Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32839608

RESUMEN

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Malaria/inmunología , Proteínas de la Membrana/metabolismo , Plasmodium/fisiología , Animales , Células Cultivadas , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Exocitosis , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Vesículas Secretoras/metabolismo
3.
PLoS Pathog ; 16(10): e1008994, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33049000

RESUMEN

Inflammation is critical for controlling pathogens, but also responsible for symptoms of infectious diseases. IL-27 is an important regulator of inflammation and can limit development of IFNγ-producing Tbet+ CD4+ T (Th1) cells. IL-27 is thought to do this by stimulating IL-10 production by CD4+ T cells, but the underlying mechanisms of these immunoregulatory pathways are not clear. Here we studied the role of IL-27 signalling in experimental visceral leishmaniasis (VL) caused by infection of C57BL/6 mice with the human pathogen Leishmania donovani. We found IL-27 signalling was critical for the development of IL-10-producing Th1 (Tr1) cells during infection. Furthermore, in the absence of IL-27 signalling, there was improved control of parasite growth, but accelerated splenic pathology characterised by the loss of marginal zone macrophages. Critically, we discovered that IL-27 signalling limited glycolysis in Th1 cells during infection that in turn attenuated inflammation. Furthermore, the modulation of glycolysis in the absence of IL-27 signalling restricted tissue pathology without compromising anti-parasitic immunity. Together, these findings identify a novel mechanism by which IL-27 mediates immune regulation during disease by regulating cellular metabolism.


Asunto(s)
Interleucinas/metabolismo , Leishmaniasis Visceral/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Femenino , Glucólisis , Interferón gamma/inmunología , Interleucinas/inmunología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Bazo/inmunología
4.
J Immunol ; 201(11): 3362-3372, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30355785

RESUMEN

The outcome of intracellular parasitic infection can be determined by the immunoregulatory activities of natural regulatory CD4+ Foxp3+ T (Treg) cells and the anti-inflammatory cytokine IL-10. These mechanisms protect tissue but can also suppress antiparasitic CD4+ T cell responses. The specific contribution of these regulatory pathways during human parasitic diseases remains unclear. In this study, we investigated the roles of Treg cells and IL-10 during experimental visceral leishmaniasis caused by Leishmania donovani infection of C57BL/6 mice. We report only a limited contribution of Treg cells in suppressing antiparasitic immunity, but important roles in delaying the development of splenic pathology and restricting leukocyte expansion. We next employed a range of cell-specific, IL-10- and IL-10R-deficient mice and found these Treg cell functions were independent of IL-10. Instead, conventional CD4+ T cells and dendritic cells were the most important cellular sources of IL-10, and the absence of IL-10 in either cell population resulted in greater control of parasite growth but also caused accelerated breakdown in splenic microarchitecture. We also found that T cells, dendritic cells, and other myeloid cells were the main IL-10-responding cells because in the absence of IL-10R expression by these cell populations, there was greater expansion of parasite-specific CD4+ T cell responses associated with improved control of parasite growth. Again, however, there was also an accelerated breakdown in splenic microarchitecture in these animals. Together, these findings identify distinct, cell-specific, immunoregulatory networks established during experimental visceral leishmaniasis that could be manipulated for clinical advantage.


Asunto(s)
Interleucina-10/metabolismo , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Bazo/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos CD4/metabolismo , Células Cultivadas , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Inmunomodulación , Ratones , Ratones Endogámicos C57BL , Modelos Animales
5.
J Infect Dis ; 218(7): 1119-1129, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29757416

RESUMEN

We examined transcriptional changes in CD4+ T cells during blood-stage Plasmodium falciparum infection in individuals without a history of previous parasite exposure. Transcription of CXCL8 (encoding interleukin 8) in CD4+ T cells was identified as an early biomarker of submicroscopic P. falciparum infection, with predictive power for parasite growth. Following antiparasitic drug treatment, a CD4+ T-cell regulatory phenotype developed. PD1 expression on CD49b+CD4+ T (putative type I regulatory T) cells after drug treatment negatively correlated with earlier parasite growth. Blockade of PD1 but no other immune checkpoint molecules tested increased interferon γ and interleukin 10 production in an ex vivo antigen-specific cellular assay at the peak of infection. These results demonstrate the early development of an immunoregulatory CD4+ T-cell phenotype in blood-stage P. falciparum infection and show that a selective immune checkpoint blockade may be used to modulate early developing antiparasitic immunoregulatory pathways as part of malaria vaccine and/or drug treatment protocols.


Asunto(s)
Interleucina-8/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Adolescente , Adulto , Biomarcadores/análisis , Linfocitos T CD4-Positivos/inmunología , Biología Computacional , Humanos , Activación de Linfocitos , Malaria Falciparum/parasitología , Persona de Mediana Edad , Parasitemia , Fenotipo , Linfocitos T Reguladores/inmunología , Adulto Joven
6.
PLoS Pathog ; 12(1): e1005398, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26765224

RESUMEN

Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.


Asunto(s)
Inflamación/inmunología , Interleucina-10/biosíntesis , Leishmaniasis Visceral/inmunología , Proteínas Represoras/inmunología , Células TH1/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Inflamación/patología , Interleucina-10/inmunología , Leishmaniasis Visceral/patología , Malaria/inmunología , Malaria/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Fluorescente , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Linfocitos T Reguladores/inmunología
7.
PLoS Pathog ; 12(11): e1005999, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27812214

RESUMEN

Parasite-specific antibodies protect against blood-stage Plasmodium infection. However, in malaria-endemic regions, it takes many months for naturally-exposed individuals to develop robust humoral immunity. Explanations for this have focused on antigenic variation by Plasmodium, but have considered less whether host production of parasite-specific antibody is sub-optimal. In particular, it is unclear whether host immune factors might limit antibody responses. Here, we explored the effect of Type I Interferon signalling via IFNAR1 on CD4+ T-cell and B-cell responses in two non-lethal murine models of malaria, P. chabaudi chabaudi AS (PcAS) and P. yoelii 17XNL (Py17XNL) infection. Firstly, we demonstrated that CD4+ T-cells and ICOS-signalling were crucial for generating germinal centre (GC) B-cells, plasmablasts and parasite-specific antibodies, and likewise that T follicular helper (Tfh) cell responses relied on B cells. Next, we found that IFNAR1-signalling impeded the resolution of non-lethal blood-stage infection, which was associated with impaired production of parasite-specific IgM and several IgG sub-classes. Consistent with this, GC B-cell formation, Ig-class switching, plasmablast and Tfh differentiation were all impaired by IFNAR1-signalling. IFNAR1-signalling proceeded via conventional dendritic cells, and acted early by limiting activation, proliferation and ICOS expression by CD4+ T-cells, by restricting the localization of activated CD4+ T-cells adjacent to and within B-cell areas of the spleen, and by simultaneously suppressing Th1 and Tfh responses. Finally, IFNAR1-deficiency accelerated humoral immune responses and parasite control by boosting ICOS-signalling. Thus, we provide evidence of a host innate cytokine response that impedes the onset of humoral immunity during experimental malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Inmunidad Humoral/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Malaria/inmunología , Receptor de Interferón alfa y beta/inmunología , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Plasmodium chabaudi/inmunología , Plasmodium yoelii/inmunología , Transducción de Señal/inmunología
8.
J Immunol ; 197(12): 4518-4526, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913644

RESUMEN

The development of vaccines to protect against parasites is difficult, in large part due to complex host-parasite interactions that have evolved over millennia. Parasitic factors such as antigenic variation and host factors such as age, transmission intensity, and genetic influences are all thought to contribute to the limited efficacy of parasite vaccines. A developing theme in field studies investigating antiparasitic immunity is the emergence, establishment, and maintenance of immunoregulatory networks that shape the immune responses to new infections, as well as vaccines, thereby influencing disease outcome. In this review, we will examine why parasite vaccine candidates perform poorly in target populations and, in particular, the role of immunoregulatory networks in influencing antimalarial immunity and vaccine efficacy. We will focus our discussion on malaria, the most important parasitic disease of humans, but also highlight the broader impact of immunoregulatory networks on vaccine efficacy.


Asunto(s)
Inmunidad , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria/inmunología , Animales , Variación Antigénica , Antígenos de Protozoos/inmunología , Interacciones Huésped-Parásitos , Humanos , Inmunomodulación , Malaria/prevención & control , Vacunación Masiva , Plasmodium falciparum/inmunología
9.
J Immunol ; 195(12): 5707-17, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26538396

RESUMEN

Intracellular infections, such as those caused by the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL), require a potent host proinflammatory response for control. IL-17 has emerged as an important proinflammatory cytokine required for limiting growth of both extracellular and intracellular pathogens. However, there are conflicting reports on the exact roles for IL-17 during parasitic infections and limited knowledge about cellular sources and the immune pathways it modulates. We examined the role of IL-17 in an experimental model of VL caused by infection of C57BL/6 mice with L. donovani and identified an early suppressive role for IL-17 in the liver that limited control of parasite growth. IL-17-producing γδ T cells recruited to the liver in the first week of infection were the critical source of IL-17 in this model, and CCR2(+) inflammatory monocytes were an important target for the suppressive effects of IL-17. Improved parasite control was independent of NO generation, but associated with maintenance of superoxide dismutase mRNA expression in the absence of IL-17 in the liver. Thus, we have identified a novel inhibitory function for IL-17 in parasitic infection, and our results demonstrate important interactions among γδ T cells, monocytes, and infected macrophages in the liver that can determine the outcome of parasitic infection.


Asunto(s)
Interleucina-17/metabolismo , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Hígado/inmunología , Linfocitos T/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Terapia de Inmunosupresión , Leishmania donovani/crecimiento & desarrollo , Hígado/parasitología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/parasitología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores CCR2/metabolismo , Superóxido Dismutasa/metabolismo , Linfocitos T/parasitología
10.
J Immunol ; 192(8): 3709-18, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24634490

RESUMEN

Organ-specific immunity is a feature of many infectious diseases, including visceral leishmaniasis caused by Leishmania donovani. Experimental visceral leishmaniasis in genetically susceptible mice is characterized by an acute, resolving infection in the liver and chronic infection in the spleen. CD4+ T cell responses are critical for the establishment and maintenance of hepatic immunity in this disease model, but their role in chronically infected spleens remains unclear. In this study, we show that dendritic cells are critical for CD4+ T cell activation and expansion in all tissue sites examined. We found that FTY720-mediated blockade of T cell trafficking early in infection prevented Ag-specific CD4+ T cells from appearing in lymph nodes, but not the spleen and liver, suggesting that early CD4+ T cell priming does not occur in liver-draining lymph nodes. Extended treatment with FTY720 over the first month of infection increased parasite burdens, although this associated with blockade of lymphocyte egress from secondary lymphoid tissue, as well as with more generalized splenic lymphopenia. Importantly, we demonstrate that CD4+ T cells are required for the establishment and maintenance of antiparasitic immunity in the liver, as well as for immune surveillance and suppression of parasite outgrowth in chronically infected spleens. Finally, although early CD4+ T cell priming appeared to occur most effectively in the spleen, we unexpectedly revealed that protective CD4+ T cell-mediated hepatic immunity could be generated in the complete absence of all secondary lymphoid tissues.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Animales , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Clorhidrato de Fingolimod , Inmunosupresores/farmacología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/parasitología , Activación de Linfocitos/inmunología , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/inmunología , Tejido Linfoide/parasitología , Ratones , Ratones Noqueados , Glicoles de Propileno/farmacología , Esfingosina/análogos & derivados , Esfingosina/farmacología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/parasitología
12.
JCI Insight ; 8(24)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37917177

RESUMEN

Control of visceral leishmaniasis (VL) depends on proinflammatory Th1 cells that activate infected tissue macrophages to kill resident intracellular parasites. However, proinflammatory cytokines produced by Th1 cells can damage tissues and require tight regulation. Th1 cell IL-10 production is an important cell-autologous mechanism to prevent such damage. However, IL-10-producing Th1 (type 1 regulatory; Tr1) cells can also delay control of parasites and the generation of immunity following drug treatment or vaccination. To identify molecules to target in order to alter the balance between Th1 and Tr1 cells for improved antiparasitic immunity, we compared the molecular and phenotypic profiles of Th1 and Tr1 cells in experimental VL caused by Leishmania donovani infection of C57BL/6J mice. We also identified a shared Tr1 cell protozoan signature by comparing the transcriptional profiles of Tr1 cells from mice with experimental VL and malaria. We identified LAG3 as an important coinhibitory receptor in patients with VL and experimental VL, and we reveal tissue-specific heterogeneity of coinhibitory receptor expression by Tr1 cells. We also discovered a role for the transcription factor Pbx1 in suppressing CD4+ T cell cytokine production. This work provides insights into the development and function of CD4+ T cells during protozoan parasitic infections and identifies key immunoregulatory molecules.


Asunto(s)
Interleucina-10 , Infecciones por Protozoos , Células TH1 , Células TH1/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-10/metabolismo , Linfocitos T Reguladores/inmunología , Ratones Endogámicos C57BL , Leishmania donovani , Leishmaniasis Visceral/inmunología , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Infecciones por Protozoos/inmunología , Humanos , Animales , Ratones , Proteína del Gen 3 de Activación de Linfocitos/antagonistas & inhibidores , Interferón gamma/metabolismo , Unión Proteica , Regiones Promotoras Genéticas/inmunología , Modelos Animales de Enfermedad
13.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37781920

RESUMEN

The development of highly effective malaria vaccines and improvement of drug-treatment protocols to boost antiparasitic immunity are critical for malaria elimination. However, the rapid establishment of parasite-specific immune regulatory networks following exposure to malaria parasites hampers these efforts. Here, we identified stimulator of interferon genes (STING) as a critical mediator of type I interferon production by CD4+ T cells during blood-stage Plasmodium falciparum infection. The activation of STING in CD4+ T cells by cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) stimulated IFNB gene transcription, which promoted development of IL-10- and IFN-γ-coproducing CD4+ T (type I regulatory [Tr1]) cells. The critical role for type I IFN signaling for Tr1 cell development was confirmed in vivo using a preclinical malaria model. CD4+ T cell sensitivity to STING phosphorylation was increased in healthy volunteers following P. falciparum infection, particularly in Tr1 cells. These findings identified STING expressed by CD4+ T cells as an important mediator of type I IFN production and Tr1 cell development and activation during malaria.


Asunto(s)
Interferón Tipo I , Malaria Falciparum , Linfocitos T Reguladores , Humanos , Linfocitos T CD4-Positivos , Interferón Tipo I/inmunología , Malaria Falciparum/inmunología , Linfocitos T Reguladores/inmunología
14.
J Clin Invest ; 133(1)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36594463

RESUMEN

Control of intracellular parasites responsible for malaria requires host IFN-γ+T-bet+CD4+ T cells (Th1 cells) with IL-10 produced by Th1 cells to mitigate the pathology induced by this inflammatory response. However, these IL-10-producing Th1 (induced type I regulatory [Tr1]) cells can also promote parasite persistence or impair immunity to reinfection or vaccination. Here, we identified molecular and phenotypic signatures that distinguished IL-10-Th1 cells from IL-10+Tr1 cells in Plasmodium falciparum-infected people who participated in controlled human malaria infection studies, as well as C57BL/6 mice with experimental malaria caused by P. berghei ANKA. We also identified a conserved Tr1 cell molecular signature shared between patients with malaria, dengue, and graft-versus-host disease. Genetic manipulation of primary human CD4+ T cells showed that the transcription factor cMAF played an important role in the induction of IL-10, while BLIMP-1 promoted the development of human CD4+ T cells expressing multiple coinhibitory receptors. We also describe heterogeneity of Tr1 cell coinhibitory receptor expression that has implications for targeting these molecules for clinical advantage during infection. Overall, this work provides insights into CD4+ T cell development during malaria that offer opportunities for creation of strategies to modulate CD4+ T cell functions and improve antiparasitic immunity.


Asunto(s)
Malaria , Linfocitos T Reguladores , Ratones , Animales , Humanos , Células TH1 , Interleucina-10 , Ratones Endogámicos C57BL , Malaria/genética , Linfocitos T CD4-Positivos
15.
J Clin Invest ; 131(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34609968

RESUMEN

Cutaneous leishmaniasis (CL) is caused by Leishmania donovani in Sri Lanka. Pentavalent antimonials (e.g., sodium stibogluconate [SSG]) remain first-line drugs for CL with no new effective treatments emerging. We studied whole blood and lesion transcriptomes from Sri Lankan patients with CL at presentation and during SSG treatment. From lesions but not whole blood, we identified differential expression of immune-related genes, including immune checkpoint molecules, after onset of treatment. Using spatial profiling and RNA-FISH, we confirmed reduced expression of programmed death-ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO1) proteins on treatment in lesions of a second validation cohort and further demonstrated significantly higher expression of these checkpoint molecules on parasite-infected compared with noninfected lesional CD68+ monocytes and macrophages. Crucially, early reduction in PD-L1 but not IDO1 expression was predictive of rate of clinical cure (HR = 4.88) and occurred in parallel with reduction in parasite load. Our data support a model whereby the initial anti-leishmanial activity of antimonial drugs alleviates checkpoint inhibition on T cells, facilitating immune-drug synergism and clinical cure. Our findings demonstrate that PD-L1 expression can be used as a predictor of rapidity of clinical response to SSG treatment in Sri Lanka and support further evaluation of PD-L1 as a host-directed therapeutic in leishmaniasis.


Asunto(s)
Antígeno B7-H1/fisiología , Leishmaniasis Cutánea/tratamiento farmacológico , Adulto , Gluconato de Sodio Antimonio/uso terapéutico , Antígeno B7-H1/análisis , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/análisis , Leishmaniasis Cutánea/inmunología , Masculino , Adulto Joven
16.
Cytokine X ; 2(4): 100036, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33604560

RESUMEN

Visceral leishmaniasis (VL) causes extensive splenic pathology that contributes to dysfunctional immune responses, in part through displacement and destruction of cell populations involved in maintaining splenic structural integrity. The expression of pro and anti-inflammatory cytokines and chemokines is crucial in orchestrating the delicate balance that exists between host resistance and tissue pathology. In an effort to restore homeostatic balance to the local microenvironment, remodelling of the splenic architecture occurs in a compartmentalised manner to retain some level of functionality, despite persistent inflammatory pressures. Animal models of VL as well as human studies have significantly contributed to our understanding of the architectural changes that occur in the spleen during VL. Here, we review the role of cytokines in mediating microarchitectural changes associated with the development of splenomegaly during VL.

17.
Cell Rep ; 30(8): 2512-2525.e9, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101732

RESUMEN

Type I interferons (IFNs) play critical roles in anti-viral and anti-tumor immunity. However, they also suppress protective immune responses in some infectious diseases. Here, we identify type I IFNs as major upstream regulators of CD4+ T cells from visceral leishmaniasis (VL) patients. Furthermore, we report that mice deficient in type I IFN signaling have significantly improved control of Leishmania donovani, a causative agent of human VL, associated with enhanced IFNγ but reduced IL-10 production by parasite-specific CD4+ T cells. Importantly, we identify a small-molecule inhibitor that can be used to block type I IFN signaling during established infection and acts synergistically with conventional anti-parasitic drugs to improve parasite clearance and enhance anti-parasitic CD4+ T cell responses in mice and humans. Thus, manipulation of type I IFN signaling is a promising strategy for improving disease outcome in VL patients.


Asunto(s)
Inmunidad/efectos de los fármacos , Interferón Tipo I/farmacología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Parásitos/inmunología , Anfotericina B/farmacología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Epítopos , Humanos , Inflamación/inmunología , Inflamación/patología , Interferón gamma/farmacología , Ratones Endogámicos C57BL , Nitrilos , Parásitos/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Front Immunol ; 9: 850, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760697

RESUMEN

Gastrointestinal (GI) parasites, hookworms in particular, have evolved to cause minimal harm to their hosts, allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed, hookworms are such potent suppressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs), exosome-like EVs from different helminths have been characterized and their salient roles in parasite-host interactions have been highlighted. Here, we analyze EVs from the rodent parasite Nippostrongylus brasiliensis, which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids, indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins, including proteins frequently present in exosomes (like tetraspanin, enolase, 14-3-3 protein, and heat shock proteins), and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species, many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties, we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6, IL-1ß, IFNγ, and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast, high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great potential application in development of drugs to treat helminth infections as well as chronic non-infectious diseases resulting from a dysregulated immune system, such as IBD.


Asunto(s)
Colitis/prevención & control , Exosomas/inmunología , Vesículas Extracelulares/fisiología , Infecciones por Uncinaria/inmunología , Interacciones Huésped-Parásitos , Nippostrongylus/fisiología , Animales , Colitis/inducido químicamente , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunomodulación , Inflamación/genética , Interleucina-10/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteómica , Análisis de Secuencia de ARN , Trichuris/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA