Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(33): e2203287119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939711

RESUMEN

Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO2) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation-based therapies.


Asunto(s)
Terapia por Estimulación Eléctrica , Neuroestimuladores Implantables , Nanoestructuras , Semiconductores , Compuestos Inorgánicos de Carbono/química , Terapia por Estimulación Eléctrica/instrumentación , Membranas Artificiales , Compuestos de Silicona/química , Dióxido de Silicio/química
2.
Anal Chem ; 96(9): 3925-3932, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38346322

RESUMEN

Microfluidic particle and cell manipulation techniques possess many potentials for biomedicine and healthcare. Many techniques have been developed based on active (e.g., electrical, magnetic, acoustic, and thermal) force fields and passive hydrodynamic forces (e.g., inertial and elastic lift forces). However, techniques based on a single active or passive manipulating physics cannot always meet the demands, and combining multiple physics becomes a promising strategy to promote technique flexibility and versatility. In this work, we explored the physical coupling of magnetophoresis with the elastic and inertial (i.e., elasto-inertial) lift forces for the manipulation of microparticles. Particle lateral migration was studied in a coflowing configuration of viscoelastic ferrofluid/water (sample/sheath). The particles were suspended in the viscoelastic ferrofluid and confined near the channel sidewall by a sheath flow. The coordination of magnetophoresis and elasto-inertial lift forces promoted the cross-stream migration of particles. Besides, we investigated the effect of the flow rate ratio and total flow rate on the migration of particles. Furthermore, we also investigated the effects of fluid elasticity in sample and sheath flows on particle migration using different combinations of sample and sheath flows, including Newtonian ferrofluid/water, Newtonian ferrofluid/viscoelastic fluid, and viscoelastic ferrofluid/viscoelastic coflows. Experimental results demonstrated and ascertained the promoted particle lateral migration in the PEO-based ferrofluid/water coflow. Finally, we demonstrate the proof-of-concept application of the physical coupling strategy for cell cross-stream migration and solution exchange. We envisage that this novel multiphysical coupling scheme has great potential for the flexible and versatile manipulation of microparticles and cells.

3.
Small ; : e2311645, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659182

RESUMEN

Understanding the growth of mesoporous crystalline materials, such as mesoporous metals, on different substrates can provide valuable insights into the crystal growth dynamics and the redox reactions that influence their electrochemical sensing performance. Herein, it is demonstrated how the amorphous nature of the glass substrate can suppress the typical <111> oriented growth in mesoporous Au (mAu) films. The suppressed <111> growth is manifested as an accumulation of strain, leading to the generation of abundant surface defects, which are beneficial for enhancing the electrochemical activity. The fine structuring attained enables dramatically accelerated diffusion and enhances the electrochemical sensing performance for disease-specific biomolecules. As a proof-of-concept, the as-fabricated glass-grown mAu film demonstrates high sensitivity in electrochemical detection of SARS-CoV-2-specific RNA with a limit of detection (LoD) as low as 1 attomolar (aM).

4.
Biomed Microdevices ; 26(2): 24, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709370

RESUMEN

We report the fabrication and characterisation of magnetic liquid beads with a solid magnetic shell and liquid core using microfluidic techniques. The liquid beads consist of a fluorinated oil core and a polymer shell with magnetite particles. The beads are generated in a flow-focusing polydimethylsiloxane (PDMS) device and cured by photo polymerisation. We investigated the response of the liquid beads to an external magnetic field by characterising their motion towards a permanent magnet. Magnetic sorting of liquid beads in a channel was achieved with 90% efficiency. The results show that the liquid beads can be controlled magnetically and have potential applications in digital microfluidics including nucleic acid amplification, drug delivery, cell culture, sensing, and tissue engineering. The present paper also discusses the magnetophoretic behaviour of the liquid bead by varying its mass and magnetite concentration in the shell. We also demonstrated the two-dimensional self-assembly of magnetic liquid beads for potential use in digital polymerase chain reaction and digital loop mediated isothermal amplification.


Asunto(s)
Dimetilpolisiloxanos , Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas/instrumentación , Campos Magnéticos , Microesferas
5.
Trends Biochem Sci ; 44(5): 433-452, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30686572

RESUMEN

With revolutionary advances in next-generation sequencing, the human transcriptome has been comprehensively interrogated. These discoveries have highlighted the emerging functional and regulatory roles of a large fraction of RNAs suggesting the potential they might hold as stable and minimally invasive disease biomarkers. Although a plethora of molecular-biology- and biosensor-based RNA-detection strategies have been developed, clinical application of most of these is yet to be realized. Multifunctional nanomaterials coupled with sensitive and robust electrochemical readouts may prove useful in these applications. Here, we summarize the major contributions of engineered nanomaterials-based electrochemical biosensing strategies for the analysis of miRNAs. With special emphasis on nanostructure-based detection, this review also chronicles the needs and challenges of miRNA detection and provides a future perspective on the presented strategies.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , MicroARNs/análisis , Nanoestructuras/química , Humanos
6.
Small ; 19(15): e2205856, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36631277

RESUMEN

Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Humanos , Nanomedicina , Biopsia Líquida/métodos , Neoplasias/diagnóstico , Nanotecnología
7.
Small ; : e2303435, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37292037

RESUMEN

Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.

8.
Small ; 19(9): e2204946, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538749

RESUMEN

Flexible and implantable electronics hold tremendous promises for advanced healthcare applications, especially for physiological neural recording and modulations. Key requirements in neural interfaces include miniature dimensions for spatial physiological mapping and low impedance for recognizing small biopotential signals. Herein, a bottom-up mesoporous formation technique and a top-down microlithography process are integrated to create flexible and low-impedance mesoporous gold (Au) electrodes for biosensing and bioimplant applications. The mesoporous architectures developed on a thin and soft polymeric substrate provide excellent mechanical flexibility and stable electrical characteristics capable of sustaining multiple bending cycles. The large surface areas formed within the mesoporous network allow for high current density transfer in standard electrolytes, highly suitable for biological sensing applications as demonstrated in glucose sensors with an excellent detection limit of 1.95 µm and high sensitivity of 6.1 mA cm-2  µM-1 , which is approximately six times higher than that of benchmarking flat/non-porous films. The low impedance of less than 1 kΩ at 1 kHz in the as-synthesized mesoporous electrodes, along with their mechanical flexibility and durability, offer peripheral nerve recording functionalities that are successfully demonstrated in vivo. These features highlight the new possibilities of our novel flexible nanoarchitectonics for neuronal recording and modulation applications.


Asunto(s)
Técnicas Biosensibles , Electrónica , Electrodos , Monitoreo Fisiológico , Porosidad
9.
Analyst ; 148(17): 4064-4071, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37469285

RESUMEN

Droplet-based microfluidics and digital polymerase chain reaction (PCR) hold significant promise for accurately detecting and quantifying pathogens. However, existing droplet-based digital PCR (ddPCR) applications have been relying exclusively on single emulsion droplets. Single emulsion droplets may not be suitable for applications such as identifying the source and pathways of water contamination where the templates must be protected against harsh environmental conditions. In this study, we developed a core-shell particle to serve as a protective framework for DNAs, with potential applications in digital PCR. We employed a high-throughput and facile flow-focusing microfluidic device to generate liquid beads, core-shell particles with liquid cores, which provided precise control over process parameters and consequently particle characteristics. Notably, the interfacial interaction between the core and shell liquids could be adjusted without adding surfactants to either phase. As maintaining stability is essential for ensuring the accuracy of digital PCR (dPCR), we investigated parameters that affect the stability of core-shell droplets, including surfactants in the continuous phase and core density. As a proof of concept, we encapsulated a series of human faecal DNA samples in the core-shell droplets and the subsequent liquid beads. The core-shell particles ensure contamination-free encapsulation of DNA in the core. The volume of the core droplets containing the PCR mixture is only 0.12 nL. Our experimental results indicate that the liquid beads formulated using our technique can amplify the encapsulated DNA and be used for digital PCR without interfering with the fluorescence signal. We successfully demonstrated the ability to detect and quantify DNA under varying concentrations. These findings provide new insights and a step change in digital PCR that could benefit various applications, including the detection and tracking of environmental pollution.


Asunto(s)
ADN , Microfluídica , Humanos , Emulsiones , Reacción en Cadena de la Polimerasa/métodos , ADN/genética , Dispositivos Laboratorio en un Chip
10.
Nanotechnology ; 35(5)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37863070

RESUMEN

Currently, the treatment for acute disease encompasses the use of various biological drugs (BDs). However, the utilisation of BDs is limited due to their rapid clearance and non-specific accumulation in unwanted sites, resulting in a lack of therapeutic efficacy together with adverse effects. While nanoparticles are considered good candidates to resolve this problem, some available polymeric carriers for BDs were mainly designed for long-term sustained release. Thus, there is a need to explore new polymeric carriers for the acute disease phase that requires sustained release of BDs over a short period, for example for thrombolysis and infection. Poly(succinimide)-oleylamine (PSI-OA), a biocompatible polymer with a tuneable dissolution profile, represents a promising strategy for loading BDs for sustained release within a 48-h period. In this work, we developed a two-step nanoprecipitation method to load the model protein (e.g. bovine serum albumin and lipase) on PSI-OA. The characteristics of the nanoparticles were assessed based on various loading parameters, such as concentration, stirring rate, flow rate, volume ratio, dissolution and release of the protein. The optimised NPs displayed a size within 200 nm that is suitable for vasculature delivery to the target sites. These findings suggest that PSI-OA can be employed as a carrier for BDs for applications that require sustained release over a short period.


Asunto(s)
Aminas , Portadores de Fármacos , Nanopartículas , Humanos , Preparaciones de Acción Retardada , Enfermedad Aguda , Polímeros , Succinimidas , Tamaño de la Partícula
11.
J Nanobiotechnology ; 21(1): 411, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936115

RESUMEN

The rapid advancement of wearable biosensors has revolutionized healthcare monitoring by screening in a non-invasive and continuous manner. Among various sensing techniques, field-effect transistor (FET)-based wearable biosensors attract increasing attention due to their advantages such as label-free detection, fast response, easy operation, and capability of integration. This review explores the innovative developments and applications of FET-based wearable biosensors for healthcare monitoring. Beginning with an introduction to the significance of wearable biosensors, the paper gives an overview of structural and operational principles of FETs, providing insights into their diverse classifications. Next, the paper discusses the fabrication methods, semiconductor surface modification techniques and gate surface functionalization strategies. This background lays the foundation for exploring specific FET-based biosensor designs, including enzyme, antibody and nanobody, aptamer, as well as ion-sensitive membrane sensors. Subsequently, the paper investigates the incorporation of FET-based biosensors in monitoring biomarkers present in physiological fluids such as sweat, tears, saliva, and skin interstitial fluid (ISF). Finally, we address challenges, technical issues, and opportunities related to FET-based biosensor applications. This comprehensive review underscores the transformative potential of FET-based wearable biosensors in healthcare monitoring. By offering a multidimensional perspective on device design, fabrication, functionalization and applications, this paper aims to serve as a valuable resource for researchers in the field of biosensing technology and personalized healthcare.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/métodos , Sudor/química , Saliva , Biomarcadores/análisis
12.
Small ; 18(4): e2105748, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874620

RESUMEN

Transformation of conventional 2D platforms into unusual 3D configurations provides exciting opportunities for sensors, electronics, optical devices, and biological systems. Engineering material properties or controlling and modulating stresses in thin films to pop-up 3D structures out of standard planar surfaces has been a highly active research topic over the last decade. Implementation of 3D micro and nanoarchitectures enables unprecedented functionalities including multiplexed, monolithic mechanical sensors, vertical integration of electronics components, and recording of neuron activities in 3D organoids. This paper provides an overview on stress engineering approaches to developing 3D functional microsystems. The paper systematically presents the origin of stresses generated in thin films and methods to transform a 2D design into an out-of-plane configuration. Different types of 3D micro and nanostructures, along with their applications in several areas are discussed. The paper concludes with current technical challenges and potential approaches and applications of this fast-growing research direction.


Asunto(s)
Electrónica , Nanoestructuras , Nanoestructuras/química , Organoides
13.
Biomed Microdevices ; 24(2): 15, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277762

RESUMEN

Keeping the oxygen concentration at the desired physiological limits is a challenging task in cellular microfluidic devices. A good knowledge of affecting parameters would be helpful to control the oxygen delivery to cells. This study aims to provide a fundamental understanding of oxygenation process within a hydrogel-based microfluidic device considering simultaneous mass transfer, medium flow, and cellular consumption. For this purpose, the role of geometrical and hydrodynamic properties was numerically investigated. The results are in good agreement with both numerical and experimental data in the literature. The obtained results reveal that increasing the microchannel height delays the oxygen depletion in the absence of media flow. We also observed that increasing the medium flow rate increases the oxygen concentration in the device; however, it leads to high maximum shear stress. A novel pulsatile medium flow injection pattern is introduced to reduce detrimental effect of the applied shear stress on the cells.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Técnicas de Cultivo de Célula , Medios de Cultivo , Oxígeno , Estrés Mecánico
14.
Biomed Microdevices ; 24(4): 40, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36355223

RESUMEN

Core-shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the performance and reliability requirements, including accurate size control with tunability and monodispersity. Herein, we present a facile technique to generate surfactant-free core-shell droplets with an aqueous core in a microfluidic device. We demonstrate that the geometry of the core-shell droplets can be precisely adjusted by the flow rates of the droplet components. As the shell is polymerized after the formation of the core-shell droplets, the resulting solid microparticles ensure the encapsulation of the aqueous core and prevent undesired release. We then study experimentally and theoretically the behaviour of resultant microparticles under heating and compression. The microparticles demonstrate excellent stability under both thermal and mechanical loads. We show that the rupture force can be quantitatively predicted from the shell thickness relative to the outer shell radius. Experimental results and theoretical predictions confirm that the rupture force scales directly with the shell thickness.


Asunto(s)
Sistemas de Liberación de Medicamentos , Agua , Microesferas , Reproducibilidad de los Resultados , Polimerizacion
15.
Analyst ; 147(16): 3732-3740, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35833583

RESUMEN

Exosomes are vesicles released by healthy and cancer cells into the extracellular matrix and bodily fluid. Cancer cell-derived exosomes have attracted much attention in early-stage detection and prognostication of treatment response. Thus, detecting exosomes is of great interest to biology and medicine. However, many conventional detection methods require high-cost equipment and centralized laboratory facilities, making diagnostics inaccessible in limited-resource settings. This study reports a proof-of-concept low-cost electrochemical paper-based analytical device to quantify both the total bulk and cancer cell-derived exosomes in cell culture media. The device employs a sandwich immune assay design, where exosomes are initially captured using the electrode-bound generic antibodies (i.e. CD9) and subsequently detected via ovarian cancer-specific CA125 antibodies. Our proposed device quantifies the total bulk exosome concentration with a detection limit of 9.3 × 107 exosomes per mL and ovarian cancer cell-derived exosomes with a detection limit of 7.1 × 108 exosomes per mL, with a relative standard deviation of <10% (n = 3). We suggest that this low-cost and simple electrochemical paper-based device could be an alternative tool for detecting disease-specific exosomes in biological samples with the potential to be further developed for point-of-care diagnosis.


Asunto(s)
Exosomas , Neoplasias Ováricas , Anticuerpos , Electrodos , Femenino , Humanos , Neoplasias Ováricas/diagnóstico
16.
Angew Chem Int Ed Engl ; 61(14): e202114729, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35080101

RESUMEN

The synthesis of highly crystalline mesoporous materials is key to realizing high-performance chemical and biological sensors and optoelectronics. However, minimizing surface oxidation and enhancing the domain size without affecting the porous nanoarchitecture are daunting challenges. Herein, we report a hybrid technique that combines bottom-up electrochemical growth with top-down plasma treatment to produce mesoporous semiconductors with large crystalline domain sizes and excellent surface passivation. By passivating unsaturated bonds without incorporating any chemical or physical layers, these films show better stability and enhancement in the optoelectronic properties of mesoporous copper telluride (CuTe) with different pore diameters. These results provide exciting opportunities for the development of long-term, stable, and high-performance mesoporous semiconductor materials for future technologies.

17.
Electrophoresis ; 42(21-22): 2230-2237, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34396540

RESUMEN

Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 µm polystyrene particles, 5 µm polystyrene particles, 5 µm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.


Asunto(s)
Técnicas Analíticas Microfluídicas , Elasticidad , Eritrocitos , Dispositivos Laboratorio en un Chip , Microfluídica , Poliestirenos , Viscosidad
18.
Chemphyschem ; 22(1): 99-105, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33164308

RESUMEN

Liquid marbles are a promising microreactor platform that recently attracts significant research interest owing to their ability to accommodate a wide range of micro reactions. However, the use of destructive and ex-situ methods to monitor reactions impairs the potential of liquid-marble-based microreactors. This paper proposes a non-destructive, in situ, and cost-effective digital-imaging-based colourimetric monitoring method for transparent liquid marbles, using the enzymatic hydrolysis of starch as an illustrative example. The colourimetric reaction between starch and iodine produces a complex that exhibits a dark blue colour. We found that the absorbance of red channel of digital images showed a linear relationship with starch concentration with high sensitivity and repeatability. This digital-imaging-based colourimetric method was used to study the hydrolysis of starch by α-amylase. The results show high accuracy and applicability of first-order kinetics for this reaction. The demonstration of digital-imaging-based colourimetry indicates the potential of liquid marble-based microreactors.


Asunto(s)
Carbonato de Calcio/metabolismo , Colorimetría , alfa-Amilasas/metabolismo , Carbonato de Calcio/química , Hidrólisis , Almidón/química , Almidón/metabolismo
19.
Soft Matter ; 17(15): 4069-4076, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33725064

RESUMEN

A liquid marble (LM) is a droplet coated with microparticles that isolate the liquid interior from its surroundings, making it perfectly non-wetting. This attractive feature allows the LM to perform useful tasks such as coalescence, targeted delivery, and controlled release. The non-wetting characteristic also allows the LM to float on a carrier liquid. The growing number of applications in digital microfluidics requires further insights into the fundamental properties of a LM such as its effective surface tension. Although the coating provides the LM with various desirable characteristics, its random construction presents a major obstacle to accurate optical analysis. This paper presents a novel method to measure the effective surface tension of a floating LM using X-ray imaging and curve fitting procedures. X-ray imaging reveals the true LM liquid-air interface hidden by the coating particles. Analysis of this interface showed that the effective surface tension of a LM is not significantly different from that of its liquid content. This indicates that the particle coating might not have significantly altered the behaviour of the liquid interface. We also found that our method is sensitive enough to detect the variations across individual LMs.

20.
Nano Lett ; 20(5): 3478-3484, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32271023

RESUMEN

Nanoblisters have attracted attention due to their ability to controllably modulate the properties of two-dimensional materials. The accurate measurement or estimation of their properties is nontrivial and largely based on Hencky's theory. However, these estimates require a priori knowledge of material properties and propagate large errors. Here we show, through a systematic atomic force microscopy study, several strategies that lead to vastly enhanced characterization of nanoblisters. First, we find that nanoblisters may contain both liquid and gas, resolving an ongoing debate in the literature. Second, we demonstrate how to definitively determine the membrane thickness of a nanoblister and show that Hencky's theory can only reliably predict membrane thicknesses for small aspect ratios and small membrane thicknesses. Third, we develop a novel technique to measure the internal pressures of nanoblisters, which quantitatively agrees with Hencky's theory but carries a 1 order smaller propagated error.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA