Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38836456

RESUMEN

A bipartite system is defined as two microscopic entities being able to exchange energy. When excited by light, the complete optical response functions at first (polarizabilities) and second orders (first hyperpolarizabilities) of such a system are determined using the diagrammatic theory of optics. The generality of the method is ensured by the free choice of light-matter and matter-matter interaction Hamiltonians and by the arbitrary number of quanta involved in the energy exchange. In the dipolar approximation, the optical response functions of the system (i.e., of the interacting entities) are linked to the responses of the interaction-free entities by transfer matrices. These universal matrices identically modify the optical response functions at all orders in the electromagnetic field, allowing the implementation of matter-matter interactions in higher-order processes, such as stimulated or spontaneous Raman scattering and four-wave mixing. This formalism is then applied to various composite systems: dimers, multimers and lattices of nanoparticles and molecules, dense molecular layers, and substrate-induced image dipoles.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38193549

RESUMEN

Second-order nonlinear processes like Sum-Frequency Generation (SFG) are essentially defined in the electric dipolar approximation. However, when dealing with the SFG responses of bulk, big nanoparticles, highly symmetric objects, or chiral species, magnetic and quadrupolar contributions play a significant role in the process too. We extend the diagrammatic theory for linear and nonlinear optics to include these terms for single objects as well as for multipartite systems in interaction. Magnetic and quadrupolar quantities are introduced in the formalism as incoming fields, interaction intermediates, and sources of optical nonlinearity. New response functions and complex nonlinear processes are defined, and their symmetry properties are analyzed. This leads to a focus on several kinds of applications involving nanoscale coupled objects, symmetric molecular systems, and chiral materials, both in line with the existing literature and opening new possibilities for original complex systems.

3.
Chemphyschem ; 21(9): 853-862, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32084295

RESUMEN

As luminescent quantum dots (QDs) are known to aggregate themselves through their chemical activation by carbodiimide chemistry and their functionalization with biotin molecules, we investigate both effects on the fluorescence properties of CdTe QDs and their impact on Förster Resonant Energy Transfer (FRET) occurring with fluorescent streptavidin molecules (FA). First, the QDs fluorescence spectrum undergoes significant changes during the activation step which are explained thanks to an original analytical model based on QDs intra-aggregate screening and inter-QDs FRET. We also highlight the strong influence of biotin in solution on FRET efficiency, and define the experimental conditions maximizing the FRET. Finally, a free-QD-based system and an aggregated-QD-based system are studied in order to compare their detection threshold. The results show a minimum concentration limit of 80 nM in FA for the former while it is equal to 5 nM for the latter, favouring monitored aggregation in the design of QDs-based biosensors.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Puntos Cuánticos/química , Técnicas Biosensibles/métodos , Biotina/química , Carbodiimidas/química , Fluorescencia , Luminiscencia , Estreptavidina/química
4.
Phys Chem Chem Phys ; 22(37): 21000-21004, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32959825

RESUMEN

In this paper, we report on the study of a novel type of substrate based on a highly crystalline ZnO film photo-irradiated using UV for enhancing the Raman signal. This effect is called photo-induced enhanced Raman spectroscopy (PIERS). This PIERS substrate is composed of a photo-irradiated thin ZnO film on which gold nanoparticles are deposited and allows large photo-induced SERS enhancement to be obtained for the chemical detection of small molecules compared to normal SERS signals. This photo-induced SERS enhancement is due to increasing electron density of the gold nanoparticles and charge transfer mechanisms. Here, we achieve a high quality PIERS substrate, the signal of which exhibits weaker fluctuations and a similar or greater gain (up to 7.52) than those reported in the current literature. Henceforth, these PIERS substrates can be of great potential for industrial applications.

5.
Phys Chem Chem Phys ; 19(39): 26559-26565, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28930309

RESUMEN

We investigate the effects of the concentration of CdTe quantum dots (QDs) on their fluorescence in water. The emission spectra, acquired in right angle geometry, exhibit highly variable shapes. The measurements evidence a critical value of the concentration beyond which the intensity and the spectral bandwidth decrease and the fluorescence maximum is redshifted. To account for these observations, we develop a model based on the primary and secondary inner filter effects. The accuracy of the model ensures that the concentration dependent behaviour of QD fluorescence is completely due to inner filter effects. This result is all the more interesting because it precludes the assumption of dynamic quenching. As a matter of fact, the decrease of the emission intensity is not a consequence of collisional quenching but an effect of competition between fluorescence and absorption. We even show that this phenomenon is linked not only to the QD concentration but also to the geometric configuration of the setup. Hence, our analytical model can be easily adapted to every fluorescence spectroscopy configuration to quantitatively predict or correct inner filter effects in the case of QDs or any fluorophore, and thus improve the handling of fluorescence spectroscopy for highly concentrated solutions.

6.
Nanoscale ; 15(6): 2614-2623, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36648212

RESUMEN

While colloidal quantum dots (QDs) are commonly used as fluorescent donors within biosensors based on Förster resonant energy transfer (FRET), they are hesitantly employed as acceptors. On the sole basis of Förster theory and the well-known behaviour of organic dyes, it is often argued that the QD absorption band over the UV-visible range is too wide. Discarding these preconceptions inherited from classical fluorophores, we experimentally examine the FRET process occurring between donor and acceptor CdTe QDs and provide a mathematical description of it. We evidence that the specific features of QDs unexpectedly lead to the enhancement of acceptors' emission (up to +400%), and are thus suitable for the design of highly efficient all-QD based FRET sensors. Our model enables us to identify the critical parameters maximizing the contrast between positive and negative biosensing readouts: the concentrations of donors and acceptors, their spectral overlap, the densities of their excitonic states, their dissipative coupling with the medium and the statistics of QD-QD chemical pairing emerge as subtle and determinant parameters. We relate them quantitatively to the measured QD-QD FRET efficiency and discuss how they must be optimized for biosensing applications.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Transferencia Resonante de Energía de Fluorescencia , Telurio
7.
J Colloid Interface Sci ; 594: 245-253, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765644

RESUMEN

HYPOTHESIS: The fluorescence emission of water-soluble CdTe quantum dots (QDs) capped with mercaptocarboxylic acids (MCAs) is known to be pH-dependent. However, this behaviour is quite different from a study to another, so that literature suffers from a lack of coherence. Here we assume that the QD fluorescence efficiency is actually driven by the acid-base equilibrium of MCA thiol groups, and that light-excited QDs open a non-radiative relaxation path through photoinduced protonation. EXPERIMENTS: We address this issue by examining colloidal CdTe QDs with (time-resolved) fluorescence spectroscopy under various conditions of acidity and light excitation. FINDINGS: It appears that the emission of QDs is quenched below a critical pH value of 6.87, and that light excitation power strengthens this quenching. We thus demonstrate the existence of an additional photochemical process and developed a mathematical modeling accounting for all our experimental results. With only three parameters, it is possible to accurately predict the fluorescence decay of QDs over time, at any pH. Further, we also related the critical pH value of 6.87 to QD surface properties, explaining why observations may differ from a study to another and making the literature much more coherent.

8.
Materials (Basel) ; 12(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871058

RESUMEN

We report on the recent scientific research contribution of non-linear optics based on Sum-Frequency Generation (SFG) spectroscopy as a surface probe of the plasmonic properties of materials. In this review, we present a general introduction to the fundamentals of SFG spectroscopy, a well-established optical surface probe used in various domains of physical chemistry, when applied to plasmonic materials. The interest of using SFG spectroscopy as a complementary tool to surface-enhanced Raman spectroscopy in order to probe the surface chemistry of metallic nanoparticles is illustrated by taking advantage of the optical amplification induced by the coupling to the localized surface plasmon resonance. A short review of the first developments of SFG applications in nanomaterials is presented to span the previous emergent literature on the subject. Afterwards, the emphasis is put on the recent developments and applications of the technique over the five last years in order to illustrate that SFG spectroscopy coupled to plasmonic nanomaterials is now mature enough to be considered a promising research field of non-linear plasmonics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA