivas de Ácidos Nucleicos/genética , Eliminación de Secuencia , Telómero/ultraestructura
9.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280149

RESUMEN

We designed and synthesized a 976,067-base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect "bugs" detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.


Asunto(s)
Cromosomas Artificiales de Levadura/química , ADN Ribosómico/genética , Ingeniería Genética/métodos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cromosomas Artificiales de Levadura/genética , Cromosomas Artificiales de Levadura/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Transcriptoma
10.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280152

RESUMEN

Debugging a genome sequence is imperative for successfully building a synthetic genome. As part of the effort to build a designer eukaryotic genome, yeast synthetic chromosome X (synX), designed as 707,459 base pairs, was synthesized chemically. SynX exhibited good fitness under a wide variety of conditions. A highly efficient mapping strategy called pooled PCRTag mapping (PoPM), which can be generalized to any watermarked synthetic chromosome, was developed to identify genetic alterations that affect cell fitness ("bugs"). A series of bugs were corrected that included a large region bearing complex amplifications, a growth defect mapping to a recoded sequence in FIP1, and a loxPsym site affecting promoter function of ATP2 PoPM is a powerful tool for synthetic yeast genome debugging and an efficient strategy for phenotype-genotype mapping.


Asunto(s)
Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mapeo Físico de Cromosoma/métodos , Saccharomyces cerevisiae/genética , Secuencia de Bases , Duplicación de Gen , Aptitud Genética , Biología Sintética
11.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280153

RESUMEN

Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain.


Asunto(s)
Cromosomas Artificiales de Levadura/fisiología , Genoma Fúngico , Saccharomyces cerevisiae/genética , Segregación Cromosómica , Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , Medios de Cultivo/química , Replicación del ADN , Glicerol , Proteómica , Saccharomyces cerevisiae/crecimiento & desarrollo , Análisis de Secuencia de ADN , Biología Sintética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA