RESUMEN
Antigen receptor loci are organized into variable (V), diversity (D) and joining (J) gene segments that rearrange to generate antigen receptor repertoires. Here, we identified an enhancer (E34) in the murine immunoglobulin kappa (Igk) locus that instructed rearrangement of Vκ genes located in a sub-topologically associating domain, including a Vκ gene encoding for antibodies targeting bacterial phosphorylcholine. We show that E34 instructs the nuclear repositioning of the E34 sub-topologically associating domain from a recombination-repressive compartment to a recombination-permissive compartment that is marked by equivalent activating histone modifications. Finally, we found that E34-instructed Vκ-Jκ rearrangement was essential to combat Streptococcus pneumoniae but not methicillin-resistant Staphylococcus aureus or influenza infections. We propose that the merging of Vκ genes with Jκ elements is instructed by one-dimensional epigenetic information imposed by enhancers across Vκ and Jκ genomic regions. The data also reveal how enhancers generate distinct antibody repertoires that provide protection against lethal bacterial infection.
Asunto(s)
Cromatina , Staphylococcus aureus Resistente a Meticilina , Ratones , Animales , Cromatina/genética , Región Variable de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Staphylococcus aureus Resistente a Meticilina/genética , Linfocitos B , Epigénesis GenéticaRESUMEN
During an organism's ontogeny and in the adult, each B and T lymphocyte generates a unique antigen receptor, thereby creating the organism's ability to respond to a vast number of different antigens. The antigen receptor loci are organized into distinct regions that contain multiple variable (V), diversity (D), and/or joining (J) and constant (C) coding elements that are scattered across large genomic regions. In this review, we discuss the epigenetic modifications that take place in the different antigen receptor loci, the chromatin structure adopted by the antigen receptor loci to allow recombination of elements separated by large genomic distances, and the relationship between epigenetics and chromatin structure and how they relate to the generation of antigen receptor diversity.
Asunto(s)
Cromatina/química , Receptores de Antígenos/metabolismo , Animales , Epigénesis Genética , Sitios Genéticos , Variación Genética/inmunología , Humanos , Receptores de Antígenos/química , Receptores de Antígenos/genética , Transcripción Genética , Recombinación V(D)JRESUMEN
It is now established that Bcl11b specifies T cell fate. Here, we show that in developing T cells, the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (thymocyte differentiation factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single-loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how, during developmental progression and tumor suppression, non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.
Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , ARN no Traducido/genética , Proteínas Represoras/genética , Linfocitos T/citología , Proteínas Supresoras de Tumor/genética , Animales , Factor de Unión a CCCTC , Cromatina/metabolismo , Leucemia/genética , Región de Control de Posición , Linfoma/genética , Ratones , Lámina Nuclear/metabolismo , Proteínas Represoras/metabolismo , Linfocitos T/metabolismo , Timo/citología , Timo/metabolismo , Transcripción GenéticaRESUMEN
Targeting of AID to antibody variable (V) regions results in somatic hypermutation, whereas its recruitment to switch (S) regions leads to class-switch recombination. Yeap et al. find that the mechanism by which variable and switch regions recruit AID essentially is the same but that the two regions differ in the density of double-stranded DNA breaks that are generated. These lead to either point mutations in V exons in somatic hypermutation or deletion of intervening DNA sequences during class switch recombination.
Asunto(s)
Linfocitos B/metabolismo , Citidina Desaminasa/genética , Cambio de Clase de Inmunoglobulina , Hipermutación Somática de Inmunoglobulina , Recombinación V(D)J , Animales , HumanosRESUMEN
It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.
Asunto(s)
Movimiento Celular , Forma del Núcleo Celular , Neutrófilos , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Conformación de Ácido Nucleico , Diferenciación Celular/genética , Inflamación/genética , Elementos de Facilitación Genéticos , Linaje de la Célula/genéticaRESUMEN
During B lymphocyte development, immunoglobulin heavy-chain variable (VH), diversity (DH), and joining (JH) segments assemble to generate a diverse antigen receptor repertoire. Here, we have marked the distal VH and DH-JH-Eµ regions with Tet-operator binding sites and traced their 3D trajectories in pro-B cells transduced with a retrovirus encoding Tet-repressor-EGFP. We found that these elements displayed fractional Langevin motion (fLm) due to the viscoelastic hindrance from the surrounding network of proteins and chromatin fibers. Using fractional Langevin dynamics modeling, we found that, with high probability, DHJH elements reach a VH element within minutes. Spatial confinement emerged as the dominant parameter that determined the frequency of such encounters. We propose that the viscoelastic nature of the nuclear environment causes coding elements and regulatory elements to bounce back and forth in a spring-like fashion until specific genomic interactions are established and that spatial confinement of topological domains largely controls first-passage times for genomic interactions.
Asunto(s)
Cadenas Pesadas de Inmunoglobulina/genética , Recombinación V(D)J , Animales , Fenómenos Biomecánicos , Elasticidad , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Vectores Genéticos , Ratones , Células Precursoras de Linfocitos B/metabolismo , Transducción Genética , ViscosidadRESUMEN
The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA(+) enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment.
Asunto(s)
Linfocitos B/metabolismo , Carcinogénesis , Citidina Desaminasa/genética , Elementos de Facilitación Genéticos , Animales , Daño del ADN , Humanos , Linfoma/metabolismo , RatonesRESUMEN
During developmental progression the genomes of immune cells undergo large-scale changes in chromatin folding. However, insights into signaling pathways and epigenetic control of nuclear architecture remain rudimentary. Here, we found that in activated neutrophils calcium influx rapidly recruited the cohesin-loading factor NIPBL to thousands of active enhancers and promoters to dictate widespread changes in compartment segregation. NIPBL recruitment to enhancers and promoters occurred with distinct kinetics. The induction of NIPBL-binding was coordinate with increased P300, BRG1 and RNA polymerase II occupancy. NIPBL-bound enhancers were associated with NFAT, PU.1, and CEBP cis elements, whereas NIPBL-bound promoters were enriched for GC-rich DNA sequences. Using an acute degradation system, we found that the histone acetyltransferases P300 and CBP maintained H3K27ac abundance and facilitated NIPBL occupancy at enhancers and that active transcriptional elongation is essential to maintain H3K27ac abundance. Chromatin remodelers, containing either of the mutually exclusive BRG1 and BRM ATPases, promoted NIPBL recruitment at active enhancers. Conversely, at active promoters, depletion of BRG1 and BRM showed minimal effect on NIPBL occupancy. Finally, we found that calcium signaling in both primary innate and adaptive immune cells swiftly induced NIPBL occupancy. Collectively, these data reveal how transcriptional regulators, histone acetyltransferases, chromatin remodelers, and transcription elongation promote NIPBL occupancy at active enhancers while the induction of NIPLB occupancy at promoters is primarily associated with GC-rich DNA sequences.
Asunto(s)
Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Elementos de Facilitación Genéticos/fisiología , Genoma/fisiología , Regiones Promotoras Genéticas/fisiología , Transducción de Señal/fisiología , Animales , Proteínas de Ciclo Celular/inmunología , Células Cultivadas , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Neutrófilos/citología , Transporte de Proteínas , Elongación de la Transcripción GenéticaRESUMEN
Differentiating neutrophils undergo large-scale changes in nuclear morphology. How such alterations in structure are established and modulated upon exposure to microbial agents is largely unknown. Here, we found that prior to encounter with bacteria, an armamentarium of inflammatory genes was positioned in a transcriptionally passive environment suppressing premature transcriptional activation. Upon microbial exposure, however, human neutrophils rapidly (<3 h) repositioned the ensemble of proinflammatory genes toward the transcriptionally permissive compartment. We show that the repositioning of genes was closely associated with the swift recruitment of cohesin across the inflammatory enhancer landscape, permitting an immediate transcriptional response upon bacterial exposure. We found that activated enhancers, marked by increased deposition of H3K27Ac, were highly enriched for cistromic elements associated with PU.1, CEBPB, TFE3, JUN, and FOSL2 occupancy. These data reveal how upon microbial challenge the cohesin machinery is recruited to an activated enhancer repertoire to instruct changes in chromatin folding, nuclear architecture, and to activate an inflammatory gene program.
Asunto(s)
Núcleo Celular/inmunología , Cromatina/inmunología , Infecciones por Escherichia coli/inmunología , Neutrófilos/inmunología , Activación Transcripcional/genética , Activación Transcripcional/inmunología , Células Cultivadas , Escherichia coli , Histonas/metabolismo , HumanosRESUMEN
Early B cell development is orchestrated by the combined activities of the transcriptional regulators E2A, EBF1, Foxo1 and Ikaros. However, how the genome-wide binding patterns of these regulators are modulated during B lineage development remains to be determined. Here we found that in lymphoid progenitor cells, the chromatin remodeler Brg1 specified the B cell fate. In committed pro-B cells, Brg1 regulated contraction of the locus encoding the immunoglobulin heavy chain (Igh) and controlled expression of the gene encoding the transcription factor c-Myc (Myc) to modulate the expression of genes encoding products that regulate ribosome biogenesis. In committed pro-B cells, Brg1 suppressed a pre-B lineage-specific pattern of gene expression. Finally, we found that Brg1 acted mechanistically to establish B cell fate and modulate cell growth by facilitating access of lineage-specific transcription factors to enhancer repertoires.
Asunto(s)
Linfocitos B/inmunología , Proliferación Celular , ADN Helicasas/inmunología , Elementos de Facilitación Genéticos/inmunología , Proteínas Nucleares/inmunología , Factores de Transcripción/inmunología , Animales , Linfocitos B/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Células Cultivadas , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/inmunología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Elementos de Facilitación Genéticos/genética , Citometría de Flujo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Pesadas de Inmunoglobulina/metabolismo , Hibridación Fluorescente in Situ , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Precursoras de Linfocitos B/inmunología , Células Precursoras de Linfocitos B/metabolismo , Unión Proteica/inmunología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/inmunología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Immune cell fate decisions are regulated, at least in part, by nuclear architecture. Here, we outline how nuclear architecture instructs mammalian polymorphonuclear cell differentiation. We discuss how in neutrophils loop extrusion mechanisms regulate the expression of genes involved in phagocytosis and shape nuclear morphology. We propose that diminished loop extrusion programs also orchestrate eosinophil and basophil differentiation. We portray a new model in which competitive physical forces, loop extrusion, and phase separation, instruct mononuclear versus polymorphonuclear cell fate decisions. We posit that loop extrusion programs instruct the spatial organization of cytoplasmic organelles, including neutrophil granules, mitochondria, and endoplasmic reticulum. Finally, we suggest that changing loop extrusion programs might allow the engineering of new nuclear shapes and artificial cytoplasmic architectures.
RESUMEN
The genome is organized into topologically associated domains (TADs) that enclose smaller subTADs. Here, we identify and characterize an enhancer that is located in the middle of the V gene region of the immunoglobulin kappa light chain (Igκ) locus that becomes active preceding the stage at which this locus undergoes V(D)J recombination. This enhancer is a hub of long-range chromatin interactions connecting subTADs in the V gene region with the recombination center at the J genes. Deletion of this element results in a highly altered long-range chromatin interaction pattern across the locus and, importantly, affects individual V gene utilization locus-wide. These results indicate the existence of an enhancer-dependent framework in the Igκ locus and further suggest that the composition of the diverse antibody repertoire is regulated in a subTAD-specific manner. This enhancer thus plays a structural role in orchestrating the proper folding of the Igκ locus in preparation for V(D)J recombination.
Asunto(s)
Diversidad de Anticuerpos , Núcleo Celular/inmunología , Elementos de Facilitación Genéticos , Reordenamiento Génico de Linfocito B , Cadenas kappa de Inmunoglobulina/inmunología , Células Precursoras de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Animales , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Forma del Núcleo Celular , Ensamble y Desensamble de Cromatina , Genotipo , Células HEK293 , Humanos , Cadenas kappa de Inmunoglobulina/química , Cadenas kappa de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Células Precursoras de Linfocitos B/metabolismo , Conformación Proteica , Receptores de Antígenos de Linfocitos B/química , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Relación Estructura-ActividadRESUMEN
Recent studies showed an interphase chromosome architecture-a specific coiled nucleosome structure-derived from cryopreserved EM tomograms, and dispersed throughout the nucleus. The images were computationally processed to fill in the missing wedges of data caused by incomplete tomographic tilts. The resulting structures increased z-resolution enabling an extension of the proposed architecture to that of mitotic chromosomes. Here, we provide additional insights into the chromosome architecture that was recently published [M. Elbaum et al., Proc. Natl. Acad. Sci. U.S.A. 119, e2119101119 (2022)]. We build on the defined chromosomes time-dependent structures in an effort to probe their dynamics. Variants of the coiled chromosome structures, possibly further defining specific regions, are discussed. We propose, based on generalized specific uncoiling of mitotic chromosomes in telophase, large-scale reorganization of interphase chromosomes. Chromosome territories, organized as micron-sized small patches, are constructed, satisfying complex volume considerations. Finally, we unveiled the structures of replicated coiled chromosomes, still attached to centromeres, as part of chromosome architecture.
Asunto(s)
Interfase , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/genética , Interfase/genética , Humanos , Ciclo Celular/genética , Cromosomas/genética , Mitosis , Centrómero/genética , Centrómero/metabolismoRESUMEN
Helix-loop-helix (HLH) proteins are dimeric transcription factors that control lineage- and developmental-specific gene programs. Genes encoding for HLH proteins arose in unicellular organisms >600 million years ago and then duplicated and diversified from ancestral genes across the metazoan and plant kingdoms to establish multicellularity. Hundreds of HLH proteins have been identified with diverse functions in a wide variety of cell types. HLH proteins orchestrate lineage specification, commitment, self-renewal, proliferation, differentiation, and homing. HLH proteins also regulate circadian clocks, protect against hypoxic stress, promote antigen receptor locus assembly, and program transdifferentiation. HLH proteins deposit or erase epigenetic marks, activate noncoding transcription, and sequester chromatin remodelers across the chromatin landscape to dictate enhancer-promoter communication and somatic recombination. Here the evolution of HLH genes, the structures of HLH domains, and the elaborate activities of HLH proteins in multicellular life are discussed.
Asunto(s)
Evolución Molecular , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula/genética , Elementos de Facilitación Genéticos/fisiología , Regulación del Desarrollo de la Expresión Génica , Secuencias Hélice-Asa-Hélice/fisiología , Regiones Promotoras Genéticas/fisiologíaRESUMEN
Regulatory T (Treg) cells suppress the development of inflammatory disease, but our knowledge of transcriptional regulators that control this function remains incomplete. Here we show that expression of Id2 and Id3 in Treg cells was required to suppress development of fatal inflammatory disease. We found that T cell antigen receptor (TCR)-driven signaling initially decreased the abundance of Id3, which led to the activation of a follicular regulatory T (TFR) cell-specific transcription signature. However, sustained lower abundance of Id2 and Id3 interfered with proper development of TFR cells. Depletion of Id2 and Id3 expression in Treg cells resulted in compromised maintenance and localization of the Treg cell population. Thus, Id2 and Id3 enforce TFR cell checkpoints and control the maintenance and homing of Treg cells.
Asunto(s)
Inflamación/inmunología , Proteína 2 Inhibidora de la Diferenciación/inmunología , Proteínas Inhibidoras de la Diferenciación/inmunología , Linfocitos T Reguladores/inmunología , Animales , Secuencia de Bases , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Movimiento Celular/inmunología , Proliferación Celular , Femenino , Factores de Transcripción Forkhead/biosíntesis , Regulación de la Expresión Génica/inmunología , Proteínas Fluorescentes Verdes/genética , Inflamación/genética , Proteína 2 Inhibidora de la Diferenciación/biosíntesis , Proteína 2 Inhibidora de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/biosíntesis , Proteínas Inhibidoras de la Diferenciación/genética , Interleucina-10/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/inmunología , Receptores CXCR5/biosíntesis , Análisis de Secuencia de ARNRESUMEN
Despite considerable research connecting cellular metabolism with differentiation decisions, the underlying mechanisms that translate metabolite-sensitive activities into unique gene programs are still unclear. We found that aspects of the interleukin-2 (IL-2)-sensitive effector gene program in CD4+ and CD8+ T cells in type 1 conditions (Th1) were regulated by glutamine and alpha-ketoglutarate (αKG)-induced events, in part through changes in DNA and histone methylation states. We further identified a mechanism by which IL-2- and αKG-sensitive metabolic changes regulated the association of CCCTC-binding factor (CTCF) with select genomic sites. αKG-sensitive CTCF sites were often associated with loci containing IL-2- and αKG-sensitive genome organization patterns and gene expression in T cells. IL-2- and αKG-sensitive CTCF sites in T cells were also associated with genes from developmental pathways that had αKG-sensitive expression in embryonic stem cells. The data collectively support a mechanism wherein CTCF serves to translate αKG-sensitive metabolic changes into context-dependent differentiation gene programs.
Asunto(s)
Diferenciación Celular , Interleucina-2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas Represoras/metabolismo , Células TH1/inmunología , Animales , Factor de Unión a CCCTC , Diferenciación Celular/genética , Células Cultivadas , Microambiente Celular , Metilación de ADN , Femenino , Regulación de la Expresión Génica , Glutamina/metabolismo , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Represoras/genéticaRESUMEN
Innate and adaptive lymphoid development is orchestrated by the activities of E proteins and their antagonist Id proteins, but how these factors regulate early T cell progenitor (ETP) and innate lymphoid cell (ILC) development remains unclear. Using multiple genetic strategies, we demonstrated that E proteins E2A and HEB acted in synergy in the thymus to establish T cell identity and to suppress the aberrant development of ILCs, including ILC2s and lymphoid-tissue-inducer-like cells. E2A and HEB orchestrated T cell fate and suppressed the ILC transcription signature by activating the expression of genes associated with Notch receptors, T cell receptor (TCR) assembly, and TCR-mediated signaling. E2A and HEB acted in ETPs to establish and maintain a T-cell-lineage-specific enhancer repertoire, including regulatory elements associated with the Notch1, Rag1, and Rag2 loci. On the basis of these and previous observations, we propose that the E-Id protein axis specifies innate and adaptive lymphoid cell fate.
Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Inmunomodulación , Subgrupos Linfocitarios/inmunología , Timocitos/inmunología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/inmunología , Análisis por Conglomerados , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Inmunofenotipificación , Proteína 2 Inhibidora de la Diferenciación/genética , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Subgrupos Linfocitarios/citología , Subgrupos Linfocitarios/metabolismo , Células Progenitoras Linfoides/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Timocitos/citología , Timocitos/metabolismo , TranscriptomaRESUMEN
Earlier studies have identified transcription factors that specify B-cell fate, but the underlying mechanisms remain to be revealed. Two new studies by Miyai and colleagues (pp. 112-126) and Li and colleagues (pp. 96-111) in this issue of Genes & Development provide new and unprecedented insights into the genetic and epigenetic mechanisms that establish B-cell identity.
Asunto(s)
Linfocitos B/inmunología , Transactivadores , Diferenciación Celular , Activación de Linfocitos , Factores de TranscripciónRESUMEN
Cryoelectron tomography of the cell nucleus using scanning transmission electron microscopy and deconvolution processing technology has highlighted a large-scale, 100- to 300-nm interphase chromosome structure, which is present throughout the nucleus. This study further documents and analyzes these chromosome structures. The paper is divided into four parts: 1) evidence (preliminary) for a unified interphase chromosome structure; 2) a proposed unified interphase chromosome architecture; 3) organization as chromosome territories (e.g., fitting the 46 human chromosomes into a 10-µm-diameter nucleus); and 4) structure unification into a polytene chromosome architecture and lampbrush chromosomes. Finally, the paper concludes with a living light microscopy cell study showing that the G1 nucleus contains very similar structures throughout. The main finding is that this chromosome structure appears to coil the 11-nm nucleosome fiber into a defined hollow structure, analogous to a Slinky helical spring [https://en.wikipedia.org/wiki/Slinky; motif used in Bowerman et al., eLife 10, e65587 (2021)]. This Slinky architecture can be used to build chromosome territories, extended to the polytene chromosome structure, as well as to the structure of lampbrush chromosomes.