Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 41(17): 8166-81, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23821665

RESUMEN

The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.


Asunto(s)
Disparidad de Par Base , ADN/química , Proteínas de Escherichia coli/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Adenosina Trifosfato/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína
2.
Mutat Res ; 759: 1-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24361397

RESUMEN

The spontaneous incidence of chloramphenicol (Cam) resistant mutant bacteria is at least ten-fold higher in cultures of enterohemorrhagic Escherichia coli O157:H7 strain EDL933 than in E. coli K-12. It is at least 100-fold higher in the dam (DNA adenine methyltransferase) derivative of EDL933, compared to the dam strain of E. coli K-12, thereby preventing the use of Cam resistance as a marker in gene replacement technology. Genome sequencing of Cam-resistant isolates of EDL933 and its dam derivatives showed that the marR (multiple antibiotic resistance) gene was mutated in every case but not in the Cam-sensitive parental strains. As expected from mutation in the marR gene, the Cam-resistant bacteria were also found to be resistant to tetracycline and nalidixic acid. The marR gene in strain EDL933 is annotated as a shorter open reading frame than that in E. coli K-12 but the longer marR(+) open reading frame was more efficient at complementing the marR antibiotic-resistance phenotype of strain EDL933. Beta-lactamase-tolerant derivatives were present at frequencies 10-100 times greater in cultures of marR derivatives of strain EDL933 than the parent strain. Spontaneous mutation frequency to rifampicin, spectinomycin and streptomycin resistance was the same in E. coli O157:H7 and E. coli K-12 strains.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Escherichia coli O157/efectos de los fármacos , Carbenicilina/farmacología , Cloranfenicol/farmacología , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Prueba de Complementación Genética , Pruebas de Sensibilidad Microbiana , Mutación , Proteínas Represoras/genética
3.
Mutat Res ; 705(2): 71-76, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20471491

RESUMEN

Mutator strains of Escherichia coli have been used to define mechanisms that account for the high fidelity of chromosome duplication and chromosome stability. Mutant strains defective in post-replicative mismatch repair display a strong mutator phenotype consistent with a role for correction of mismatches arising from replication errors. Inactivation of the gene (dam) encoding DNA adenine methyltransferase results in a mutator phenotype consistent with a role for DNA methylation in strand discrimination during mismatch repair. This review gives a personal perspective on the discovery of dam mutants in E. coli and their relationship to mismatch repair and mutator phenotypes.


Asunto(s)
Metilación de ADN , ADN Bacteriano/metabolismo , Escherichia coli/genética , Genes Bacterianos , Metilnitronitrosoguanidina/farmacología , Mutación , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Reparación de la Incompatibilidad de ADN , Recombinación Genética
4.
Curr Opin Microbiol ; 8(2): 154-60, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15802246

RESUMEN

GATC sequences in Escherichia coli DNA are methylated at the adenine residue by DNA adenine methyltransferase (DamMT). These methylated residues and/or the level of DamMT can influence cellular functions such as gene transcription, DNA mismatch repair, initiation of chromosome replication and nucleoid structure. In certain bacteria, unlike E. coli, DamMT is essential for viability perhaps owing to its role in chromosome replication. DamMT has also been implicated as a virulence factor in bacterial pathogenesis. The origin and phylogeny of DamMT, based on sequenced genomes, has been deduced.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Metilación de ADN , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/fisiología , Proteínas de Escherichia coli
5.
Nucleic Acids Res ; 31(7): 1805-12, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12654995

RESUMEN

A nomenclature is described for restriction endonucleases, DNA methyltransferases, homing endonucleases and related genes and gene products. It provides explicit categories for the many different Type II enzymes now identified and provides a system for naming the putative genes found by sequence analysis of microbial genomes.


Asunto(s)
Enzimas de Restricción del ADN/clasificación , Metiltransferasas/clasificación , Terminología como Asunto , Secuencia de Bases , Sitios de Unión , ADN/genética , ADN/metabolismo , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
6.
Mutat Res ; 554(1-2): 149-57, 2004 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-15450413

RESUMEN

The sensitivity of a panel of DNA repair-defective bacterial strains to BLM was investigated. Escherichia coli recA cells were far more sensitive than were uvrA, dam-3, and mutM mutY strains, underscoring the importance of RecA to survival. Strains recBCD and recN, which lack proteins required for double strand break (DSB) repair, were highly sensitive to BLM, while recF cells were not. The requirement for DSB-specific enzymes supports the hypothesis that DSBs are the primary cause of bleomycin cytotoxicity. The acute sensitivity of recN cells was comparable to that of recA, implying a central role for the RecN protein in BLM lesion repair. The Holliday junction processing enzymes RecG and RuvC were both required for BLM survival. The recG ruvC double mutant was no more sensitive than either mutation alone, suggesting that both enzymes participate in the same pathway. Surprisingly, ruvAB cells were no more sensitive than wildtype, implying that RuvC is able to perform its role without RuvAB. This observation contrasts with current models of recombination in which RuvA, B, and C function as a single complex. The most straightforward explanation of these results is that DSB repair involves a structure that serves as a good substrate for RecG, and not RuvAB.


Asunto(s)
Proteínas Bacterianas/fisiología , Bleomicina/toxicidad , Enzimas de Restricción del ADN/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/efectos de los fármacos , Mutágenos/toxicidad , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Recombinación Genética
7.
F1000Res ; 2: 7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358856

RESUMEN

Genetic manipulation in enterohemorrhagic E. coli O157:H7 is currently restricted to recombineering, a method that utilizes the recombination system of bacteriophage lambda, to introduce gene replacements and base changes inter alia into the genome. Bacteriophage 933W is a prophage in E. coli O157:H7 strain EDL933, which encodes the genes ( stx2AB) for the production of Shiga toxin which is the basis for the potentially fatal Hemolytic Uremic Syndrome in infected humans. We replaced the stx2AB genes with a kanamycin cassette using recombineering. After induction of the prophage by ultra-violet light, we found that bacteriophage lysates were capable of transducing to wildtype, point mutations in the lactose, arabinose and maltose genes. The lysates could also transduce tetracycline resistant cassettes. Bacteriophage 933W is also efficient at transducing markers in E. coli K-12. Co-transduction experiments indicated that the maximal amount of transferred DNA was likely the size of the bacteriophage genome, 61 kB. All tested transductants, in both E. coli K-12 and O157:H7, were kanamycin-sensitive indicating that the transducing particles contained host DNA.

8.
PLoS One ; 8(3): e60519, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23544153

RESUMEN

The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-ß-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.


Asunto(s)
Infecciones Bacterianas/inmunología , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/microbiología , Harmina/análogos & derivados , Inmunidad Innata/efectos de los fármacos , Longevidad/efectos de los fármacos , Animales , Antibacterianos/farmacología , Infecciones Bacterianas/patología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Recuento de Colonia Microbiana , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Harmina/farmacología , Calor , Humanos , Inmunidad Innata/genética , Intestinos/efectos de los fármacos , Intestinos/microbiología , Intestinos/patología , Longevidad/inmunología , MAP Quinasa Quinasa 4/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos
9.
PLoS One ; 7(3): e33256, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438905

RESUMEN

Bleomycin (BLM) is a glycopeptide antibiotic and anti-tumor agent that targets primarily the furanose rings of DNA and in the presence of ferrous ions produces oxidative damage and DNA strand breaks. Escherichia coli cells growing in broth medium and exposed to low concentrations of BLM contain double-strand breaks and require homologous recombination to survive. To a lesser extent, the cells also require the abasic (AP) endonucleases associated with base excision repair, presumably to repair oxidative damage. As expected, there is strong induction of the SOS system in treated cells. In contrast, E. coli cells growing in glucose or glycerol minimal medium are resistant to the lethal action of BLM and do not require either homologous recombination functions or AP-endonucleases for survival. DNA ligase activity, however, is needed for cells growing in minimal medium to resist the lethal effects of BLM. There is weak SOS induction in such treated cells.


Asunto(s)
Bleomicina/farmacología , Escherichia coli K12/efectos de los fármacos , Antibióticos Antineoplásicos/farmacología , Proteínas Bacterianas/genética , Medios de Cultivo , Roturas del ADN de Doble Cadena , ADN Ligasas/metabolismo , Enzimas de Restricción del ADN/genética , ADN Bacteriano/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Farmacorresistencia Bacteriana , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Genes Bacterianos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Reparación del ADN por Recombinación/genética , Respuesta SOS en Genética/efectos de los fármacos
10.
F1000 Biol Rep ; 2: 56, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20711416

RESUMEN

The expression of Beta, the single-stranded annealing protein (SSAP) of bacteriophage lambda in Escherichia coli promotes high levels of oligonucleotide (oligo)-mediated mutagenesis and offers a quick way to create single or multiple base pair insertions, deletions, or substitutions in the bacterial chromosome. High rates of mutagenesis can be obtained by the use of mismatch repair (MMR)-resistant mismatches or MMR-deficient hosts, which allow for the isolation of unselected mutations. It has recently become clear that many bacteria can be mutagenized with oligos in the absence of any SSAP expression, albeit at a much lower frequency. Studies have shown that inactivation or inhibition of single-stranded DNA (ssDNA) exonucleases in vivo increases the rate of SSAP-independent oligo-mediated mutagenesis. These results suggest that lambda Beta, in addition to its role in annealing the oligo to ssDNA regions of the replication fork, promotes high rates of oligo-mediated mutagenesis by protecting the oligo from destruction by host ssDNA exonucleases.

11.
FEMS Microbiol Rev ; 33(3): 488-503, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19175412

RESUMEN

The DNA adenine methyltransferase (Dam methylase) of Gammaproteobacteria and the cell cycle-regulated methyltransferase (CcrM) methylase of Alphaproteobacteria catalyze an identical reaction (methylation of adenosine moieties using S-adenosyl-methionine as a methyl donor) at similar DNA targets (GATC and GANTC, respectively). Dam and CcrM are of independent evolutionary origin. Each may have evolved from an ancestral restriction-modification system that lost its restriction component, leaving an 'orphan' methylase devoted solely to epigenetic genome modification. The formation of 6-methyladenine reduces the thermodynamic stability of DNA and changes DNA curvature. As a consequence, the methylation state of specific adenosine moieties can affect DNA-protein interactions. Well-known examples include binding of the replication initiation complex to the methylated oriC, recognition of hemimethylated GATCs in newly replicated DNA by the MutHLS mismatch repair complex, and discrimination of methylation states in promoters and regulatory DNA motifs by RNA polymerase and transcription factors. In recent years, Dam and CcrM have been shown to play roles in host-pathogen interactions. These roles are diverse and have only partially been understood. Especially intriguing is the evidence that Dam methylation regulates virulence genes in Escherichia coli, Salmonella, and Yersinia at the posttranscriptional level.


Asunto(s)
Adenina/metabolismo , Fenómenos Fisiológicos Bacterianos , Metilación de ADN , Reparación de la Incompatibilidad de ADN , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Metilasas de Modificación del ADN/metabolismo
12.
PLoS One ; 3(8): e2984, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18714349

RESUMEN

BACKGROUND: Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. METHODOLOGY/PRINCIPAL FINDINGS: DNA microarrays were used to measure mRNA steady-state levels in initiation-deficient dnaA46 and dnaC2 bacteria at permissive and non-permissive temperatures and their expression profiles were compared to MG1655 wildtype cells. For both mutants there was altered expression of genes involved in nucleotide biosynthesis at the non-permissive temperature. Transcription of the dnaA and dnaC genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38 degrees C and 42 degrees C. Flow cytometric analysis revealed that dnaC2 mutant cells at non-permissive temperature had completed the early stages of chromosome replication initiation. CONCLUSION/SIGNIFICANCE: We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart.


Asunto(s)
Escherichia coli K12/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Nucleótidos/genética , Respuesta SOS en Genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genes Letales , Proteínas de Choque Térmico/genética , Nucleótidos/biosíntesis , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Mensajero/genética , Termodinámica , Transcripción Genética
13.
J Bacteriol ; 189(11): 4325-7, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17400740

RESUMEN

The Caulobacter crescentus DNA adenine methyltransferase CcrM and its homologs in the alpha-Proteobacteria are essential for viability. CcrM is 34% identical to the yhdJ gene products of Escherichia coli and Salmonella enterica. This study provides evidence that the E. coli yhdJ gene encodes a DNA adenine methyltransferase. In contrast to an earlier report, however, we show that yhdJ is not an essential gene in either E. coli or S. enterica.


Asunto(s)
Metilasas de Modificación del ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Salmonella enterica/enzimología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Dominio Catalítico/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Plásmidos/genética , Plásmidos/metabolismo , Salmonella enterica/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética
14.
J Biol Chem ; 281(20): 14340-9, 2006 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-16546997

RESUMEN

The MutL and MutS proteins are the central components of the DNA repair machinery that corrects mismatches generated by DNA polymerases during synthesis. We find that MutL interacts directly with the beta sliding clamp, a ring-shaped dimeric protein that confers processivity to DNA polymerases by tethering them to their substrates. Interestingly, the interaction of MutL with beta only occurs in the presence of single-stranded DNA. We find that the interaction occurs via a loop in MutL near the ATP-binding site. The binding site of MutL on beta locates to the hydrophobic pocket between domains two and three of the clamp. Site-specific replacement of two residues in MutL diminished interaction with beta without disrupting MutL function with helicase II. In vivo studies reveal that this mutant MutL is no longer functional in mismatch repair. In addition, the human MLH1 has a close match to the proliferating cell nuclear antigen clamp binding motif in the region that corresponds to the beta interaction site in Escherichia coli MutL, and a peptide corresponding to this site binds proliferating cell nuclear antigen. The current report also examines in detail the interaction of beta with MutS. We find that two distinct regions of MutS interact with beta. One is located near the C terminus and the other is close to the N terminus, within the mismatch binding domain. Complementation studies using genes encoding different MutS mutants reveal that the N-terminal beta interaction motif on MutS is essential for activity in vivo, but the C-terminal interaction site for beta is not. In light of these results, we propose roles for the beta clamp in orchestrating the sequence of events that lead to mismatch repair in the cell.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Proteínas Adaptadoras Transductoras de Señales , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Reparación del ADN , ADN de Cadena Simple/química , Relación Dosis-Respuesta a Droga , Proteínas de Escherichia coli/metabolismo , Prueba de Complementación Genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Homólogo 1 de la Proteína MutL , Proteínas MutL , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Proteínas Nucleares/química , Unión Proteica , Homología de Secuencia de Aminoácido
15.
Genes Dev ; 20(15): 2121-34, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16882985

RESUMEN

Initiation of DNA replication in Eschericia coli requires the ATP-bound form of the DnaA protein. The conversion of DnaA-ATP to DnaA-ADP is facilitated by a complex of DnaA, Hda (homologous to DnaA), and DNA-loaded beta-clamp proteins in a process termed RIDA (regulatory inactivation of DnaA). Hda-deficient cells initiate replication at each origin mainly once per cell cycle, and the rare reinitiation events never coincide with the end of the origin sequestration period. Therefore, RIDA is not the predominant mechanism to prevent immediate reinitiation from oriC. The cellular level of Hda correlated directly with dnaA gene expression such that Hda deficiency led to reduced dnaA gene expression, and overproduction of Hda led to DnaA overproduction. Hda-deficient cells were very sensitive to variations in the cellular level of DnaA, and DnaA overproduction led to uncontrolled initiation of replication from oriC, causing severe growth retardation or cell death. Based on these observations, we propose that both RIDA and dnaA gene autoregulation are required as homeostatic mechanisms to ensure that initiation of replication occurs at the same time relative to cell mass in each cell cycle.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Homeostasis , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Muerte Celular , Replicación del ADN , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Origen de Réplica , Transactivadores
16.
Proc Natl Acad Sci U S A ; 100(8): 4672-7, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12682301

RESUMEN

High-density oligonucleotide arrays were used to monitor global transcription patterns in Escherichia coli with various levels of Dam and SeqA proteins. Cells lacking Dam methyltransferase showed a modest increase in transcription of the genes belonging to the SOS regulon. Bacteria devoid of the SeqA protein, which preferentially binds hemimethylated DNA, were found to have a transcriptional profile almost identical to WT bacteria overexpressing Dam methyltransferase. The latter two strains differed from WT in two ways. First, the origin proximal genes were transcribed with increased frequency due to increased gene dosage. Second, chromosomal domains of high transcriptional activity alternate with regions of low activity, and our results indicate that the activity in each domain is modulated in the same way by SeqA deficiency or Dam overproduction. We suggest that the methylation status of the cell is an important factor in forming and/or maintaining chromosome structure.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genes Bacterianos , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Factores de Transcripción/genética , Proteínas de la Membrana Bacteriana Externa , Cromosomas Bacterianos/genética , Metilación de ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Respuesta SOS en Genética
17.
J Bacteriol ; 184(13): 3501-7, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12057944

RESUMEN

Nitric oxide (NO*) is involved in neurotransmission, inflammation, and many other biological processes. Exposure of cells to NO* leads to DNA damage, including formation of deaminated and oxidized bases. Apurinic/apyrimidinic (AP) endonuclease-deficient cells are sensitive to NO* toxicity, which indicates that base excision repair (BER) intermediates are being generated. Here, we show that AP endonuclease-deficient cells can be protected from NO* toxicity by inactivation of the uracil (Ung) or formamidopyrimidine (Fpg) DNA glycosylases but not by inactivation of a 3-methyladenine (AlkA) DNA glycosylase. These results suggest that Ung and Fpg remove nontoxic NO*-induced base damage to create BER intermediates that are toxic if they are not processed by AP endonucleases. Our next goal was to learn how Ung and Fpg affect susceptibility to homologous recombination. The RecBCD complex is critical for repair of double-strand breaks via homologous recombination. When both Ung and Fpg were inactivated in recBCD cells, survival was significantly enhanced. We infer that both Ung and Fpg create substrates for recombinational repair, which is consistent with the observation that disrupting ung and fpg suppressed NO*-induced recombination. Taken together, a picture emerges in which the action of DNA glycosylases on NO*-induced base damage results in the accumulation of BER intermediates, which in turn can induce homologous recombination. These studies shed light on the underlying mechanism of NO*-induced homologous recombination.


Asunto(s)
Escherichia coli/genética , N-Glicosil Hidrolasas/metabolismo , Óxido Nítrico/metabolismo , Recombinación Genética , Liasas de Carbono-Oxígeno/genética , Liasas de Carbono-Oxígeno/metabolismo , Daño del ADN/efectos de los fármacos , ADN Glicosilasas , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , ADN Polimerasa Dirigida por ADN , ADN-Formamidopirimidina Glicosilasa , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasa V , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Mutación , N-Glicosil Hidrolasas/genética , Óxido Nítrico/farmacología , Uracil-ADN Glicosidasa
18.
J Biol Chem ; 277(2): 1255-60, 2002 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-11705991

RESUMEN

Loss of mismatch repair leads to tumor resistance by desensitizing cells to specific DNA-damaging agents, including the anticancer drug cisplatin. Cisplatin analogs with a diamminocyclohexane (DACH) carrier ligand, such as oxaliplatin and Pt(DACH)Cl(2), do not elicit resistance in mismatch repair-deficient cells and therefore present promising therapeutic agents. This study compared the interactions of the purified Escherichia coli mismatch repair protein MutS with DNA modified to contain cisplatin and DACH adducts. MutS recognized the cisplatin-modified DNA with 2-fold higher affinity in comparison to the DACH-modified DNA. ADP stimulated the binding of MutS to cisplatin-modified DNA, whereas it had no effect on the MutS interaction with DNA modified by DACH or EN adducts. In parallel cytotoxicity experiments, methylation-deficient E. coli dam mutants were 2-fold more sensitive to cisplatin than DACH compounds. A panel of recombination-deficient mutants showed striking sensitivity to both compounds, indicating that both types of adducts are strong replication blocks. The differential affinity of MutS for DNA modified with the different platinum analogs could provide the molecular basis for the distinctive cellular responses to cisplatin and oxaliplatin.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Bacterianas/metabolismo , Cisplatino/metabolismo , Aductos de ADN/metabolismo , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Compuestos Organoplatinos/metabolismo , Antineoplásicos/metabolismo , Disparidad de Par Base , Supervivencia Celular , Reparación del ADN , Escherichia coli/genética , Escherichia coli/fisiología , Estructura Molecular , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Compuestos Organoplatinos/química , Oxaliplatino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA