Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Soc Trans ; 50(2): 703-712, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35285494

RESUMEN

Haematopoietic stem and progenitor cells (HSPCs) sustain haematopoiesis by generating precise numbers of mature blood cells throughout the lifetime of an individual. In vertebrates, HSPCs arise during embryonic development from a specialised endothelial cell population, the haemogenic endothelium (HE). Signalling by the Transforming Growth Factor ß (TGFß) pathway is key to regulate haematopoiesis in the adult bone marrow, but evidence for a role in the formation of HSPCs has only recently started to emerge. In this review, we examine recent work in various model systems that demonstrate a key role for TGFß signalling in HSPC emergence from the HE. The current evidence underpins two seemingly contradictory views of TGFß function: as a negative regulator of HSPCs by limiting haematopoietic output from HE, and as a positive regulator, by programming the HE towards the haematopoietic fate. Understanding how to modulate the requirement for TGFß signalling in HSC emergence may have critical implications for the generation of these cells in vitro for therapeutic use.


Asunto(s)
Células Madre Hematopoyéticas , Factor de Crecimiento Transformador beta , Animales , Diferenciación Celular , Desarrollo Embrionario , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
2.
IUBMB Life ; 72(1): 39-44, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778014

RESUMEN

GATA factors play central roles in the programming of blood and cardiac cells during embryonic development. Using the experimentally accessible Xenopus and zebrafish models, we report observations regarding the roles of GATA-2 in the development of blood stem cells and GATA-4, -5, and -6 in cardiac development. We show that blood stem cells develop from the dorsal lateral plate mesoderm and GATA-2 is required at multiple stages. Firstly, GATA-2 is required to make the cells responsive to VEGF-A signalling by driving the synthesis of its receptor, FLK-1/KDR. This leads to differentiation into the endothelial cells that form the dorsal aorta. GATA-2 is again required for the endothelial-to-haematopoietic transition that takes place later in the floor of the dorsal aorta. GATA-2 expression is dependent on BMP signalling for each of these inputs into blood stem cell programming. GATA-4, -5, and -6 work together to ensure the specification of cardiac cells during development. We have demonstrated redundancy within the family and also some evolution of the functions of the different family members. Interestingly, one of the features that varies in evolution is the timing of expression relative to other key regulators such as Nkx2.5 and BMP. We show that the GATA factors, Nkx2.5 and BMP regulate each other and it would appear that what is critical is the mutually supportive network of expression rather than the order of expression of each of the component genes. In Xenopus and zebrafish, the cardiac mesoderm is adjacent to an anterior population of cells giving rise to blood and endothelium. This population is not present in mammals and we have shown that, like the cardiac population, the blood and endothelial precursors require GATA-4, -5, and -6 for their development. Later, blood-specific or cardiac-specific regulators determine the ultimate fate of the cells, and we show that these regulators act cross-antagonistically. Fibroblast growth factor (FGF) signalling drives the cardiac fate, and we propose that the anterior extension of the FGF signalling field during evolution led to the recruitment of the blood and endothelial precursors into the heart field ultimately resulting in a larger four chambered heart. Zebrafish are able to successfully regenerate their hearts after injury. To understand the pathways involved, with a view to determining why humans cannot do this, we profiled gene expression in the cardiomyocytes before and after injury, and compared those proximal to the injury with those more distal. We were able to identify an enhancement of the expression of regulators of the canonical Wnt pathway proximal to the injury, suggesting that changes in Wnt signalling are responsible for the repair response to injury.


Asunto(s)
Sangre/metabolismo , Diferenciación Celular , Factores de Transcripción GATA/metabolismo , Regulación del Desarrollo de la Expresión Génica , Miocitos Cardíacos/citología , Animales , Factores de Transcripción GATA/genética , Humanos , Miocitos Cardíacos/metabolismo
3.
Environ Res ; 175: 200-212, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31136952

RESUMEN

In the last decade different approaches have been applied for water remediation purposes, including the use of nanoparticles (NPs) to remove metals and metalloids from water. Although studies have been done on the toxic impacts of such NPs, very scarce information is available on the impacts of water after decontamination when discharged into aquatic environments. As such, in the present study we aimed to evaluate the ecotoxicological safety of seawater previously contaminated with arsenic (As) and remediated by using manganese-ferrite (MnFe2O4-NPs) NPs. For this, mussels Mytilus galloprovincialis were exposed for 28 days to different conditions, including clean seawater (control), As (1000 µg L-1) contaminated and remediated (As 70 µg L-1) seawater, water containing MnFe2O4- NPs (50 mg L-1) with and without the presence of As. At the end of exposure, concentrations of As in mussels tissues were quantified and biomarkers related to mussels' metabolism and oxidative stress status were evaluated. Results revealed that mussels exposed to water contaminated with As and to As + NPs accumulated significantly more As (between 62% and 76% more) than those exposed to remediated seawater. Regarding biomarkers, our findings demonstrated that in comparison to remediated seawater (conditions a, b, c) mussels exposed to contaminated seawater (conditions A, B, C) presented significantly lower metabolic activity, lower expenditure of energy reserves, activation of antioxidant and biotransformation defences, higher lipids and protein damages and greater AChE inhibition. Furthermore, organisms exposed to As, NPs or As + NPs revealed similar biochemical effects, both before and after water decontamination. In conclusion, the present study suggests that seawater previously contaminated with As and remediated by MnFe2O4-NPs presented significantly lower toxicity than As contaminated water, evidencing the potential use of these NPs to remediate seawater contaminated with As and its safety towards marine systems after discharges to these environments.


Asunto(s)
Arsénico/química , Restauración y Remediación Ambiental/métodos , Compuestos Férricos/química , Agua de Mar/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Óxido de Aluminio , Animales , Arsénico/análisis , Arsénico/toxicidad , Óxido de Magnesio , Manganeso , Mytilus/fisiología , Nanopartículas/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Acta Neurochir (Wien) ; 161(7): 1343-1348, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31053910

RESUMEN

BACKGROUND: Even in specialized centers, suboptimal aneurysm clipping can be as high as 12%. Intraoperative fluorescence angiography with indocyanine green and, more recently, fluorescein sodium have been shown to be a good method for intraoperative flow assessment. However, the cost with the apparatus it entails limits its widespread use. We have developed a low-cost universal fluorescence module (FM) designed to visualize fluorescein and perform intraoperative angiography. The purpose of this paper is to describe this device as well as to present our early experience with its use in the treatment of cerebral aneurysms. METHOD: A FM was designed and built using a cyan-blue narrow bandpass (460 to 490 nm) excitation filter and a yellow-orange longpass (blocking wavelengths under 520 nm) barrier filter mounted on a 3D-printed holding tray in a specific disposition to perfectly match the light source and the objective lens of the surgical microscope. It allowed switching from white light to fluorescence mode in a simple and sterile fashion. Its perfect attachment to the microscope was possible by reusing the lens fittings extracted from used original drape sets that would otherwise be discarded. Four patients underwent aneurysm clipping using the FM at two institutions from April to September 2018. RESULTS: A bright green fluorescence against a dark background was observed after intravenous bolus of fluorescein. Blood vessels became obviously distinct from non-contrast-filled structures such as clipped aneurysms and the brain. Vascular anatomy could be appreciated without any distortion, including perforating arteries. CONCLUSIONS: Intraoperative fluorescence angiography was successfully performed with the use of this universal FM after intravenous injection of fluorescein sodium. This simple and low-cost device may be useful in resource-limited centers, where other sorts of intraoperative angiography are not available.


Asunto(s)
Encéfalo/irrigación sanguínea , Angiografía Cerebral/métodos , Angiografía con Fluoresceína/métodos , Monitoreo Intraoperatorio/métodos , Encéfalo/cirugía , Fluoresceína , Humanos , Verde de Indocianina , Aneurisma Intracraneal/cirugía
5.
PLoS Biol ; 13(2): e1002051, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25665164

RESUMEN

As some of the most widely utilised intercellular signalling molecules, transforming growth factor ß (TGFß) superfamily members play critical roles in normal development and become disrupted in human disease. Establishing appropriate levels of TGFß signalling involves positive and negative feedback, which are coupled and driven by the same signal transduction components (R-Smad transcription factor complexes), but whether and how the regulation of the two can be distinguished are unknown. Genome-wide comparison of published ChIP-seq datasets suggests that LIM domain binding proteins (Ldbs) co-localise with R-Smads at a substantial subset of R-Smad target genes including the locus of inhibitory Smad7 (I-Smad7), which mediates negative feedback for TGFß signalling. We present evidence suggesting that zebrafish Ldb2a binds and directly activates the I-Smad7 gene, whereas it binds and represses the ligand gene, Squint (Sqt), which drives positive feedback. Thus, the fine tuning of TGFß signalling derives from positive and negative control by Ldb2a. Expression of ldb2a is itself activated by TGFß signals, suggesting potential feed-forward loops that might delay the negative input of Ldb2a to the positive feedback, as well as the positive input of Ldb2a to the negative feedback. In this way, precise gene expression control by Ldb2a enables an initial build-up of signalling via a fully active positive feedback in the absence of buffering by the negative feedback. In Ldb2a-deficient zebrafish embryos, homeostasis of TGFß signalling is perturbed and signalling is stably enhanced, giving rise to excess mesoderm and endoderm, an effect that can be rescued by reducing signalling by the TGFß family members, Nodal and BMP. Thus, Ldb2a is critical to the homeostatic control of TGFß signalling and thereby embryonic patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Retroalimentación Fisiológica , Proteínas con Dominio LIM/genética , Ligandos de Señalización Nodal/metabolismo , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Secuencia de Bases , Embrión no Mamífero , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas con Dominio LIM/antagonistas & inhibidores , Proteínas con Dominio LIM/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Microinyecciones , Datos de Secuencia Molecular , Morfolinos/genética , Morfolinos/metabolismo , Ligandos de Señalización Nodal/genética , Alineación de Secuencia , Transducción de Señal , Proteína smad7/genética , Transcripción Genética , Factor de Crecimiento Transformador beta/genética , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/deficiencia
6.
Proc Natl Acad Sci U S A ; 110(29): 11893-8, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818617

RESUMEN

The mechanisms by which arterial fate is established and maintained are not clearly understood. Although a number of signaling pathways and transcriptional regulators have been implicated in arterio-venous differentiation, none are essential for arterial formation, and the manner in which widely expressed factors may achieve arterial-specific gene regulation is unclear. Using both mouse and zebrafish models, we demonstrate here that arterial specification is regulated combinatorially by Notch signaling and SoxF transcription factors, via direct transcriptional gene activation. Through the identification and characterization of two arterial endothelial cell-specific gene enhancers for the Notch ligand Delta-like ligand 4 (Dll4), we show that arterial Dll4 expression requires the direct binding of both the RBPJ/Notch intracellular domain and SOXF transcription factors. Specific combinatorial, but not individual, loss of SOXF and RBPJ DNA binding ablates all Dll4 enhancer-transgene expression despite the presence of multiple functional ETS binding sites, as does knockdown of sox7;sox18 in combination with loss of Notch signaling. Furthermore, triple knockdown of sox7, sox18 and rbpj also results in ablation of endogenous dll4 expression. Fascinatingly, this combinatorial ablation leads to a loss of arterial markers and the absence of a detectable dorsal aorta, demonstrating the essential roles of SoxF and Notch, together, in the acquisition of arterial identity.


Asunto(s)
Arterias/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOXF/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Arterias/metabolismo , Proteínas de Unión al Calcio , Inmunoprecipitación de Cromatina , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Pez Cebra
7.
EMBO J ; 30(6): 1093-103, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21336259

RESUMEN

Lineage fate decisions underpin much of development as well as tissue homeostasis in the adult. A mechanistic paradigm for such decisions is the erythroid versus myeloid fate decision controlled by cross-antagonism between gata1 and pu.1 transcription factors. In this study, we have systematically tested this paradigm in blood-producing populations in zebrafish embryos, including the haematopoietic stem cells (HSCs), and found that it takes a different form in each population. In particular, gata1 activity varies from autostimulation to autorepression. In addition, we have added a third member to this regulatory kernel, tif1γ (transcription intermediate factor-1γ). We show that tif1γ modulates the erythroid versus myeloid fate outcomes from HSCs by differentially controlling the levels of gata1 and pu.1. By contrast, tif1γ positively regulates both gata1 and pu.1 in primitive erythroid and prodefinitive erythromyeloid progenitors. We therefore conclude that the gata1/pu.1 paradigm for lineage decisions takes different forms in different cellular contexts and is modulated by tif1γ.


Asunto(s)
Diferenciación Celular , Factor de Transcripción GATA1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Embrión no Mamífero , Células Madre Hematopoyéticas/fisiología
8.
Angiogenesis ; 17(1): 77-91, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23959107

RESUMEN

Arterial and venous specification is critical for establishing and maintaining a functioning vascular system, and defects in key arteriovenous signaling pathways including VEGF (vascular endothelial growth factor) lead to congenital arteriopathies. The activities of VEGF, are in part controlled by heparan sulfate (HS) proteoglycans, significant components of the endothelial glycocalyx. The level of 6-O sulfation on HS polysaccharide chains, that mediate the interaction between HS and VEGFA, is edited at the cell surface by the enzyme SULF1. We investigated the role of sulf1 in vascular development. In zebrafish sulf1 is expressed in the head and tail vasculature, corresponding spatially and temporally with vascular development. Targeted knockdown of sulf1 by antisense morpholinos resulted in severe vascular patterning and maturation defects. 93 % of sulf1 morphants show dysmorphogenesis in arterial development leading to occlusion of the distal aorta and lack of axial and cranial circulation. Co-injection of vegfa165 mRNA rescued circulatory defects. While the genes affecting haematopoiesis are unchanged, expression of several arterial markers downstream of VegfA signalling such as notch and ephrinB2 are severely reduced in the dorsal aorta, with a concomitant increase in expression of the venous markers flt4 in the dorsal aorta of the morphants. Furthermore, in vitro, lack of SULF1 expression downregulates VEGFA-mediated arterial marker expression, confirming that Sulf1 mediates arterial specification by regulating VegfA165 activity. This study provides the first in vivo evidence for the integral role of the endothelial glycocalyx in specifying arterial-venous identity, vascular patterning and arterial integrity, and will help to better understand congenital arteriopathies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Sulfatasas/biosíntesis , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Animales , Arterias/embriología , Arterias/metabolismo , Efrina-B2/inmunología , Efrina-B2/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glicocálix/genética , Glicocálix/metabolismo , Morfolinos/farmacología , Oligonucleótidos Antisentido/farmacología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfatasas/antagonistas & inhibidores , Sulfatasas/genética , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/embriología , Venas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
9.
Blood ; 120(25): 5063-72, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23086751

RESUMEN

Delta-like 4 (DLL4), a membrane-bound ligand belonging to the Notch signaling family, plays a fundamental role in vascular development and angiogenesis. We identified a conserved microRNA family, miR-30, which targets DLL4. Overexpression of miR-30b in endothelial cells led to increased vessel number and length in an in vitro model of sprouting angiogenesis. Microinjection of miR-30 mimics into zebrafish embryos resulted in suppression of dll4 and subsequent excessive sprouting of intersegmental vessels and reduction in dorsal aorta diameter. Use of a target protector against the miR-30 site within the dll4 3'UTR up-regulated dll4 and synergized with Vegfa signaling knockdown to inhibit angiogenesis. Furthermore, restoration of miR-30b or miR-30c expression during Kaposi sarcoma herpesvirus (KSHV) infection attenuated viral induction of DLL4. Together these results demonstrate that the highly conserved molecular targeting of DLL4 by the miR-30 family regulates angiogenesis.


Asunto(s)
Células Endoteliales/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Neovascularización Fisiológica , Animales , Secuencia de Bases , Línea Celular , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/virología , Regulación del Desarrollo de la Expresión Génica , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/embriología
10.
STAR Protoc ; 5(1): 102810, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38261517

RESUMEN

The whole kidney marrow (WKM) is the site for hematopoiesis in the adult zebrafish. Here, we present a protocol for analyzing hematopoietic lineages in the WKM of adult zebrafish. We describe steps for the isolation of hematopoietic cells from the WKM, the downstream analysis of total marrow cellularity, and analysis of cell populations by flow cytometry. We then detail procedures for May-Grünwald-Giemsa staining for analysis of cellular morphology and phenotyping. For complete details on the use and execution of this protocol, please refer to Mahony et al.1.


Asunto(s)
Médula Ósea , Pez Cebra , Animales , Citometría de Flujo , Riñón , Coloración y Etiquetado
11.
Commun Biol ; 7(1): 615, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777862

RESUMEN

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Asunto(s)
Adenosina Desaminasa , Hematopoyesis , Células Madre Hematopoyéticas , Inflamación , Pez Cebra , Animales , Pez Cebra/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/deficiencia , Células Madre Hematopoyéticas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Hematopoyesis/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Humanos , Transducción de Señal , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo
12.
Cell Rep ; 42(6): 112571, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37256751

RESUMEN

Inherited bone marrow failure associated with heterozygous mutations in GATA2 predisposes toward hematological malignancies, but the mechanisms remain poorly understood. Here, we investigate the mechanistic basis of marrow failure in a zebrafish model of GATA2 deficiency. Single-cell transcriptomics and chromatin accessibility assays reveal that loss of gata2a leads to skewing toward the erythroid lineage at the expense of myeloid cells, associated with loss of cebpa expression and decreased PU.1 and CEBPA transcription factor accessibility in hematopoietic stem and progenitor cells (HSPCs). Furthermore, gata2a mutants show impaired expression of npm1a, the zebrafish NPM1 ortholog. Progressive loss of npm1a in HSPCs is associated with elevated levels of DNA damage in gata2a mutants. Thus, Gata2a maintains myeloid lineage priming through cebpa and protects against genome instability and marrow failure by maintaining expression of npm1a. Our results establish a potential mechanism underlying bone marrow failure in GATA2 deficiency.


Asunto(s)
Médula Ósea , Deficiencia GATA2 , Animales , Médula Ósea/metabolismo , Trastornos de Fallo de la Médula Ósea , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Inestabilidad Genómica , Pez Cebra/metabolismo
13.
J Cell Sci ; 123(Pt 7): 1141-50, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20215401

RESUMEN

In recent years, the perception of Z-disc function has changed from a passive anchor for myofilaments that allows transmission of force, to a dynamic multicomplex structure, capable of sensing and transducing extracellular signals. Here, we describe a new Z-disc protein, which we named CHAP (cytoskeletal heart-enriched actin-associated protein), expressed in differentiating heart and skeletal muscle in vitro and in vivo. Interestingly, in addition to its sarcomeric localization, CHAP was also able to translocate to the nucleus. CHAP was associated with filamentous actin in the cytoplasm and the nucleus when expressed ectopically in vitro, but in rat neonatal cardiomyocytes, CHAP disrupted the subcellular localization of alpha-actinin, another Z-disc protein. More importantly, knockdown of CHAP in zebrafish resulted in aberrant cardiac and skeletal muscle development and function. These findings suggest that CHAP is a critical component of the sarcomere with an important role in muscle development.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Transporte Activo de Núcleo Celular , Animales , Animales Modificados Genéticamente , Células COS , Chlorocebus aethiops , Embrión de Mamíferos , Técnicas de Silenciamiento del Gen , Corazón/embriología , Corazón/fisiología , Ratones , Proteínas de Microfilamentos/genética , Desarrollo de Músculos , Músculo Esquelético/embriología , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Miocitos Cardíacos/ultraestructura , Ratas , Sarcómeros/ultraestructura , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Front Cell Dev Biol ; 10: 891538, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615697

RESUMEN

Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network.

15.
Blood Adv ; 5(23): 4935-4948, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34543380

RESUMEN

During early vertebrate development, hematopoietic stem and progenitor cells (HSPCs) are produced in hemogenic endothelium located in the dorsal aorta, before they migrate to a transient niche where they expand to the fetal liver and the caudal hematopoietic tissue, in mammals and zebrafish, respectively. In zebrafish, previous studies have shown that the extracellular matrix (ECM) around the aorta must be degraded to enable HSPCs to leave the aortic floor and reach blood circulation. However, the role of the ECM components in HSPC specification has never been addressed. In this study, hapln1b, a key component of the ECM, was specifically expressed in hematopoietic sites in the zebrafish embryo. Gain- and loss-of-function experiments all resulted in the absence of HSPCs in the early embryo, showing that hapln1b is necessary, at the correct level, to specify HSPCs in the hemogenic endothelium. Furthermore, the expression of hapln1b was necessary to maintain the integrity of the ECM through its link domain. By combining functional analyses and computer modeling, we showed that kitlgb interacts with the ECM to specify HSPCs. The findings show that the ECM is an integral component of the microenvironment and mediates the cytokine signaling that is necessary for HSPC specification.


Asunto(s)
Hematopoyesis , Pez Cebra , Animales , Matriz Extracelular , Células Madre Hematopoyéticas , Proteínas de Pez Cebra/genética
16.
Food Chem ; 343: 128438, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127231

RESUMEN

Concentrations of 16 elements (K, Na, Mg, Ca, Fe, Zn, Hg, Se, As, Cu, Cd, Mn, Ni, Cr, Pb and Co) were determined in dorsal white and dark muscle of Xiphias gladius, sampled at various positions of a single swordfish and at the same position of eight specimens. Hg was quantified by thermal decomposition atomic absorption spectrometry (LECO AMA-254) and the rest of the elements by inductively coupled plasma optical emission spectrometry (ICP OES) or mass spectrometry (ICP MS). Element partitioning differed in dark and white muscle. Dark muscle was particularly enriched in Fe (median 13 times) and Cu (9) and moderately enhanced in Se, Mn, Zn and Cd (2.8-4.0). Dark:white ratios of the potentially toxic elements (As, Cr, Hg, Ni and Pb) varied from 0.9 to 1.4, pointing to a similar distribution between the two muscles types and indicating no additional risk in the consumption of dark muscle.


Asunto(s)
Productos Pesqueros/análisis , Músculo Esquelético/química , Perciformes , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Contaminación de Alimentos/análisis , Océano Índico , Espectrometría de Masas/métodos , Espectrofotometría Atómica
17.
Blood Adv ; 5(13): 2687-2700, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34170285

RESUMEN

The differentiation of hematopoietic stem cells (HSCs) is tightly controlled to ensure a proper balance between myeloid and lymphoid cell output. GATA2 is a pivotal hematopoietic transcription factor required for generation and maintenance of HSCs. GATA2 is expressed throughout development, but because of early embryonic lethality in mice, its role during adult hematopoiesis is incompletely understood. Zebrafish contains 2 orthologs of GATA2: Gata2a and Gata2b, which are expressed in different cell types. We show that the mammalian functions of GATA2 are split between these orthologs. Gata2b-deficient zebrafish have a reduction in embryonic definitive hematopoietic stem and progenitor cell (HSPC) numbers, but are viable. This allows us to uniquely study the role of GATA2 in adult hematopoiesis. gata2b mutants have impaired myeloid lineage differentiation. Interestingly, this defect arises not in granulocyte-monocyte progenitors, but in HSPCs. Gata2b-deficient HSPCs showed impaired progression of the myeloid transcriptional program, concomitant with increased coexpression of lymphoid genes. This resulted in a decrease in myeloid-programmed progenitors and a relative increase in lymphoid-programmed progenitors. This shift in the lineage output could function as an escape mechanism to avoid a block in lineage differentiation. Our study helps to deconstruct the functions of GATA2 during hematopoiesis and shows that lineage differentiation flows toward a lymphoid lineage in the absence of Gata2b.


Asunto(s)
Células Madre Hematopoyéticas , Pez Cebra , Animales , Diferenciación Celular , Factor de Transcripción GATA2/genética , Hematopoyesis , Ratones , Monocitos , Proteínas de Pez Cebra
18.
J Vis Exp ; (155)2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-32065138

RESUMEN

In situ hybridization (ISH) is an important technique that enables researchers to study mRNA distribution in situ and has been a critical technique in developmental biology for decades. Traditionally, most gene expression studies relied on visual evaluation of the ISH signal, a method that is prone to bias, particularly in cases where sample identities are known a priori. We have previously reported on a method to circumvent this bias and provide a more accurate quantification of ISH signals. Here, we present a simple guide to apply this method to quantify the expression levels of genes of interest in ISH-stained embryos and correlate that with their corresponding genotypes. The method is particularly useful to quantify spatially restricted gene expression signals in samples of mixed genotypes and it provides an unbiased and accurate alternative to the traditional visual scoring methods.


Asunto(s)
Hibridación in Situ/métodos , Animales , Genotipo , Pez Cebra
19.
Sci Total Environ ; 723: 137798, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32392676

RESUMEN

In the last few years the use of nanoparticles (NPs) such as the manganese spinel ferrite (MnFe2O4) has been increasing, with a vast variety of applications including water remediation from pollutants as metal(oid)s. Although an increasing number of studies already demonstrated the potential toxicity of NPs towards aquatic systems and inhabiting organisms, there is still scarce information on the potential hazard of the remediated water using NPs. The present study aimed to evaluate the ecotoxicological safety of Pb contaminated seawater remediated with MnFe2O4, NPs, assessing the toxicity induced in mussels Mytilus galloprovincialis exposed to contaminated seawater and to water that was remediated using MnFe2O4, NPs. The results obtained demonstrated that seawater contaminated with Pb, NPs or the mixture of both (Pb + NPs) induced higher toxicity in mussels compared to organisms exposed to Pb, NPs and Pb + NPs after the remediation process. In particular, higher metabolic depression, oxidative stress and neurotoxicity were observed in mussels exposed to contaminated seawater in comparison to mussels exposed to remediated seawater.


Asunto(s)
Mytilus , Nanopartículas , Contaminantes Químicos del Agua/análisis , Óxido de Aluminio , Animales , Compuestos Férricos , Óxido de Magnesio , Manganeso , Agua
20.
Commun Biol ; 3(1): 71, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054973

RESUMEN

Gata2 is a key transcription factor required to generate Haematopoietic Stem and Progenitor Cells (HSPCs) from haemogenic endothelium (HE); misexpression of Gata2 leads to haematopoietic disorders. Here we deleted a conserved enhancer (i4 enhancer) driving pan-endothelial expression of the zebrafish gata2a and showed that Gata2a is required for HE programming by regulating expression of runx1 and of the second Gata2 orthologue, gata2b. By 5 days, homozygous gata2aΔi4/Δi4 larvae showed normal numbers of HSPCs, a recovery mediated by Notch signalling driving gata2b and runx1 expression in HE. However, gata2aΔi4/Δi4 adults showed oedema, susceptibility to infections and marrow hypo-cellularity, consistent with bone marrow failure found in GATA2 deficiency syndromes. Thus, gata2a expression driven by the i4 enhancer is required for correct HE programming in embryos and maintenance of steady-state haematopoietic stem cell output in the adult. These enhancer mutants will be useful in exploring further the pathophysiology of GATA2-related deficiencies in vivo.


Asunto(s)
Reprogramación Celular/genética , Secuencia Conservada , Endotelio/metabolismo , Elementos de Facilitación Genéticos , Factor de Transcripción GATA2/genética , Hematopoyesis/genética , Eliminación de Secuencia , Factores de Edad , Animales , Secuencia de Bases , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Sitios Genéticos , Células Madre Hematopoyéticas/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA