Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Primatol ; 53(1): e12686, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37990472

RESUMEN

We performed whole-exome sequencing using a human exome capture kit to analyze the potential genetic factors related to patent ductus arteriosus in Japanese macaques. Compared with the reference sequences of other primates, we identified potential missense variants in five genes: ADAM15, AZGP1, CSPG4, TNFRSF13B, and EPOR.


Asunto(s)
Conducto Arterioso Permeable , Humanos , Animales , Conducto Arterioso Permeable/genética , Conducto Arterioso Permeable/veterinaria , Macaca fuscata , Secuenciación del Exoma , Proteínas de la Membrana/genética , Proteínas ADAM/genética
2.
BMC Neurosci ; 24(1): 59, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932682

RESUMEN

BACKGROUND: Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that has no specific treatment except for supportive medical care. JEV is a neurotropic virus that affects the nervous system and triggers inflammation in the brain. METHODS: Melatonin is used as a sleep-inducing agent in neurophysiology and may serve as a protective agent against neurological and neurodegenerative diseases. Herein, we investigated the effects of melatonin and the critical roles of the serine/threonine protein phosphatase calcineurin during JEV infection in SK-N-SH neuroblastoma cells. RESULTS: Melatonin treatment decreased JEV replication and JEV-mediated neurotoxicity. Calcineurin activity was increased by JEV infection and inhibited by melatonin treatment. Through calcineurin regulation, melatonin decreased the JEV-mediated neuroinflammatory response and attenuated JEV-induced autophagy. CONCLUSIONS: Calcineurin inactivation has a protective effect in JEV-infected neuronal cells, and melatonin is a novel resource for the development of anti-JEV agents.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Melatonina , Animales , Humanos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Calcineurina/farmacología , Melatonina/farmacología , Autofagia
3.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203307

RESUMEN

Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Maclura/química , FN-kappa B/metabolismo , Extractos Vegetales/química , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Phytother Res ; 34(9): 2385-2396, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32255235

RESUMEN

Gastroesophageal reflux disease (GERD) is a disease that stomach contents continually refluxing into esophagus causes symptoms and/or complications. The study was working to find natural plant extracts with good effects and small side effects to treat reflux esophagitis (RE). The anti-inflammatory effects of hexane extract of Magnolia sieboldii (MsHE) were conducted on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The ameliorative effects of MsHE on esophageal damage in rats induced by gastric acid reflux was explored in vivo. The results showed that MsHE decreased the production of nitric oxide (NO) and expression levels of iNOS, COX-2 and TNF-α on LPS-stimulated RAW 264.7 cells and MsHE treatment ameliorated the rats' esophageal tissue damage induced by gastric acid and inhibited the increase of inflammatory mediators and pro-inflammatory cytokines by regulating NF-κB signaling pathway. In addition, MsHE protected the function of barrier of epithelial cells against inflammatory conditions through increasing the expression of tight junctions. Furthermore, liquid chromatography-mass spectrometry analysis was used for determine the active ingredients contained in MsHE. The results show that MsHE can alleviate experimental rat RE by regulating NF-κB signaling pathway. In summary, MsHE may be used as a source material of drug candidate for the treatment of RE.


Asunto(s)
Esofagitis Péptica/tratamiento farmacológico , Reflujo Gastroesofágico/tratamiento farmacológico , Hexanos/química , Esbozos de los Miembros/química , Magnolia/química , Extractos Vegetales/química , Animales , Hexanos/uso terapéutico , Humanos , Masculino , Ratones , Ratas
5.
J Therm Biol ; 94: 102761, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33293002

RESUMEN

Cardiac arrest (CA) is a leading cause of mortality worldwide. Most of post-resuscitation related deaths are due to post-cardiac arrest syndrome (PCAS). After cardiopulmonary resuscitation (CPR), return of spontaneous circulation (ROSC) leads to renal ischemia-reperfusion injury, also known as PCAS. Many studies have focused on brain and heart injuries after ROSC, but renal failure has largely been ignored. Therefore, we investigated the protective effects of therapeutic hypothermia (TH) on asphyxial CA-induced renal injury in rats. Thirty rats were randomly divided into five groups: 1) the control group (sham); 2) the normothermic CA (nor.); 3) a normothermic CA group that received TH immediately within 2 h after CPR (Hypo. 2 hrs); 4) a normothermic CA group that received TH within 4 h after CPR (Hypo. 4 hrs); and 5) a normothermia CA group that received TH within 6 h after CPR (Hypo. 6 h). One day after CPR, all rats were sacrificed. Compared with the normothermic CA group, the TH groups demonstrated significantly increased survival rate (P < 0.05); decreased serum blood urea nitrogen, creatinine, and lactate dehydrogenase levels; and lower histological damage degree and malondialdehyde concentration in their renal tissue. Terminal deoxynucleotidyl transferase dUTP nick end labeling stain revealed that the number of apoptotic cells significantly decreased after 4 h and 6 h of TH compared to the results seen in the normothermic CA group. Moreover, TH downregulated the expression of cyclooxygenase-2 in the renal cortex compared to the normothermic CA group one day after CPR. These results suggest that TH exerts anti-apoptotic, anti-inflammatory, and anti-oxidative effects immediately after ROSC that protect against renal injury.


Asunto(s)
Paro Cardíaco/terapia , Hipotermia Inducida , Enfermedades Renales/terapia , Animales , Asfixia/complicaciones , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Ciclooxigenasa 2/metabolismo , Paro Cardíaco/sangre , Paro Cardíaco/etiología , Paro Cardíaco/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , L-Lactato Deshidrogenasa/sangre , Masculino , Malondialdehído/metabolismo , Ratas Sprague-Dawley
7.
Cell Mol Neurobiol ; 38(2): 497-505, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28477054

RESUMEN

Sigesbeckia pubescens (SP) is a traditional Chinese medicine, possessing antioxidant and anti-inflammatory activities. In this study, we evaluate the neuroprotective activities of SP extract on glutamate-induced oxidative stress in HT22 cells and the molecular mechanism underlying neuroprotection. We applied 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), crystal violet, reactive oxygen species (ROS), lactate dehydrogenase (LDH), quantitative real-time polymerase chain reaction (qPCR), and western blot analyses for assessing the neuroprotective effects of SP extract. The experimental study revealed that SP considerably increased the cell viability, and reduced the oxidative stress promoted ROS and LDH generation in HT22 cells in a dose-dependent manner. Additionally, the morphology of HT22 cells was effectively improved by SP. Upregulated gene expressions of mitogen-activated protein kinase (MAPK) were markedly attenuated by SP. Similarly, SP notably suppressed the ROS-mediated phosphorylation of MAPK (pERK1/2, pJNK, and pp38) cascades and activation of apoptotic factor caspase-3 signaling pathway that overall contributed to the neuroprotection. Taken together, SP may exert neuroprotective effects via alteration of MAPK and caspase-3 pathways under oxidative stress condition. Therefore, SP is a potential agent for preventing oxidative stress-mediated neuronal cell death.


Asunto(s)
Caspasa 3/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ácido Glutámico/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Medicamentos Herbarios Chinos/aislamiento & purificación , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Fármacos Neuroprotectores/aislamiento & purificación , Estrés Oxidativo/fisiología
8.
Int J Mol Sci ; 19(2)2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29462911

RESUMEN

Globally, gastric ulcer is a vital health hazard for a human. Rabdosia inflexa (RI) has been used in traditional medicine for inflammatory diseases. The present study aimed to investigate the protective effect and related molecular mechanism of RI using lipopolysaccharide (LPS)-induced inflammation in RAW 246.7 cells and HCl/EtOH-induced gastric ulcer in mice. We applied 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), nitric oxide (NO), reactive oxygen species (ROS), histopathology, malondialdehyde (MDA), quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry (IHC), and Western blot analyses to evaluate the protective role of RI. Study revealed that RI effectively attenuated LPS-promoted NO and ROS production in RAW 246.7 cells. In addition, RI mitigated gastric oxidative stress by inhibiting lipid peroxidation, elevating NO, and decreasing gastric inflammation. RI significantly halted elevated gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), inducible nitric oxide synthetase (iNOS), and cyclooxygenase-2 (COX-2) in gastric tissue. Likewise, RI markedly attenuated the mitogen-activated protein kinases (MAPKs) phosphorylation, COX-2 expression, phosphorylation and degradation of inhibitor kappa B (IκBα) and activation of nuclear factor kappa B (NF-κB). Thus, experimental findings suggested that the anti-inflammatory and gastroprotective activities of RI might contribute to regulating pro-inflammatory cytokines and MAPK/NF-κB signaling pathways.


Asunto(s)
Antioxidantes/uso terapéutico , Isodon/química , Sistema de Señalización de MAP Quinasas , Extractos Vegetales/uso terapéutico , Úlcera Gástrica/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Línea Celular , Ciclooxigenasa 2/metabolismo , Regulación hacia Abajo , Mucosa Gástrica/efectos de los fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Peroxidación de Lípido , Ratones , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Úlcera Gástrica/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
9.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370076

RESUMEN

Stress can lead to inflammation, accelerated aging, and some chronic diseases condition. Mentha arvensis (MA) is a traditional medicine having antioxidant and anti-inflammatory activities. The present study investigated the anti-stress role of MA and fermented MA (FMA) extract in immobilized rats. We studied the lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and rats were immobilized for 2 h per day for 14 days using a restraining cage. MA (100 mg/kg) and FMA (100 mg/kg) were orally administered to rats 1 h prior to immobilization. Using high-performance liquid chromatography (HPLC) analysis, we determined the rosmarinic acid content of MA and FMA. The generation of malondialdehyde (MDA) and nitric oxide (NO) in RAW 246.7 cells were suppressed by both MA and FMA. In rats, MA and FMA notably improved the body weight, daily food intake, and duodenum histology. MDA and NO level were gradually decreased by MA and FMA treatment. MA and FMA significantly controlled the stress-related hormones by decreasing corticosterone and ß-endorphin and increasing serotonin level. Moreover, protein expression levels of mitogen activated protein kinases (MAPK) and cyclooxygenase-2 (COX-2) were markedly downregulated by MA and FMA. Taken together, MA and FMA could ameliorate immobilized-stress by reducing oxidative stress, regulating stress-related hormones, and MAPK/COX-2 signaling pathways in rats. Particularly, FMA has shown greater anti-stress activities than MA.


Asunto(s)
Mentha/química , Extractos Vegetales/uso terapéutico , Psicotrópicos/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Animales , Peso Corporal , Línea Celular , Corticosterona/sangre , Ciclooxigenasa 2/metabolismo , Ingestión de Alimentos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Malondialdehído/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Psicotrópicos/farmacología , Ratas , Ratas Sprague-Dawley , Restricción Física/efectos adversos , Serotonina/sangre , Estrés Psicológico/etiología , betaendorfina/sangre
10.
Int J Mol Sci ; 18(7)2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28698525

RESUMEN

Sodium arsenite (NaAsO2) has been recognized as a worldwide health concern. Hydrangea macrophylla (HM) is used as traditional Chinese medicine possessing antioxidant activities. The study was performed to investigate the therapeutic role and underlying molecular mechanism of HM on NaAsO2-induced toxicity in human liver cancer (HepG2) cells and liver in mice. The hepatoprotective role of HM in HepG2 cells was assessed by using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT), reactive oxygen species (ROS), and lactate dehydrogenase (LDH) assays. Histopathology, lipid peroxidation, serum biochemistry, quantitative real-time polymerase chain reaction (qPCR) and Western blot analyses were performed to determine the protective role of HM against NaAsO2 intoxication in liver tissue. In this study, we found that co-treatment with HM significantly attenuated the NaAsO2-induced cell viability loss, intracellular ROS, and LDH release in HepG2 cells in a dose-dependent manner. Hepatic histopathology, lipid peroxidation, and the serum biochemical parameters alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were notably improved by HM. HM effectively downregulated the both gene and protein expression level of the mitogen-activated protein kinase (MAPK) cascade. Moreover, HM well-regulated the Bcl-2-associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) ratio, remarkably suppressed the release of cytochrome c, and blocked the expression of the post-apoptotic transcription factor caspase-3. Therefore, our study provides new insights into the hepatoprotective role of HM through its reduction in apoptosis, which likely involves in the modulation of MAPK/caspase-3 signaling pathways.


Asunto(s)
Arsenitos/toxicidad , Caspasa 3/metabolismo , Medicamentos Herbarios Chinos/farmacología , Hydrangea/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Compuestos de Sodio/toxicidad , Alanina Transaminasa/metabolismo , Apoptosis/efectos de los fármacos , Aspartato Aminotransferasas/metabolismo , Células Hep G2 , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
11.
Dev Biol ; 386(2): 473-83, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24360908

RESUMEN

The neural crest (NC) is a multipotent population of migratory cells unique to the vertebrate embryo, contributing to the development of multiple organ systems. Transcription factors pax3 and zic1 are among the earliest genes activated in NC progenitors, and they are both necessary and sufficient to promote NC fate. In order to further characterize the function of these transcription factors during NC development we have used hormone inducible fusion proteins in a Xenopus animal cap assay, and DNA microarray to identify downstream targets of Pax3 and Zic1. Here we present the results of this screen and the initial validation of these targets using quantitative RT-PCR, in situ hybridization and morpholinos-mediated knockdown. Among the targets identified we found several well-characterized NC-specific genes, including snail2, foxd3, gbx2, twist, sox8 and sox9, which validate our approach. We also obtained several factors with no known function in Xenopus NC, which represent novel regulators of NC fate. The comprehensive characterization of Pax3 and Zic1 targets function in the NC gene regulatory network, are essential to understanding the mechanisms regulating the emergence of this important cell population.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Cresta Neural/embriología , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes/fisiología , Hibridación in Situ , Análisis por Micromatrices , Morfolinos/genética , Cresta Neural/metabolismo , Factor de Transcripción PAX3 , Reacción en Cadena en Tiempo Real de la Polimerasa , Xenopus laevis/genética
12.
Dev Genes Evol ; 225(2): 105-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25772274

RESUMEN

Na, K-ATPase is an integral membrane protein complex responsible for maintaining the ionic gradients of Na(+) and K(+) across the plasma membrane and has a variety of cellular functions including neuronal activity. Studies in several organisms have shown that this protein complex regulates multiple aspects of embryonic development and is responsible for the pathogenesis of several human diseases. Here, we report the cloning and expression of Na, K-ATPase α2 (atp1a2) and α3 (atp1a3) subunits during Xenopus development and compare the expression patterns of each subunit. Using in situ hybridization in whole embryos and on sections, we show that all three α subunits are co-expressed in the pronephric kidney, with varying expression in neurogenic derivatives. The atp1a2 has a unique expression in the ependymal cell layer of the developing brain that is not shared with other α subunits. The Na, K-ATPase α1 (atp1a1), and atp1a3 share many expression domains in placode derivatives, including the otic vesicle, lens, ganglion of the anterodorsal lateral line nerve, and ganglia of the facial and anteroventral lateral line nerve and olfactory cells. All the subunits share a common expression domain, the myocardium.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , ATPasa Intercambiadora de Sodio-Potasio/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Especificidad de Órganos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transcriptoma , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
13.
Dev Biol ; 362(1): 65-75, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22173066

RESUMEN

Lower vertebrates develop a unique set of primary sensory neurons located in the dorsal spinal cord. These cells, known as Rohon-Beard (RB) sensory neurons, innervate the skin and mediate the response to touch during larval stages. Here we report the expression and function of the transcription factor Xaml1/Runx1 during RB sensory neurons formation. In Xenopus embryos Runx1 is specifically expressed in RB progenitors at the end of gastrulation. Runx1 expression is positively regulated by Fgf and canonical Wnt signaling and negatively regulated by Notch signaling, the same set of factors that control the development of other neural plate border cell types, i.e. the neural crest and cranial placodes. Embryos lacking Runx1 function fail to differentiate RB sensory neurons and lose the mechanosensory response to touch. At early stages Runx1 knockdown results in a RB progenitor-specific loss of expression of Pak3, a p21-activated kinase that promotes cell cycle withdrawal, and of N-tub, a neuronal-specific tubulin. Interestingly, the pro-neural gene Ngnr1, an upstream regulator of Pak3 and N-tub, is either unaffected or expanded in these embryos, suggesting the existence of two distinct regulatory pathways controlling sensory neuron formation in Xenopus. Consistent with this possibility Ngnr1 is not sufficient to activate Runx1 expression in the ectoderm. We propose that Runx1 function is critically required for the generation of RB sensory neurons, an activity reminiscent of that of Runx1 in the development of the mammalian dorsal root ganglion nociceptive sensory neurons.


Asunto(s)
Gástrula/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Receptoras Sensoriales/fisiología , Médula Espinal/citología , Factores de Transcripción/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Morfolinos/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células Receptoras Sensoriales/citología , Médula Espinal/embriología , Proteínas de Xenopus/metabolismo
14.
Viruses ; 15(2)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36851686

RESUMEN

Since the first recorded outbreak of the highly pathogenic avian influenza (HPAI) virus (H5N1) in South Korea in 2003, numerous sporadic outbreaks have occurred in South Korean duck and chicken farms, all of which have been attributed to avian influenza transmission from migratory wild birds. A thorough investigation of the prevalence and seroprevalence of avian influenza viruses (AIVs) in wild birds is critical for assessing the exposure risk and for directing strong and effective regulatory measures to counteract the spread of AIVs among wild birds, poultry, and humans. In this study, we performed a systematic review and meta-analysis, following the PRISMA guidelines, to generate a quantitative estimate of the prevalence and seroprevalence of AIVs in wild birds in South Korea. An extensive search of eligible studies was performed through electronic databases and 853 records were identified, of which, 49 fulfilled the inclusion criteria. The pooled prevalence and seroprevalence were estimated to be 1.57% (95% CI: 0.98, 2.51) and 15.91% (95% CI: 5.89, 36.38), respectively. The highest prevalence and seroprevalence rates were detected in the Anseriformes species, highlighting the critical role of this bird species in the dissemination of AIVs in South Korea. Furthermore, the results of the subgroup analysis also revealed that the AIV seroprevalence in wild birds varies depending on the detection rate, sample size, and sampling season. The findings of this study demonstrate the necessity of strengthening the surveillance for AIV in wild birds and implementing strong measures to curb the spread of AIV from wild birds to the poultry population.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Gripe Aviar/epidemiología , Prevalencia , Estudios Seroepidemiológicos , República de Corea/epidemiología , Pollos , Factores de Riesgo
15.
Anticancer Agents Med Chem ; 23(20): 2225-2236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37859313

RESUMEN

BACKGROUND: TRAIL has emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells while sparing normal cells. Autophagy, a highly regulated cellular recycling mechanism, is known to play a cell survival role by providing a required environment for the cell. Recent studies suggest that autophagy plays a significant role in increasing TRAIL resistance in certain cancer cells. Thus, regulating autophagy in TRAIL-mediated cancer therapy is crucial for its role in cancer treatment. OBJECTIVE: Our study explored whether the antidepressant drug desipramine could enhance the ability of TRAIL to kill cancer cells by inhibiting autophagy. METHODS: The effect of desipramine on TRAIL sensitivity was examined in various lung cancer cell lines. Cell viability was measured by morphological analysis, trypan blue exclusion, and crystal violet staining. Flow cytometry analysis was carried out to measure apoptosis with annexin V-PI stained cells. Western blotting, rtPCR, and immunocytochemistry were carried out to measure autophagy and death receptor expression. TEM was carried out to detect autophagy inhibition. RESULTS: Desipramine treatment increased the TRAIL sensitivity in all lung cancer cell lines. Mechanistically, desipramine treatment induced death receptor expression to increase TRAIL sensitivity. This effect was confirmed when the genetic blockade of DR5 reduced the effect of desipramine in enhanced TRAIL-mediated cell death. Further investigation revealed that desipramine treatment increased the LC3 and p62 levels, indicating the inhibition of lysosomal degradation of autophagy. Notably, TRAIL, in combination with either desipramine or the autophagy inhibitor chloroquine, exhibited enhanced cytotoxicity compared to TRAIL treatment alone. CONCLUSION: Our findings revealed the potential of desipramine to induce TRAIL-mediated cell death by autophagy impairment. This discovery suggests its therapeutic potential for inducing TRAIL-mediated cell death by increasing the expression of death receptors, which is caused by impairing autophagy.


Asunto(s)
Desipramina , Neoplasias Pulmonares , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Antidepresivos/farmacología , Apoptosis/efectos de los fármacos , Autofagia , Línea Celular Tumoral , Desipramina/farmacología , Desipramina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/efectos de los fármacos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
16.
Sci Rep ; 13(1): 7620, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165030

RESUMEN

Korean water deer (Hydropotes inermis argyropus; Heude, 1884) and Siberian roe deer (Capreolus pygargus; Pallas, 1771) are Korean wild deer classified in the tribe Capreolini. C. pygargus in Korea were previously considered a single species; however, it was recently suggested that roe deer living on Jeju Island (Jeju roe deer; Capreolus pygargus jejuensis) is a distinct subspecies from roe deer living on the Korean peninsula (mainland roe deer; Capreolus pygargus tianschanicus) based on several studies demonstrating genetic and morphological features. In this study, we suggests that the scapular morphology and osteometric data can be used for interspecies discrmination between Korean wild deer. To compare the morphological characteristics of scapula among the three groups of deer, we analyzed the features and nine osteomorphological measurements of 31 H. i. argyropus (14 males and 17 females), 18 C. p. jejuensis (4 males and 14 females), and 23 C. p. tianschanicus (16 females and 7 males). The estimated ages of the deer were over 32-35 months. Data were analyzed by one-way repeated measures analysis of variance with post hoc Duncan test and discriminant functional analysis (DFA). H. i. argyropus and C. p. tianschanicus had the smallest and largest scapulae, respectively. The scapulae of the three Korean wild deer had a similar triangular shape, which was obscured by the tuber of the scapular spine, pointed acromion, broad infraspinous fossa, narrow supraspinous fossa, and partial ossification of scapular cartilage in older deer. H. i. argyropus had certain distinctive features, including a caudally pointed acromion, a notch between the supraglenoid tubercle and glenoid cavity (NBSG), a glenoid notch, and no sexual dimorphism, except for the longest dorsal length (Ld) and the scapular index (SI). C. p. jejuensis had a larger scapular index (SI) (61.74 ± 0.74%), compared with the SIs of H. i. argyropus and C. p. tianschanicus. The unique features of the scapula in C. p. jejuensis include its S-shaped cranial border. The C. p. jejuensis had a cranially pointed acromion, less frequent presence of glenoid notch and NBSG, short length of supraglenoid tubercle, and no sexual dimorphism. The C. p. tianschanicus had elevated cranial margin of the glenoid cavity, and frequent presence of glenoid notch and NBSG, similar to the H. i. argyropus. Similar to C. p. jejuensis, C. p. tianschanicus had a cranially pointed acromion. However, sexual dimorphism was observed in C. p. tianschanicus. DFA using osteometric data showed 97.22% of specimens were classified correctly into their species, meaning the osteometric parameters can be used for interspecies discrimination of Korean wild deer. Our findings indicate that the scapular morphologies of the three Korean wild deer have certain similarities and differences, suggesting that C. p. jejuensis are distinct from C. p. tianschanicus.


Asunto(s)
Ciervos , Femenino , Masculino , Animales , Ciervos/genética , Cráneo , Escápula , Acromion , República de Corea
17.
Biomed Pharmacother ; 169: 115898, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37989029

RESUMEN

Excess acetaminophen (APAP) commonly causes severe acute liver injury (ALI), characterized by oxidative stress, pro-inflammatory responses, and hepatocyte damage. Veronica persica (VP) is a traditional medicine with antioxidant and anti-inflammatory properties. There is a paucity of information on its medicinal value, especially its potential mechanisms for alleviating ALI. This study aimed to clarify the ameliorative effects and intracellular mechanisms of VP on APAP-induced ALI via attenuating oxidative stress and inflammation. Mice were given VP for 7 days before exposure to APAP (300 mg/kg). The HPLC and radical scavenging assay found that VP contains 12 phenolic acids and 6 flavonoids, as well as show robust antioxidant capacity. In the APAP-induced ALI model, pre-treatment with VP significantly reduces APAP-induced hepatotoxicity by observing improved hepatocyte pathological injury and further confirmed by serum biochemical indicator. Also, the reduction of TUNEL-positive regions and the regulation of Bcl-2-associated X protein indicated that VP attenuates hepatocytotoxicity. Moreover, VP pre-intervention inhibits the formation of liver pro-inflammatory cytokines, the expression of inflammatory response genes, and increases in myeloperoxidase (MPO) in APAP-exposed mice. The elevated reduced glutathione (GSH) levels and decreased oxidative stress markers indicate that VP reduces APAP-promoted oxidative stress. Further study revealed that VP inhibited the phosphorylation of NF-κB/STAT3 cascade, blocked ERK and JNK phosphorylation, and activated AMP-activated protein kinase (AMPK). To sum up, this study demonstrated that VP exists hepatoprotective abilities on APAP-induced ALI, primarily by suppressing the phosphorylation of NF-κB/STAT3 cascade and ERK-JNK and inducing AMPK activation to alleviate oxidative stress and inflammation.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Veronica , Ratones , Animales , Acetaminofén/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés Oxidativo , Hígado , Inflamación/metabolismo , Ratones Endogámicos C57BL
18.
J Dev Biol ; 10(3)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35893124

RESUMEN

Mandibulofacial dysostosis (MFD) is a human congenital disorder characterized by hypoplastic neural-crest-derived craniofacial bones often associated with outer and middle ear defects. There is growing evidence that mutations in components of the spliceosome are a major cause for MFD. Genetic variants affecting the function of several core splicing factors, namely SF3B4, SF3B2, EFTUD2, SNRPB and TXNL4A, are responsible for MFD in five related but distinct syndromes known as Nager and Rodriguez syndromes (NRS), craniofacial microsomia (CFM), mandibulofacial dysostosis with microcephaly (MFDM), cerebro-costo-mandibular syndrome (CCMS) and Burn-McKeown syndrome (BMKS), respectively. Animal models of NRS and MFDM indicate that MFD results from an early depletion of neural crest progenitors through a mechanism that involves apoptosis. Here we characterize the knockdown phenotype of Eftud2, Snrpb and Txnl4a in Xenopus embryos at different stages of neural crest and craniofacial development. Our results point to defects in cranial neural crest cell formation as the likely culprit for MFD associated with EFTUD2, SNRPB and TXNL4A haploinsufficiency, and suggest a commonality in the etiology of these craniofacial spliceosomopathies.

19.
Biomed Pharmacother ; 151: 113186, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643063

RESUMEN

Ulcerative colitis (UC) is a severe inflammatory disease that has spread throughout the world. Cirsium japonicum (CJ) and Aralia elata (AE) are natural herbs with potent antioxidative antidiabetics and anti-inflammatory effects. In this investigation, we studied the defensive role of the combination of CJ and AE against LPS-induced inflammation in RAW 264.7 cells, dextran sulfate sodium (DSS)-induced colitis in mice, and acetic acid-induced colitis in dogs. MTT assay was performed to identify the toxic effect of CJ and AE extracts. NO, and MDA level was also measured by NO and MDA assay. To measure the pro-inflammatory protein expression, a western blot was performed. To induce colitis, 3% DSS was used for mice and 6% acetic acid was used for dogs. Histopathology and colonoscopy were executed to detect the effect of extracts. CJ and AE pretreatment reduced the level of NO, MDA, and the expression of pro-inflammatory proteins cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in RAW 264.7. Compared to the separate doses of CJ and AE, the combined dose of CJ and AE significantly reduced clinical symptoms induced by DSS in mice and acetic acid in dogs including weight loss, bloody stool, shortening of the colon, and the severity of colitis and degree of histological damage in the colon. Therefore, these results indicated that a combined dose of CJ and AE has a protective effect against LPS-induced RAW 264.7 cells, DSS-mediated colonic inflammation in mice, and acetic acid-induced colitis in dogs.


Asunto(s)
Aralia , Cirsium , Colitis Ulcerosa , Colitis , Animales , Antiinflamatorios/efectos adversos , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colon , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Perros , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Células RAW 264.7
20.
BMC Complement Med Ther ; 22(1): 172, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752797

RESUMEN

BACKGROUND: Globally, ischemic stroke is a major health threat to humans that causes lifelong disability and death. Mentha arvensis (MA) has been used in traditional medicine to alleviate oxidative stress and inflammation-related disorders. In the present study, the neuroprotective properties of fermented MA (FMA) extract were investigated in the gerbil and SH-SY5Y cells. model of transient global cerebral ischemia. METHODS: Bilateral common carotid artery occlusion-induced transient global cerebral ischemia in gerbil and hydrogen peroxide (H2O2)-mediated neurotoxic effects in human neuroblastoma cells (SH-SY5Y) were investigated. FMA (400 mg/kg) was orally administered for 7 days before induction of ischemic stroke. To evaluate the neuroprotective activity of FMA, we implemented various assays such as cell viability assay (MTT), lactate dehydrogenase (LDH) assay, histopathology, immunohistochemistry (IHC), histofluorescence, and western blot. RESULTS: FMA pretreatment effectively decreased transient ischemia (TI) induced neuronal cell death as well as activation of microglia and astrocytes in the hippocampal region. The protective effects of FMA extract against H2O2-induced cytotoxicity of SH-SY5Y cells were observed by MTT and LDH assay. However, FMA pretreatment significantly increased the expression of the antioxidant marker proteins such as superoxide dismutase-1 (SOD-1) and superoxide dismutase-2 (SOD-2) in the hippocampus and SH-SY5Y cells. Furthermore, the activation of mitogen-activated protein kinase (MAPK) further activated a cascade of outcomes such as neuroinflammation and apoptosis. FMA pretreatment notably decreased TI and H2O2 induced activation of MAPK (c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), and p38) proteins in hippocampus and SH-SY5Y cells respectively. Besides, pretreatment with FMA markedly reduced H2O2 mediated Bax/Bcl2 expression in SH-SY5Y cells. CONCLUSION: Thus, these results demonstrated that neuroprotective activities of FMA might contribute to regulating the MAPK signaling pathway.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Mentha , Neuroblastoma , Animales , Isquemia Encefálica/tratamiento farmacológico , Línea Celular Tumoral , Regulación hacia Abajo , Gerbillinae/metabolismo , Humanos , Peróxido de Hidrógeno , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroprotección , Extractos Vegetales/farmacología , Transducción de Señal , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA