Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nat Immunol ; 15(6): 571-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24777532

RESUMEN

Intestinal regulatory T cells (Treg cells) are necessary for the suppression of excessive immune responses to commensal bacteria. However, the molecular machinery that controls the homeostasis of intestinal Treg cells has remained largely unknown. Here we report that colonization of germ-free mice with gut microbiota upregulated expression of the DNA-methylation adaptor Uhrf1 in Treg cells. Mice with T cell-specific deficiency in Uhrf1 (Uhrf1(fl/fl)Cd4-Cre mice) showed defective proliferation and functional maturation of colonic Treg cells. Uhrf1 deficiency resulted in derepression of the gene (Cdkn1a) that encodes the cyclin-dependent kinase inhibitor p21 due to hypomethylation of its promoter region, which resulted in cell-cycle arrest of Treg cells. As a consequence, Uhrf1(fl/fl)Cd4-Cre mice spontaneously developed severe colitis. Thus, Uhrf1-dependent epigenetic silencing of Cdkn1a was required for the maintenance of gut immunological homeostasis. This mechanism enforces symbiotic host-microbe interactions without an inflammatory response.


Asunto(s)
Colitis/inmunología , Colon/inmunología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Epigénesis Genética , Proteínas Nucleares/inmunología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Proteínas Potenciadoras de Unión a CCAAT , Puntos de Control del Ciclo Celular , Proliferación Celular , Células Cultivadas , Clostridium/inmunología , Colitis/genética , Colon/microbiología , Metilación de ADN , Perfilación de la Expresión Génica , Interleucina-2 , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microbiota/inmunología , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño , Simbiosis/inmunología , Ubiquitina-Proteína Ligasas , Regulación hacia Arriba
2.
Nature ; 578(7794): 284-289, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025031

RESUMEN

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders1. Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility2-5, but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Intestinos/fisiología , Neuronas/fisiología , Peristaltismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Femenino , Vida Libre de Gérmenes , Intestinos/inervación , Ligandos , Masculino , Ratones , Vías Nerviosas , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Transcriptoma/genética
3.
J Biol Chem ; 300(6): 107327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679330

RESUMEN

Normal receptor tyrosine kinases (RTKs) need to reach the plasma membrane (PM) for ligand-induced activation, whereas its cancer-causing mutants can be activated before reaching the PM in organelles, such as the Golgi/trans-Golgi network (TGN). Inhibitors of protein export from the endoplasmic reticulum (ER), such as brefeldin A (BFA) and 2-methylcoprophilinamide (M-COPA), can suppress the activation of mutant RTKs in cancer cells, suggesting that RTK mutants cannot initiate signaling in the ER. BFA and M-COPA block the function of ADP-ribosylation factors (ARFs) that play a crucial role in ER-Golgi protein trafficking. However, among ARF family proteins, the specific ARFs inhibited by BFA or M-COPA, that is, the ARFs involved in RTKs transport from the ER, remain unclear. In this study, we showed that M-COPA blocked the export of not only KIT but also PDGFRA/EGFR/MET RTKs from the ER. ER-retained RTKs could not fully transduce anti-apoptotic signals, thereby leading to cancer cell apoptosis. Moreover, a single knockdown of ARF1, ARF3, ARF4, ARF5, or ARF6 could not block ER export of RTKs, indicating that BFA/M-COPA treatment cannot be mimicked by the knockdown of only one ARF member. Interestingly, simultaneous transfection of ARF1, ARF4, and ARF5 siRNAs mirrored the effect of BFA/M-COPA treatment. Consistent with these results, in vitro pulldown assays showed that BFA/M-COPA blocked the function of ARF1, ARF4, and ARF5. Taken together, these results suggest that BFA/M-COPA targets at least ARF1, ARF4, and ARF5; in other words, RTKs require the simultaneous activation of ARF1, ARF4, and ARF5 for their ER export.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Factores de Ribosilacion-ADP , Brefeldino A , Retículo Endoplásmico , Transporte de Proteínas , Humanos , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Retículo Endoplásmico/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Brefeldino A/farmacología , Transporte de Proteínas/efectos de los fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Células HeLa
4.
Int J Cancer ; 152(12): 2580-2593, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36752576

RESUMEN

Despite the effectiveness of imatinib, most gastrointestinal stromal tumors (GISTs) develop resistance to the treatment, mainly due to the reactivation of KIT tyrosine kinase activity. Sunitinib, which inhibits the phosphorylation of KIT and vascular endothelial growth factor (VEGF) receptor, has been established as second-line therapy for GISTs. The recently-developed heat shock protein 90 (HSP90) inhibitor pimitespib (PIM; TAS-116) demonstrated clinical benefits in some clinical trials; however, the effects were limited. The aim of our study was therefore to clarify the effectiveness and mechanism of the combination of PIM with sunitinib for imatinib-resistant GISTs. We evaluated the efficacy and mechanism of the combination of PIM with sunitinib against imatinib-resistant GIST using imatinib-resistant GIST cell lines and murine xenograft models. In vitro analysis demonstrated that PIM and sunitinib combination therapy strongly inhibited growth and induced apoptosis in imatinib-resistant GIST cell lines by inhibiting KIT signaling and decreasing auto-phosphorylated KIT in the Golgi apparatus. In addition, PIM and sunitinib combination therapy enhanced antitumor responses in the murine xenograft models compared to individual therapies. Further analysis of the xenograft models showed that the combination therapy not only downregulated the KIT signaling pathway but also decreased the tumor microvessel density. Furthermore, we found that PIM suppressed VEGF expression in GIST cells by suppressing protein kinase D2 and hypoxia-inducible factor-1 alpha, which are both HSP90 client proteins. In conclusion, the combination of PIM and sunitinib is effective against imatinib-resistant GIST via the downregulation of KIT signaling and angiogenic signaling pathways.


Asunto(s)
Antineoplásicos , Tumores del Estroma Gastrointestinal , Humanos , Animales , Ratones , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Sunitinib/farmacología , Sunitinib/uso terapéutico , Tumores del Estroma Gastrointestinal/patología , Factor A de Crecimiento Endotelial Vascular , Piperazinas/farmacología , Pirimidinas , Resistencia a Antineoplásicos , Antineoplásicos/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
5.
Cancer Sci ; 113(1): 170-181, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34714577

RESUMEN

The aryl hydrocarbon receptor (AHR) pathway modulates the immune system in response to kynurenine, an endogenous tryptophan metabolite. IDO1 and TDO2 catalyze kynurenine production, which promotes cancer progression by compromising host immunosurveillance. However, it is unclear whether the AHR activation regulates the malignant traits of cancer such as metastatic capability or cancer stemness. Here, we carried out systematic analyses of metabolites in patient-derived colorectal cancer spheroids and identified high levels of kynurenine and TDO2 that were positively associated with liver metastasis. In a mouse colon cancer model, TDO2 expression substantially enhanced liver metastasis, induced AHR-mediated PD-L1 transactivation, and dampened immune responses; these changes were all abolished by PD-L1 knockout. In patient-derived cancer spheroids, TDO2 or AHR activity was required for not only the expression of PD-L1, but also for cancer stem cell (CSC)-related characteristics and Wnt signaling. TDO2 was coexpressed with both PD-L1 and nuclear ß-catenin in colon xenograft tumors, and the coexpression of TDO2 and PD-L1 was observed in clinical colon cancer specimens. Thus, our data indicate that the activation of the TDO2-kynurenine-AHR pathway facilitates liver metastasis of colon cancer via PD-L1-mediated immune evasion and maintenance of stemness.


Asunto(s)
Antígeno B7-H1/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias del Colon/patología , Dioxigenasas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Células Madre Neoplásicas/patología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Humanos , Quinurenina , Neoplasias Hepáticas/metabolismo , Ratones , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Escape del Tumor , Regulación hacia Arriba , Vía de Señalización Wnt
6.
Int Immunol ; 32(4): 243-258, 2020 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-31858119

RESUMEN

Secretory immunoglobulin A (SIgA), the most abundant antibody isotype in the body, maintains a mutual relationship with commensal bacteria and acts as a primary barrier at the mucosal surface. Colonization by commensal bacteria induces an IgA response, at least partly through a T-cell-independent process. However, the mechanism underlying the commensal-bacteria-induced T-cell-independent IgA response has yet to be fully clarified. Here, we show that commensal-bacteria-derived butyrate promotes T-cell-independent IgA class switching recombination (CSR) in the mouse colon. Notably, the butyrate concentration in human stools correlated positively with the amount of IgA. Butyrate up-regulated the production of transforming growth factor ß1 and all-trans retinoic acid by CD103+CD11b+ dendritic cells, both of which are critical for T-cell-independent IgA CSR. This effect was mediated by G-protein-coupled receptor 41 (GPR41/FFA3) and GPR109a/HCA2, and the inhibition of histone deacetylase. The butyrate-induced IgA response reinforced the colonic barrier function, preventing systemic bacterial dissemination under inflammatory conditions. These observations demonstrate that commensal-bacteria-derived butyrate contributes to the maintenance of the gut immune homeostasis by facilitating the T-cell-independent IgA response in the colon.


Asunto(s)
Butiratos/farmacología , Colon/efectos de los fármacos , Inmunoglobulina A/inmunología , Linfocitos T/efectos de los fármacos , Animales , Células Cultivadas , Técnicas de Cocultivo , Colon/inmunología , Humanos , Cambio de Clase de Inmunoglobulina/efectos de los fármacos , Cambio de Clase de Inmunoglobulina/inmunología , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Linfocitos T/inmunología
7.
Br J Cancer ; 122(5): 658-667, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31857719

RESUMEN

BACKGROUND: Despite the effectiveness of imatinib mesylate (IM), most gastrointestinal stromal tumours (GISTs) develop IM resistance, mainly due to the additional kinase-domain mutations accompanied by concomitant reactivation of KIT tyrosine kinase. Heat-shock protein 90 (HSP90) is one of the chaperone molecules required for appropriate folding of proteins such as KIT. METHODS: We used a novel HSP90 inhibitor, TAS-116, which showed specific binding to HSP90α/ß with low toxicity in animal models. The efficacy and mechanism of TAS-116 against IM-resistant GIST were evaluated by using IM-naïve and IM-resistant GIST cell lines. We also evaluated the effects of TAS-116 on the other HSP90 client protein, EGFR, by using lung cell lines. RESULTS: TAS-116 inhibited growth and induced apoptosis in both IM-naïve and IM-resistant GIST cell lines with KIT activation. We found KIT was activated mainly in intracellular compartments, such as trans-Golgi cisternae, and TAS-116 reduced autophosphorylated KIT in the Golgi apparatus. In IM-resistant GISTs in xenograft mouse models, TAS-116 caused tumour growth inhibition. We found that TAS-116 decreased phosphorylated EGFR levels and inhibited the growth of EGFR-mutated lung cancer cell lines. CONCLUSION: TAS-116 may be a novel promising drug to overcome tyrosine kinase inhibitor-resistance in both GIST and EGFR-mutated lung cancer.


Asunto(s)
Benzamidas/farmacología , Neoplasias Gastrointestinales/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Aparato de Golgi/efectos de los fármacos , Mesilato de Imatinib/farmacología , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , Pirazoles/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/metabolismo , Aparato de Golgi/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cell Commun Signal ; 17(1): 114, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484543

RESUMEN

BACKGROUND: KIT tyrosine kinase is expressed in mast cells, interstitial cells of Cajal, and hematopoietic cells. Permanently active KIT mutations lead these host cells to tumorigenesis, and to such diseases as mast cell leukemia (MCL), gastrointestinal stromal tumor (GIST), and acute myeloid leukemia (AML). Recently, we reported that in MCL, KIT with mutations (D816V, human; D814Y, mouse) traffics to endolysosomes (EL), where it can then initiate oncogenic signaling. On the other hand, KIT mutants including KITD814Y in GIST accumulate on the Golgi, and from there, activate downstream. KIT mutations, such as N822K, have been found in 30% of core binding factor-AML (CBF-AML) patients. However, how the mutants are tyrosine-phosphorylated and where they activate downstream molecules remain unknown. Moreover, it is unclear whether a KIT mutant other than KITD816V in MCL is able to signal on EL. METHODS: We used leukemia cell lines, such as Kasumi-1 (KITN822K, AML), SKNO-1 (KITN822K, AML), and HMC-1.1 (KITV560G, MCL), to explore how KIT transduces signals in these cells and to examine the signal platform for the mutants using immunofluorescence microscopy and inhibition of intracellular trafficking. RESULTS: In AML cell lines, KITN822K aberrantly localizes to EL. After biosynthesis, KIT traffics to the cell surface via the Golgi and immediately migrates to EL through endocytosis in a manner dependent on its kinase activity. However, results of phosphorylation imaging show that KIT is preferentially activated on the Golgi. Indeed, blockade of KITN822K migration to the Golgi with BFA/M-COPA inhibits the activation of KIT downstream molecules, such as AKT, ERK, and STAT5, indicating that KIT signaling occurs on the Golgi. Moreover, lipid rafts in the Golgi play a role in KIT signaling. Interestingly, KITV560G in HMC-1.1 migrates and activates downstream in a similar manner to KITN822K in Kasumi-1. CONCLUSIONS: In AML, KITN822K mislocalizes to EL. Our findings, however, suggest that the mutant transduces phosphorylation signals on lipid rafts of the Golgi in leukemia cells. Unexpectedly, the KITV560G signal platform in MCL is similar to that of KITN822K in AML. These observations provide new insights into the pathogenic role of KIT mutants as well as that of other mutant molecules.


Asunto(s)
Aparato de Golgi/metabolismo , Leucemia Mieloide Aguda/patología , Microdominios de Membrana/metabolismo , Mutación , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Endocitosis/genética , Activación Enzimática/genética , Humanos , Transporte de Proteínas/genética
9.
Nature ; 504(7480): 446-50, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24226770

RESUMEN

Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.


Asunto(s)
Butiratos/metabolismo , Diferenciación Celular , Colon/inmunología , Colon/microbiología , Fermentación , Simbiosis , Linfocitos T Reguladores/citología , Acetilación/efectos de los fármacos , Traslado Adoptivo , Animales , Butiratos/análisis , Butiratos/farmacología , Diferenciación Celular/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/patología , Colon/citología , Colon/metabolismo , Secuencia Conservada , Femenino , Factores de Transcripción Forkhead/genética , Vida Libre de Gérmenes , Histonas/metabolismo , Homeostasis/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Recuento de Linfocitos , Espectroscopía de Resonancia Magnética , Masculino , Metaboloma , Ratones , Regiones Promotoras Genéticas/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología
10.
Int Immunol ; 29(1): 31-45, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28177443

RESUMEN

It has been reported that splenic immune responses play pivotal roles in the development of allergic diseases; however, the precise role of the spleen remains unclear. Herein, we demonstrated a novel role of the spleen in the pathogenesis of food allergy (FA). We found that mast cells (MCs) developed from progenitor cells present in spleen during an antigen-specific T-cell response in vitro. In a Th2 response-mediated FA model, significant expansion of MCs was also observed in spleen. The incidence of allergic diarrhea was profoundly reduced in splenectomized mice, whereas adoptive transfer of in vitro-induced splenic MCs into these mice restored allergic symptoms, suggesting that the splenic MCs functioned as the pathogenic cells in the development of FA. The in vitro-generated MCs required not only IL-3 but also IFN-γ, and treatment of FA-induced mice with anti-IFN-γ antibody suppressed expansion of MCs in spleen as well as diarrhea development, highlighting that IFN-γ in the spleen orchestrated the development of FA, which was followed by a Th2 response in the local lesion. Overall, we propose that the role of the spleen in the development of FA is to provide a unique site where antigen-specific T cells induce development of pathogenic MCs.


Asunto(s)
Hipersensibilidad a los Alimentos/inmunología , Mastocitos/inmunología , Bazo/inmunología , Células Th2/inmunología , Animales , Femenino , Hipersensibilidad a los Alimentos/patología , Interferón gamma/inmunología , Interleucina-3/inmunología , Mastocitos/patología , Ratones , Ratones Endogámicos BALB C , Bazo/patología , Células Th2/patología
11.
Int Immunol ; 29(10): 471-478, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29186424

RESUMEN

Nasopharynx-associated lymphoid tissue (NALT) is one of the major constituents of the mucosa-associated lymphoid tissue (MALT), and has the ability to induce antigen-specific immune responses. However, the molecular mechanisms responsible for antigen uptake from the nasal cavity into the NALT remain largely unknown. Immunohistochemical analysis showed that CCL9 and CCL20 were co-localized with glycoprotein 2 (GP2) in the epithelium covering NALT, suggesting the existence of M cells in NALT. In analogy with the reduced number of Peyer's patch M cells in CCR6-deficient mice, the number of NALT M cells was drastically decreased in CCR6-deficient mice compared with the wild-type mice. Translocation of nasally administered Salmonella enterica serovar Typhimurium into NALT via NALT M cells was impaired in CCR6-deficient mice, whereas S. Typhimurium demonstrated consistent co-localization with NALT M cells in wild-type mice. When wild-type mice were nasally administered with an attenuated vaccine strain of S. Typhimurium, the mice were protected from a subsequent challenge with wild-type S. Typhimurium. Antigen-specific fecal and nasal IgA was detected after nasal immunization with the attenuated vaccine strain of S. Typhimurium only in wild-type mice but not in CCR6-deficient mice. Taken together, these observations demonstrate that NALT M cells are important as a first line of defense against infection by enabling activation of the common mucosal immune system (CMIS).


Asunto(s)
Células Epiteliales/inmunología , Inmunidad Mucosa/inmunología , Tejido Linfoide/inmunología , Nasofaringe/inmunología , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
12.
Proc Natl Acad Sci U S A ; 117(33): 19624-19626, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32759220
13.
Gastroenterology ; 151(5): 836-844, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27521479

RESUMEN

The gastrointestinal (GI) tract is essential for the absorption of nutrients, induction of mucosal and systemic immune responses, and maintenance of a healthy gut microbiota. Key aspects of gastrointestinal physiology are controlled by the enteric nervous system (ENS), which is composed of neurons and glial cells. The ENS is exposed to and interacts with the outer (microbiota, metabolites, and nutrients) and inner (immune cells and stromal cells) microenvironment of the gut. Although the cellular blueprint of the ENS is mostly in place by birth, the functional maturation of intestinal neural networks is completed within the microenvironment of the postnatal gut, under the influence of gut microbiota and the mucosal immune system. Recent studies have shown the importance of molecular interactions among microbiota, enteric neurons, and immune cells for GI homeostasis. In addition to its role in GI physiology, the ENS has been associated with the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, raising the possibility that microbiota-ENS interactions could offer a viable strategy for influencing the course of brain diseases. Here, we discuss recent advances on the role of microbiota and the immune system on the development and homeostasis of the ENS, a key relay station along the gut-brain axis.


Asunto(s)
Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/microbiología , Microbioma Gastrointestinal , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/fisiología , Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Homeostasis/fisiología , Humanos , Mucosa Intestinal/embriología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Enfermedad de Parkinson/etiología
14.
J Biol Chem ; 290(28): 17495-504, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26023239

RESUMEN

Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Aerobiosis , Línea Celular Tumoral , Proliferación Celular , Genes erbB-1 , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/genética , Glucólisis , Humanos , Ácido Láctico/metabolismo , Neoplasias Pulmonares/patología , Metabolómica , Mutación , Vía de Pentosa Fosfato , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Transducción de Señal
15.
EMBO Rep ; 15(12): 1297-304, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25378482

RESUMEN

Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/metabolismo , Tejido Linfoide/citología , Tejido Linfoide/metabolismo , Receptores Notch/metabolismo , Células del Estroma/citología , Animales , Diferenciación Celular/fisiología , Técnicas In Vitro , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Transducción de Señal/fisiología , Células del Estroma/metabolismo
16.
Immunol Cell Biol ; 93(3): 226-32, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25666097

RESUMEN

Vertebrate animals have developed sophisticated host defense mechanisms against potentially hostile antigens. These mechanisms mainly involve the immune system and the epithelial cells that cover the body surface. Accumulating studies have revealed that epigenetic mechanisms in collaboration with signal transduction networks regulate gene expression over the course of differentiation, proliferation and function of immune and epithelial cells. The epigenetic status of these cells is fine-tuned under physiological conditions; however, its disturbance often results in the development of immunological disorders, namely inflammation. Certain environmental factors influence the differentiation and function of immune cells through epigenetic alterations. For example, commensal microbiota-derived metabolites inhibit histone deacetylases to induce regulatory T cells, whereas some infectious agents induce DNA methylation, resulting in the development of cancer. These data imply that epigenetic regulation of host defense cells, which are usually the first to encounter external antigens, is implicated in disease development. Here, we highlight recent advances in our understanding of the molecular mechanisms by which the epigenetic status of immune and epithelial cells is controlled.


Asunto(s)
Epigénesis Genética/inmunología , Células Epiteliales/inmunología , Sistema Inmunológico , Infecciones/genética , Neoplasias/genética , Linfocitos T Reguladores/fisiología , Animales , Metilación de ADN , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Humanos , Infecciones/inmunología , Microbiota/inmunología , Neoplasias/inmunología
17.
Gastroenterology ; 145(3): 625-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23684748

RESUMEN

BACKGROUND & AIMS: In epithelial cells, protein sorting mechanisms regulate localization of plasma membrane proteins that generate and maintain cell polarity. The clathrin-adaptor protein (AP) complex AP-1B is expressed specifically in polarized epithelial cells, where it regulates basolateral sorting of membrane proteins. However, little is known about its physiological significance. METHODS: We analyzed the intestinal epithelia of mice deficient in Ap1m2 (Ap1m2(-/-) mice), which encodes the AP-1B µ1B subunit, and compared it with 129/B6/CD1 littermates (controls). Notch signaling was inhibited by intraperitoneal injection of dibenzazepine, and ß-catenin signaling was inhibited by injection of IWR1. Intestinal tissue samples were collected and analyzed by immunofluorescence analysis. RESULTS: Ap1m2(-/-) mice developed intestinal epithelial cell hyperplasia. The polarity of intestinal epithelial cells was disrupted, as indicated by the appearance of ectopic microvilli-like structures on the lateral plasma membrane and mislocalization of basolateral membrane proteins, including the low-density lipoprotein receptor and E-cadherin. The E-cadherin-ß-catenin complex therefore was disrupted at the adherens junction, resulting in nuclear translocation of ß-catenin. This resulted in up-regulation of genes regulated by ß-catenin/transcription factor 4 (Tcf4) complex, and increased the proliferation of intestinal epithelial cells. CONCLUSIONS: AP-1B is required for protein sorting and polarization of intestinal cells in mice. Loss of AP-1B in the intestinal epithelia results in mislocalization of E-cadherin, activation of ß-catenin/Tcf4 complex, proliferation, and hyperplasia.


Asunto(s)
Complejo 1 de Proteína Adaptadora/deficiencia , Subunidades mu de Complejo de Proteína Adaptadora/deficiencia , Polaridad Celular , Proliferación Celular , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Complejo 1 de Proteína Adaptadora/fisiología , Subunidades mu de Complejo de Proteína Adaptadora/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Biomarcadores/metabolismo , Cadherinas/metabolismo , Células Epiteliales/patología , Células Epiteliales/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Mucosa Intestinal/patología , Mucosa Intestinal/fisiopatología , Intestino Delgado/patología , Intestino Delgado/fisiopatología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Factor de Transcripción 4 , beta Catenina/metabolismo
18.
J Immunol ; 188(5): 2427-36, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22279105

RESUMEN

Intestinal epithelial cells (IECs) have important functions as the first line of defense against diverse microorganisms on the luminal surface. Impaired integrity of IEC has been implicated in increasing the risk for inflammatory disorders in the gut. Notch signaling plays a critical role in the maintenance of epithelial integrity by regulating the balance of secretory and absorptive cell lineages, and also by facilitating epithelial cell proliferation. We show in this article that mice harboring IEC-specific deletion of Rbpj (RBP-J(ΔIEC)), a transcription factor that mediates signaling through Notch receptors, spontaneously develop chronic colitis characterized by the accumulation of Th17 cells in colonic lamina propria. Intestinal bacteria are responsible for the development of colitis, because their depletion with antibiotics prevented the development of colitis in RBP-J(ΔIEC) mice. Furthermore, bacterial translocation was evident in the colonic mucosa of RBP-J(ΔIEC) mice before the onset of colitis, suggesting attenuated epithelial barrier functions in these mice. Indeed, RBP-J(ΔIEC) mice displayed increase in intestinal permeability after rectal administration of FITC-dextran. In addition to the defect in physical barrier, loss of Notch signaling led to arrest of epithelial cell turnover caused by downregulation of Hes1, a transcriptional repressor of p27(Kip1) and p57(Kip2). Thus, epithelial cell-intrinsic Notch signaling ensures integrity and homeostasis of IEC, and this mechanism is required for containment of intestinal inflammation.


Asunto(s)
Homeostasis/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Receptores Notch/fisiología , Transducción de Señal/inmunología , Animales , Traslocación Bacteriana/genética , Traslocación Bacteriana/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Enfermedad Crónica , Colitis/genética , Colitis/inmunología , Colitis/patología , Eliminación de Gen , Homeostasis/genética , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores Notch/genética , Transducción de Señal/genética , Células Th17/inmunología , Células Th17/metabolismo , Células Th17/patología
19.
Nat Metab ; 6(6): 1076-1091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777856

RESUMEN

Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.


Asunto(s)
Colon , Células Enteroendocrinas , Microbioma Gastrointestinal , Obesidad , Animales , Células Enteroendocrinas/metabolismo , Ratones , Colon/microbiología , Colon/metabolismo , Obesidad/metabolismo , Obesidad/microbiología , Ratones Endogámicos C57BL , Ácido Glutámico/metabolismo , Eje Cerebro-Intestino , Hiperfagia/metabolismo
20.
Front Physiol ; 14: 1299474, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107475

RESUMEN

Emerging evidence has highlighted that the gut microbiota plays a critical role in the regulation of various aspects of mammalian physiology and behavior, including circadian rhythms. Circadian rhythms are fundamental behavioral and physiological processes that are governed by circadian pacemakers in the brain. Since mice are nocturnal, voluntary wheel running activity mostly occurs at night. This nocturnal wheel-running activity is driven by the primary circadian pacemaker located in the suprachiasmatic nucleus (SCN). Food anticipatory activity (FAA) is the increased bout of locomotor activity that precedes the scheduled short duration of a daily meal. FAA is controlled by the food-entrainable oscillator (FEO) located outside of the SCN. Several studies have shown that germ-free mice and mice with gut microbiota depletion altered those circadian behavioral rhythms. Therefore, this study was designed to test if the gut microbiota is involved in voluntary wheel running activity and FAA expression. To deplete gut microbiota, C57BL/6J wildtype mice were administered an antibiotic cocktail via their drinking water throughout the experiment. The effect of antibiotic cocktail treatment on wheel running activity rhythm in both female and male mice was not detectable with the sample size in our current study. Then mice were exposed to timed restricted feeding during the day. Both female and male mice treated with antibiotics exhibited normal FAA which was comparable with the FAA observed in the control group. Those results suggest that gut microbiota depletion has minimum effect on both circadian behavioral rhythms controlled by the SCN and FEO respectively. Our result contradicts recently published studies that reported significantly higher FAA levels in germ-free mice compared to their control counterparts and gut microbiota depletion significantly reduced voluntary activity by 50%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA