Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 359(1): 151-8, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27519818

RESUMEN

Inhibition of the sphingosine-1-phosphate (S1P)-catabolizing enzyme S1P lyase (S1PL) elevates the native ligand of S1P receptors and provides an alternative mechanism for immune suppression to synthetic S1P receptor agonists. S1PL inhibition is reported to preferentially elevate S1P in lymphoid organs. Tissue selectivity could potentially differentiate S1PL inhibitors from S1P receptor agonists, the use of which also results in bradycardia, atrioventricular block, and hypertension. But it is unknown if S1PL inhibition would also modulate cardiac S1P levels or cardiovascular function. The S1PL inhibitor 6-[(2R)-4-(4-benzyl-7-chlorophthalazin-1-yl)-2-methylpiperazin-1-yl]pyridine-3-carbonitrile was used to determine the relationship in rats between drug concentration, S1P levels in select tissues, and circulating lymphocytes. Repeated oral doses of the S1PL inhibitor fully depleted circulating lymphocytes after 3 to 4 days of treatment in rats. Full lymphopenia corresponded to increased levels of S1P of 100- to 1000-fold in lymph nodes, 3-fold in blood (but with no change in plasma), and 9-fold in cardiac tissue. Repeated oral dosing of the S1PL inhibitor in telemeterized, conscious rats resulted in significant bradycardia within 48 hours of drug treatment, comparable in magnitude to the bradycardia induced by 3 mg/kg fingolimod. These results suggest that S1PL inhibition modulates cardiac function and does not provide immune suppression with an improved cardiovascular safety profile over fingolimod in rats.


Asunto(s)
Aldehído-Liasas/antagonistas & inhibidores , Bradicardia/inducido químicamente , Inhibidores Enzimáticos/efectos adversos , Corazón/efectos de los fármacos , Lisofosfolípidos/metabolismo , Miocardio/metabolismo , Esfingosina/análogos & derivados , Animales , Bradicardia/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Corazón/fisiología , Masculino , Piperazinas/efectos adversos , Ratas , Ratas Sprague-Dawley , Esfingosina/metabolismo
2.
Toxicol Sci ; 198(2): 316-327, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38191231

RESUMEN

Cardiovascular toxicity is one of the more common causes of attrition in preclinical and clinical drug development. Preclinical cardiovascular safety assessment involves numerous in vitro and in vivo endpoints which are being continually reviewed and improved to lower the incidence of cardiovascular toxicity that manifests only after the initiation of clinical trials. An example of notable preclinical toxicity is necrosis in the papillary muscle of the left ventricle in dogs that is induced by exaggerated pharmacological effects of vasodilators or positive inotropic/vasodilating off-target drug effects. Two distinct, small-molecule inhibitors that target an intracellular kinase, Compound A and Compound B, were profiled in 2-week dose-range finding and 4-week toxicity studies. Serum cardiac troponin (cTnI) was evaluated after a single dose and after 2-week and 4-week repeat dose studies with each kinase inhibitor. Acute effects on hemodynamic (heart rate, blood pressures, left ventricular contractility) and electrocardiographic (QTcV, PR, QRS intervals) endpoints by each inhibitor were assessed in an anesthetized dog cardiovascular model. Cardiovascular degeneration/necrosis with and without fibrosis was observed in dogs and correlated to increases in serum cTnI in repeat-dose toxicity studies. At the same doses used in toxicologic assessments, both kinase inhibitors produced sustained increases in heart rate, left ventricular contractility, and cardiac output, and decreases in mean arterial pressure. Cardiac pathology findings associated with these 2 kinase inhibitors were accompanied not only by cardiac troponin elevations but also associated with hemodynamic changes, highlighting the importance of the link of the physiologic-toxicologic interplay in cardiovascular safety assessment.


Asunto(s)
Sistema Cardiovascular , Contracción Miocárdica , Animales , Perros , Hemodinámica , Frecuencia Cardíaca , Necrosis , Troponina/farmacología
3.
J Pharmacol Toxicol Methods ; 126: 107497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38479593

RESUMEN

The strategic and targeted use of an anesthetized canine cardiovascular model early in drug discovery enables a comprehensive cardiovascular and electrophysiological assessment of potential safety liabilities and guides compound selection prior to initiation of chronic toxicological studies. An ideal model would enable exposure-response relationships to guide safety margin calculations, have a low threshold to initiate, and have quick delivery of decision quality data. We have aimed to profile compounds with diverse mechanism of actions (MoAs) of "non-QT" cardiovascular drug effects and evaluate the ability of nonclinical in vivo cardiovascular models to detect clinically reported effects. The hemodynamic effects of 11 drugs (atropine, itraconazole, atenolol, ivabradine, milrinone, enalaprilat, fasudil, amlodipine, prazosin, amiloride, and hydrochlorothiazide) were profiled in an anesthetized dog cardiovascular model. Derived parameters included: heart rate, an index of left ventricular contractility, mean arterial pressure, systemic vascular resistance, and cardiac output. Species specific plasma protein data was generated (human, dog) and utilized to calculate free drug concentrations. Using the anesthetized dog cardiovascular model, 10 of the 11 drugs displayed the predicted changes in CV parameters based on their primary MoAs and corresponding clinically described effects. Interestingly but not unexpected, 1 of 11 failed to display their predicted CV pattern which is likely due to a delay in pharmacodynamic effect that is beyond the duration of the experimental model (hydrochlorothiazide). The analysis from the current study supports the strategic use of the anesthetized dog model early in the drug discovery process for a comprehensive cardiovascular evaluation with good translation to human.


Asunto(s)
Ventrículos Cardíacos , Hemodinámica , Perros , Animales , Humanos , Evaluación Preclínica de Medicamentos , Frecuencia Cardíaca , Preparaciones Farmacéuticas , Hidroclorotiazida/farmacología , Presión Sanguínea
4.
J Pharmacol Toxicol Methods ; 123: 107468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37553032

RESUMEN

In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.


Asunto(s)
Descubrimiento de Drogas , Bases de Datos Factuales
5.
Front Genet ; 13: 1078050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733943

RESUMEN

The evaluation of toxicity in preclinical species is important for identifying potential safety liabilities of experimental medicines. Toxicology studies provide translational insight into potential adverse clinical findings, but data interpretation may be limited due to our understanding of cross-species biological differences. With the recent technological advances in sequencing and analyzing omics data, gene expression data can be used to predict cross species biological differences and improve experimental design and toxicology data interpretation. However, interpreting the translational significance of toxicogenomics analyses can pose a challenge due to the lack of comprehensive preclinical gene expression datasets. In this work, we performed RNA-sequencing across four preclinical species/strains widely used for safety assessment (CD1 mouse, Sprague Dawley rat, Beagle dog, and Cynomolgus monkey) in ∼50 relevant tissues/organs to establish a comprehensive preclinical gene expression body atlas for both males and females. In addition, we performed a meta-analysis across the large dataset to highlight species and tissue differences that may be relevant for drug safety analyses. Further, we made these databases available to the scientific community. This multi-species, tissue-, and sex-specific transcriptomic database should serve as a valuable resource to enable informed safety decision-making not only during drug development, but also in a variety of disciplines that use these preclinical species.

6.
Int J Toxicol ; 30(3): 272-86, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21527643

RESUMEN

There are several recent examples where clinically significant, safety-related, drug effects on hemodynamics or cardiac function were not apparent until large clinical trials were completed or the drugs entered the consumer market. Such late-stage safety issues can have significant impact on patient health and consumer confidence, as well as ramifications for the regulatory, pharmaceutical, and financial communities. This manuscript provides recommendations that evolved from a 2009 HESI workshop on the need for improved translation of nonclinical cardiovascular effects to the clinical arena. The authors conclude that expanded and improved efforts to perform sensitive yet specific evaluations of functional cardiovascular parameters in nonclinical studies will allow pharmaceutical companies to identify suspect drugs early in the discovery and development process while allowing promising drugs to proceed into clinical development.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Corazón/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Humanos
7.
J Pharmacol Toxicol Methods ; 109: 107066, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33838254

RESUMEN

INTRODUCTION: A successful integration of automated blood sampling (ABS) into the telemetry instrumented canine cardiovascular model is presented in this study. This combined model provides an efficient means to quickly gain understanding of potential effects on key cardiovascular parameters in dog while providing a complete Pharmacokinetic/Pharmacodynamic (PK/PD) profile for discovery compounds without handling artifacts, reducing the need for a separate pharmacokinetic study. METHODS: Male beagle dogs were chronically implanted with telemetry devices (PhysioTel™ model D70-PCTP) and vascular access ports (SPMID-GRIDAC-5NC). BASi Culex-L automated blood sampling (Bioanalytical Systems, Inc) system was used to collect blood samples at multiple time points. A series of four use cases utilizing four different test compounds and analytical endpoints are described to illustrate some of the potential applications of the technique. RESULTS: In the four presented use cases, automated blood sampling in telemetry instrumented dogs provides simultaneous cardiovascular (heart rate, arterial blood pressure, and left ventricular pressure), electrophysiological assessment (QTc, PR, and QRS intervals), body temperature, and animal activity, while collecting multiple blood samples for drug analysis. CONCLUSION: The combination of automated blood sampling with cardiovascular telemetry monitoring is a novel capability designed to support safety pharmacology cardiovascular assessment of discovery molecules. By combining telemetry and high-fidelity ABS, the model provides an enhanced PK/PD understanding of drug-induced hemodynamic and electrocardiographic effects of discovery compounds in conscious beagles in the same experimental session. Importantly, the model can reduce the need for a separate pharmacokinetic study (positive reduction 3R impact), reduces compound syntheses requirements, and shorten development timelines. Furthermore, implementation of this approach has also improved animal welfare by reducing the animal handling during a study, thereby reducing stress and associated data artifacts (positive refinement 3R impact).


Asunto(s)
Sistema Cardiovascular , Telemetría , Animales , Presión Sanguínea , Perros , Electrocardiografía , Frecuencia Cardíaca , Macaca fascicularis , Masculino
8.
Comp Med ; 71(2): 133-140, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33814031

RESUMEN

Successful implementation of automated blood sampling (ABS) into a telemetry instrumented canine cardiovascular model provides simultaneous cardiovascular assessment of novel compounds while collecting multiple blood samples for analysis of drug level, cytokines, and biomarkers. Purpose-bred male Beagle dogs (n = 36) were instrumented with a dual-pressure telemetry transmitter and vascular access port. Modifications to acclimation practices, surgical procedures, and housing were required for implementation of ABS in our established cardiovascular canine telemetry colony. These modifications have increased the use and reproducibility of the model by combining early pharmacokinetic and cardiovascular studies, thus achieving both refinement and reduction from a 3R perspective. In addition, the modified model can shorten timelines and reduce the compound requirement in early stages of drug development. This telemetry-ABS model provides an efficient means to quickly identify potential effects on key cardiovascular parameters in a large animal species and to obtain a more complete pharmacokinetic-pharmacodynamic profile for discovery compounds.


Asunto(s)
Modelos Cardiovasculares , Telemetría , Animales , Presión Sanguínea , Perros , Electrocardiografía , Frecuencia Cardíaca , Masculino , Reproducibilidad de los Resultados
9.
J Pharmacol Toxicol Methods ; 111: 107109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34416395

RESUMEN

INTRODUCTION: A successful integration of automated blood sampling (ABS) into the telemetry instrumented canine cardiovascular model is presented in this study. This combined model provides an efficient means to quickly gain understanding of potential effects on key cardiovascular parameters in dog while providing a complete Pharmacokinetic/Pharmacodynamic (PK/PD) profile for discovery compounds without handling artifacts, reducing the need for a separate pharmacokinetic study. METHODS: Male beagle dogs were chronically implanted with telemetry devices (PhysioTel™ model D70-PCTP) and vascular access ports (SPMID-GRIDAC-5NC). BASi Culex-L automated blood sampling (Bioanalytical Systems, Inc) system was used to collect blood samples at multiple time points. A series of four use cases utilizing four different test compounds and analytical endpoints are described to illustrate some of the potential applications of the technique. RESULTS: In the four presented use cases, automated blood sampling in telemetry instrumented dogs provides simultaneous cardiovascular (heart rate, arterial blood pressure, and left ventricular pressure), electrophysiological assessment (QTc, PR, and QRS intervals), body temperature, and animal activity, while collecting multiple blood samples for drug analysis. CONCLUSION: The combination of automated blood sampling with cardiovascular telemetry monitoring is a novel capability designed to support safety pharmacology cardiovascular assessment of discovery molecules. By combining telemetry and high-fidelity ABS, the model provides an enhanced PK/PD understanding of drug-induced hemodynamic and electrocardiographic effects of discovery compounds in conscious beagles in the same experimental session. Importantly, the model can reduce the need for a separate pharmacokinetic study (positive reduction 3R impact), reduces compound syntheses requirements, and shorten development timelines. Furthermore, implementation of this approach has also improved animal welfare by reducing the animal handling during a study, thereby reducing stress and associated data artifacts (positive refinement 3R impact).


Asunto(s)
Sistema Cardiovascular , Telemetría , Animales , Presión Sanguínea , Perros , Electrocardiografía , Frecuencia Cardíaca , Masculino
10.
J Pharmacol Toxicol Methods ; 112: 107115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34403748

RESUMEN

INTRODUCTION: This manuscript presents a successful integration of multi-timepoint biomarker blood sampling (e.g., cytokines) in a conscious dog cardiovascular study using automated blood sampling via vascular access ports in telemetry instrumented dogs. In addition to determining plasma exposure of the test compound, the assessment of biomarkers of interest allows for more comprehensive preclinical evaluation on a traditional conscious dog cardiovascular (CV) telemetry study especially for immunology and immune-oncology molecules. This model system provides a rapid and efficient means to quickly gain understanding of potential effects on key cardiovascular parameters in large species that are commonly used for preclinical safety evaluations while collecting multiple blood samples for drug and cytokine analysis. METHODS: Male beagle dogs were chronically implanted with telemetry devices (PhysioTel™ model D70-PCTP) and vascular access ports (SPMID-GRIDAC-5NC). BASi Culex-L automated blood sampling (ABS) (Bioanalytical Systems, Inc) system was used to collect blood samples at multiple time points for cytokine analysis. Four beagles received low-dose lipopolysaccharide solution (LPS) (0.1 and 0.5 µg/mL). The following cytokines were measured by Milliplex® map Canine Cytokine Magnetic Bead Panel: Interleukin (IL) 2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, TNF-α, MCP-1, KC-like, GM-CSF, IFN gamma, and IP10. RESULTS: Low dose LPS administration induced a pronounced dose-dependent, transient release of key inflammatory cytokines (IL-2, IL-6, IL-10, TNF-α, MCP-1, and KC-like). Cytokine responses were similar to other canine and human endotoxin models. LPS administration led to an increase in body temperature, heart rate, and mean arterial pressure, as well as a decrease in QTcV interval. CONCLUSION: Successful incorporation of cytokine analysis in telemetry instrumented dogs with vascular access ports allows for translational PK/PD modeling of both efficacy and safety of compounds in the immunology as well as the immune-oncology therapeutic areas designed to modulate the immune system. Remote collection of blood samples simultaneously with CV endpoints is a significant enhancement for assessment of biomarkers that are sensitive to animal handling and excitement associated with room disturbances which are obligatory with manual blood collection. Furthermore, implementing this approach has also refined our animal welfare procedure by reducing the handling during a study and thereby reducing stress (positive refinement 3R impact).


Asunto(s)
Perros , Factores Inmunológicos , Telemetría , Animales , Temperatura Corporal , Sistema Cardiovascular , Citocinas , Frecuencia Cardíaca , Factores Inmunológicos/análisis , Masculino
11.
J Pharmacol Toxicol Methods ; 101: 106653, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31730935

RESUMEN

INTRODUCTION: The pentylenetetrazole (PTZ)-induced seizure assay in rodents is an established method for investigating drug-induced alterations in seizure threshold such as proconvulsant effects. The standard procedure in our laboratory was to administer the test item prior to 75-120 mg/kg subcutaneous PTZ. However, this dose range is associated with a high incidence of mortality, including approximately 40% or greater deaths of control animals. METHODS: The predictivity of the PTZ-induced seizure assay was retrospectively evaluated by relating drug plasma levels associated with proconvulsant effects to exposures observed during convulsions in repeat-dose toxicology studies. Margins to estimated efficacious doses were also considered. To investigate potential refinements, a high PTZ dose (80 mg/kg, subcutaneously) was compared to two lower doses (40 and 60 mg/kg), and a range of doses of theophylline was orally administered as positive control. RESULTS: The PTZ-induced proconvulsion assay proved to be a good predictor of convulsions in toxicology studies. In the refinement study, theophylline potentiated PTZ-induced seizures over all doses tested. At 60 mg/kg PTZ, the proconvulsant dose-dependency of theophylline was best observed. At both 40 and 60 mg/kg PTZ, mortality in control animals was significantly reduced. DISCUSSION: Risk assessment at an early stage of drug development supports candidate selection and, along that approach, the PTZ proconvulsion assay was proven to be a good predictor of convulsions in subsequent toxicology studies. It was also demonstrated that a relatively lower PTZ dose (60 mg/kg) improved the dose-response-curve of the positive control tested, decreased mortality overall and, therefore, contributes to refining this standard procedure for CNS safety evaluation.


Asunto(s)
Bioensayo/métodos , Convulsivantes/farmacología , Pentilenotetrazol/farmacología , Convulsiones/inducido químicamente , Animales , Anticonvulsivantes , Modelos Animales de Enfermedad , Perros , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Primates , Ratas , Estudios Retrospectivos , Roedores , Teofilina/farmacología
12.
J Pharmacol Toxicol Methods ; 103: 106871, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32360993

RESUMEN

INTRODUCTION: The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative differentiates torsadogenic risk of 28 drugs affecting ventricular repolarization based on multiple in vitro human derived ionic currents. However, a standardized prospective assessment of the electrophysiologic effects of these drugs in an integrated in vivo preclinical cardiovascular model is lacking. This study questioned whether QTc interval prolongation in a preclinical in vivo model could detect clinically reported QTc prolongation and assign torsadogenic risk for ten CiPA drugs. METHODS: An acute intravenous administered ascending dose anesthetized dog cardiovascular model was used to assess QTc prolongation along with other electrocardiographic (PR, QRS intervals) and hemodynamic (heart rate, blood pressures, left ventricular contractility) parameters at plasma concentrations spanning and exceeding clinical exposures. hERG current block potency was characterized using IC50 values from automated patch clamp. RESULTS: All eight drugs eliciting clinical QTc prolongation also delayed repolarization in anesthetized dogs at plasma concentrations within four-fold clinical exposures. In vitro QTc safety margins (defined based on clinical Cmax values/plasma concentrations eliciting statistically significant QTc prolongation in dogs) were lower for high vs intermediate torsadogenic risk drugs. In comparison, hERG IC10 values represented as total drug concentrations were better predictors of preclinical QTc prolongation than hERG IC50 values. CONCLUSION: There was good concordance for QTc prolongation in the anesthetized dog model and clinical torsadogenic risk assignment. QTc assessment in the anesthetized dog remains a valuable part of a more comprehensive preclinical integrated risk assessment for delayed repolarization and torsadogenic risk as part of a global cardiovascular evaluation.


Asunto(s)
Antiarrítmicos/farmacología , Síndrome de QT Prolongado/tratamiento farmacológico , Torsades de Pointes/tratamiento farmacológico , Animales , Perros , Evaluación Preclínica de Medicamentos , Electrocardiografía , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Síndrome de QT Prolongado/inducido químicamente , Masculino , Modelos Cardiovasculares , Estudios Prospectivos , Medición de Riesgo , Torsades de Pointes/inducido químicamente
13.
J Pharmacol Exp Ther ; 330(2): 526-31, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19478132

RESUMEN

Acyl CoA/diacylglycerol acyltransferase (DGAT) 1 is one of two known DGAT enzymes that catalyze the final and only committed step in triglyceride biosynthesis. The purpose of this study was to test the hypothesis that chronic inhibition of DGAT-1 with a small-molecule inhibitor will reduce serum triglyceride concentrations in both genetic and diet-induced models of hypertriglyceridemia. Zucker fatty rats and diet-induced dyslipidemic hamsters were dosed orally with A-922500 (0.03, 0.3, and 3-mg/kg), a potent and selective DGAT-1 inhibitor, for 14 days. Serum triglycerides were significantly reduced by the 3 mg/kg dose of the DGAT-1 inhibitor in both the Zucker fatty rat (39%) and hyperlipidemic hamster (53%). These serum triglyceride changes were accompanied by significant reductions in free fatty acid levels by 32% in the Zucker fatty rat and 55% in the hyperlipidemic hamster. In addition, high-density lipoprotein-cholesterol was significantly increased (25%) in the Zucker fatty rat by A-922500 administered at 3 mg/kg. This study provides the first report that inhibition of DGAT-1, the final and only committed step of triglyceride synthesis, with a selective small-molecule inhibitor, significantly reduces serum triglyceride levels in both genetic and diet-induced animal models of hypertriglyceridemia. The results of this study support further investigation of DGAT-1 inhibition as a novel therapeutic approach to the treatment of hypertriglyceridemia in humans, and they suggest that inhibition of triglyceride synthesis may have more diverse beneficial effects on serum lipid profiles beyond triglyceride lowering.


Asunto(s)
Compuestos de Bifenilo/farmacología , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/enzimología , Compuestos de Fenilurea/farmacología , Triglicéridos/sangre , Animales , Compuestos de Bifenilo/uso terapéutico , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Cricetinae , Diacilglicerol O-Acetiltransferasa/sangre , Diacilglicerol O-Acetiltransferasa/fisiología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Hiperlipidemias/sangre , Masculino , Mesocricetus , Compuestos de Fenilurea/uso terapéutico , Ratas , Ratas Zucker , Triglicéridos/antagonistas & inhibidores , Triglicéridos/biosíntesis
14.
J Cardiovasc Pharmacol ; 54(6): 543-51, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19770671

RESUMEN

Torcetrapib is a cholesteryl ester transfer protein inhibitor with an undesired response of increasing arterial pressure in humans. Pressor responses to torcetrapib have been demonstrated in multiple preclinical species. However, these studies have not related plasma concentrations to observed effects. Our purpose was to 1) characterize the cardiovascular responses of torcetrapib in conscious and anesthetized dogs with measured plasma concentrations; and 2) characterize the hemodynamic effects contributing to hypertension using comprehensively instrumented anesthetized dogs. Torcetrapib was dosed orally (3, 30 mg/kg) and intravenously (0.01, 0.33, 0.1 mg/kg) in conscious and anesthetized dogs, respectively. Mean arterial pressure and heart rate were monitored in both models; additional parameters were measured in anesthetized dogs. Plasma drug concentrations were assessed in both models. In conscious and anesthetized dogs, torcetrapib increased mean arterial pressure 25 and 18 mm Hg and heart rate 35 and 21 beats/min, at 2.94 and 3.99 microg/mL, respectively. In anesthetized dogs, torcetrapib increased pulmonary arterial pressure, both systemic and pulmonary hypertension driven by increases in vascular resistance. The compound increased rate pressure product and myocardial contractility while decreasing time to systolic pressure recovery and ejection time. Thus, torcetrapib-induced pressor responses are mediated by systemic and pulmonary vasoconstriction and are associated with increased myocardial oxygen consumption and positive inotropy.


Asunto(s)
Anestesia , Sistema Cardiovascular/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Pentobarbital/administración & dosificación , Quinolinas/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Gasto Cardíaco/efectos de los fármacos , Gasto Cardíaco/fisiología , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Perros , Electrocardiografía , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Hemodinámica/fisiología , Masculino , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Quinolinas/administración & dosificación , Quinolinas/sangre , Quinolinas/farmacocinética , Telemetría , Resistencia Vascular/efectos de los fármacos , Resistencia Vascular/fisiología , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Izquierda/fisiología
15.
Front Big Data ; 2: 25, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33693348

RESUMEN

Most small molecule drugs interact with unintended, often unknown, biological targets and these off-target interactions may lead to both preclinical and clinical toxic events. Undesired off-target interactions are often not detected using current drug discovery assays, such as experimental polypharmacological screens. Thus, improvement in the early identification of off-target interactions represents an opportunity to reduce safety-related attrition rates during preclinical and clinical development. In order to better identify potential off-target interactions that could be linked to predictable safety issues, a novel computational approach to predict safety-relevant interactions currently not covered was designed and evaluated. These analyses, termed Off-Target Safety Assessment (OTSA), cover more than 7,000 targets (~35% of the proteome) and > 2,46,704 preclinical and clinical alerts (as of January 20, 2019). The approach described herein exploits a highly curated training set of >1 million compounds (tracking >20 million compound-structure activity relationship/SAR data points) with known in vitro activities derived from patents, journals, and publicly available databases. This computational process was used to predict both the primary and secondary pharmacological activities for a selection of 857 diverse small molecule drugs for which extensive secondary pharmacology data are readily available (456 discontinued and 401 FDA approved). The OTSA process predicted a total of 7,990 interactions for these 857 molecules. Of these, 3,923 and 4,067 possible high-scoring interactions were predicted for the discontinued and approved drugs, respectively, translating to an average of 9.3 interactions per drug. The OTSA process correctly identified the known pharmacological targets for >70% of these drugs, but also predicted a significant number of off-targets that may provide additional insight into observed in vivo effects. About 51.5% (2,025) and 22% (900) of these predicted high-scoring interactions have not previously been reported for the discontinued and approved drugs, respectively, and these may have a potential for repurposing efforts. Moreover, for both drug categories, higher promiscuity was observed for compounds with a MW range of 300 to 500, TPSA of ~200, and clogP ≥7. This computation also revealed significantly lower promiscuity (i.e., number of confirmed off-targets) for compounds with MW > 700 and MW<200 for both categories. In addition, 15 internal small molecules with known off-target interactions were evaluated. For these compounds, the OTSA framework not only captured about 56.8% of in vitro confirmed off-target interactions, but also identified the right pharmacological targets for 14 compounds as one of the top scoring targets. In conclusion, the OTSA process demonstrates good predictive performance characteristics and represents an additional tool with utility during the lead optimization stage of the drug discovery process. Additionally, the computed physiochemical properties such as clogP (i.e., lipophilicity), molecular weight, pKa and logS (i.e., solubility) were found to be statistically different between the approved and discontinued drugs, but the internal compounds were close to the approved drugs space in most part.

16.
J Pharmacol Toxicol Methods ; 99: 106580, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31085318

RESUMEN

INTRODUCTION: DSM421, a dihydroorotate dehydrogenase inhibitor, was in preclinical development as a potential treatment option for malaria. When tested in a core battery of safety pharmacology assays, DSM421 did not produce any effects at oral doses up to 750 mg/kg in an Irwin test in rats, but a respiratory study in rats using head-out plethysmography resulted in substantial changes in respiratory function as well as moribundity and mortality at that and lower doses. An investigation was performed to determine the source of this discrepancy. METHODS: Potential testing errors, differences in types of plethysmography testing chambers, effects on stress indicators, and off-target activity were investigated. RESULTS: Respiratory changes and toxicity (resulting in euthanasia in extremis) were confirmed in a repeat, head-out plethysmography test, but the effects of DSM421 were much less severe overall when the rats were tested in whole-body chambers. Additionally, at the end of the 5-h post-dosing respiratory monitoring periods, levels of stress-related hormones (particularly corticosterone) were higher overall in the head-out, than in the whole-body, tested rats. Furthermore, DSM421 was found to produce changes in cardiovascular function in unrestrained rats, and it was shown to have off-target binding affinity at the adenosine A3 receptor (which is associated with bronchoconstriction). DISCUSSION: The generalized stress inherent to head-out plethysmography testing exacerbated the respiratory effects of DSM421 and was possibly compounded by DSM421's cardiovascular effects, thus artifactually resulting in moribundity and mortality in rats. Care should be taken when choosing whether to use head-out versus whole-body plethysmography chambers during respiratory function testing in animals.

17.
Artículo en Inglés | MEDLINE | ID: mdl-29330133

RESUMEN

INTRODUCTION: The goal of this study was to determine whether assessment of myocardial contractility and hemodynamics in an anesthetized dog model, could consistently detect drug-induced changes in the inotropic state of the heart using drugs known to have clinically relevant positive and negative effects on myocardial contractility. METHODS: Derived parameters included: diastolic, systolic and mean arterial BP, peak systolic LVP, HR, end-diastolic LVP, and LVdP/dtmax as the primary contractility index. RESULTS: These results demonstrate that statistically significant increases (amrinone and pimobendan) and decreases (atenolol and itraconazole) in left ventricular dP/dtmax were observed at clinically relevant exposures. DISCUSSION: The analysis from the current study supports the strategic use of the anesthetized dog model early in the drug Discovery process for a comprehensive cardiovascular evaluation that can include left ventricular dP/dtmax with good translation to human.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Contracción Miocárdica/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Anestesia/métodos , Animales , Antifúngicos/efectos adversos , Presión Sanguínea/efectos de los fármacos , Cardiotónicos/farmacología , Depresión Química , Perros , Electrocardiografía , Ventrículos Cardíacos/efectos de los fármacos , Hipnóticos y Sedantes/administración & dosificación , Masculino , Modelos Animales , Contracción Miocárdica/fisiología , Pentobarbital/administración & dosificación , Función Ventricular Izquierda/fisiología
18.
Front Genet ; 9: 636, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30723492

RESUMEN

Gene expression profiling is a useful tool to predict and interrogate mechanisms of toxicity. RNA-Seq technology has emerged as an attractive alternative to traditional microarray platforms for conducting transcriptional profiling. The objective of this work was to compare both transcriptomic platforms to determine whether RNA-Seq offered significant advantages over microarrays for toxicogenomic studies. RNA samples from the livers of rats treated for 5 days with five tool hepatotoxicants (α-naphthylisothiocyanate/ANIT, carbon tetrachloride/CCl4, methylenedianiline/MDA, acetaminophen/APAP, and diclofenac/DCLF) were analyzed with both gene expression platforms (RNA-Seq and microarray). Data were compared to determine any potential added scientific (i.e., better biological or toxicological insight) value offered by RNA-Seq compared to microarrays. RNA-Seq identified more differentially expressed protein-coding genes and provided a wider quantitative range of expression level changes when compared to microarrays. Both platforms identified a larger number of differentially expressed genes (DEGs) in livers of rats treated with ANIT, MDA, and CCl4 compared to APAP and DCLF, in agreement with the severity of histopathological findings. Approximately 78% of DEGs identified with microarrays overlapped with RNA-Seq data, with a Spearman's correlation of 0.7 to 0.83. Consistent with the mechanisms of toxicity of ANIT, APAP, MDA and CCl4, both platforms identified dysregulation of liver relevant pathways such as Nrf2, cholesterol biosynthesis, eiF2, hepatic cholestasis, glutathione and LPS/IL-1 mediated RXR inhibition. RNA-Seq data showed additional DEGs that not only significantly enriched these pathways, but also suggested modulation of additional liver relevant pathways. In addition, RNA-Seq enabled the identification of non-coding DEGs that offer a potential for improved mechanistic clarity. Overall, these results indicate that RNA-Seq is an acceptable alternative platform to microarrays for rat toxicogenomic studies with several advantages. Because of its wider dynamic range as well as its ability to identify a larger number of DEGs, RNA-Seq may generate more insight into mechanisms of toxicity. However, more extensive reference data will be necessary to fully leverage these additional RNA-Seq data, especially for non-coding sequences.

19.
Peptides ; 28(2): 269-80, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17194505

RESUMEN

We have utilized a rat model of peripheral artery disease (PAD) to examine whether the known angiogenic activity of the Y(2) receptor would translate into a meaningful increase in collateral blood flow. The maximal increase in collateral blood flow capacity of approximately 60% (p<0.001) was obtained with a 10microg/kgday (IA infusion, 14 days) of either PYY or PYY(3-36) and did not differ from that obtained with a maximally angiogenic dose of VEGF(165). Pharmacodynamic modeling based upon single dose pharmacokinetic plasma profiles of both agonists suggests that E(max) is reached when the Y(2) receptor is occupied by >or=50%. Furthermore, for PYY(3-36), occupancy of the Y(2) receptor is sufficient to promote a significant benefit in collateral blood flow.


Asunto(s)
Circulación Sanguínea/fisiología , Modelos Biológicos , Enfermedades Vasculares Periféricas/metabolismo , Receptores de Neuropéptido Y/fisiología , Animales , Secuencia de Bases , Cartilla de ADN , Femenino , Humanos , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
J Pharmacol Toxicol Methods ; 87: 108-126, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28216264

RESUMEN

Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery.


Asunto(s)
Fármacos Cardiovasculares/efectos adversos , Bases de Datos Factuales , Descubrimiento de Drogas/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Bases de Datos Factuales/tendencias , Descubrimiento de Drogas/tendencias , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/tendencias , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/fisiopatología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA